Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 13 (1931)

Artikel: Le calcul des vitesses radiales de l'étoile variable U Aquilae

Autor: Tiercy, Georges

DOI: https://doi.org/10.5169/seals-742061

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

LE CALCUL DES VITESSES RADIALES

DE

L'ÉTOILE VARIABLE U AQUILAE

PAR

Georges TIERCY

(Avec 4 fig.) 1

§ 1. — Introduction.

1. — La courbe des vitesses radiales de U Aquilae n'a été déterminée directement que tout dernièrement ². Elle ne l'était pas lorsque j'ai rédigé la présente étude sur U Aquilae, à la fin de l'année 1929 et au début de 1930, en utilisant les courbes générales que j'avais obtenues précédemment par la comparaison des résultats trouvés pour plusieurs autres Céphéides ³.

J'ai commencé par établir la courbe de lumière de U Aquilae par la méthode « spectrale » qui a été appliquée ici-même à plusieurs reprises en 1928 et 1929.

La connaissance de la courbe de lumière s'accompagne de celle de la variation du spectre; on connaît donc ainsi expérimentalement, par les clichés mêmes, le spectre moyen de l'étoile; et ce spectre moyen se trouve être justement celui

¹ Communication présentée à la session d'automne de la Soc. suisse de Géophysique, Météorologie et Astronomie, La Chaux-de-Fonds, 28-29-IX-31.

² Astrophysical Journal, 1930, vol. LXX, no 1.

³ Archives (5), 11, p. 197 (1929); le même dans Publ. de l'Obs. de Genève, fasc. 8.

indiqué par l'emploi des courbes générales rappelées ci-dessus; il y a dans ce fait un élément de contrôle précieux.

Ensuite, j'ai établi l'index de couleur moyen I_m , le rayon moyen R_m , le rayon au maximum de lumière R_1 , la magnitude visuelle absolue moyenne $(M_v)_m$, la variation de M_v ; puis, connaissant à très peu près la variation de I, puisqu'on connaît les spectres, j'ai calculé les rayons géométriques R par l'application de la nouvelle formule que j'ai proposée récemment I pour le calcul de I:

$$I = (2,633 - 0.0212 \Delta m) [\log R + 0.2 M_n - 0.372] - 0.64.$$

On se trouve ainsi avoir déterminé indirectement la courbe des vitesses radiales de l'étoile en question.

Il est intéressant de comparer ce résultat, obtenu par une méthode détournée, avec celui établi par les astronomes du Mont Wilson par une mesure directe.

- § 2. Les clichés; les données numériques; les phases; mesures; courbe de lumière.
- 2. Les clichés portent les numéros E 144-156-157-158-160-161-162-169-170-171-172 de la collection de l'Observatoire astrophysique d'Arcetri (Florence); je les ai obtenus entre le 28 août et le 29 octobre 1927. Les données numériques fondamentales ont été tirées du catalogue de M. R. Prager:

$$\begin{cases} & \text{Epoque: } 2410170^{\text{d}},\!325; \\ & \text{Période: } & 7^{\text{d}},\!02387; \\ & \text{M}-m = & 2,\!3. \end{cases}$$

En temps moyen d'Arcetri, l'époque vaut:

2410170^d,356265.

¹ Archives (5), 11, p. 260 (1929); le même dans Publ. de l'Obs. de Genève, fasc. 9. D'ailleurs, cette formule a été complétée (C. R. de la Soc. de Phys., 1930, 1; le même dans le fasc. 12 des Publ. de l'Obs. de Genève).

3. — Voici le tableau des <i>phases</i> respectives des cli	lichés:
---	---------

Plaque	Date 1027	Date julienne	Phase
	8.	ď	d
E 144	28 août	242.5121,357	4,205
156	19 sept.	5143,383	5,160
157	20 sept.	5144,340	6,117
158	21 sept.	5145,322	0,075
160	29 sept.	5153,350	0,079
161	1 octobre	5155,342	2,071
162	2 octobre	5156,346	3,075
169	24 octobre	5178,256	3,914
170	26 octobre	5180,256	5,914
171	27 octobre	5181,292	6,950
172	28 octobre	5182,260	0,894

4. — Durées de poses réduites, pour une largeur spectrale de 500 μ.

Plaque	Phase	Durée de pose effec- tive	Lar- geur du spectre en µ	Durée de pose pour 500 μ		Plaque	Phase	Pose effec- tive	Lar- geur du spectre en μ	Pos pou 500
	d	min.		min.	- 1		d	min.		min
E 158	0,075	90	535	84		E 144	4,205	40	100	20
16 0	0,079	60	515	58	1	156	5,160	60	600	5
172	0,894	90	925	49		170	5,914	90	780	5
161	2,071	90	450	100		157	6.117	90	950	4
162	3,075	90	1000	45		171	6,950	60	640	4
169	3,914	90	900	50		Sept. 1997.0	,			

5. — Mesures. — La dernière colonne du tableau du nº 4 donne les durées qui ont servi à ramener les mesures à ce qu'elles seraient si les poses avaient été toutes égales à 50 minutes.

Les formules de réduction sont les suivantes 1:

$$\left\{ \begin{array}{l} l' = l + (\mathcal{L} - l) \cdot (0{,}105) \cdot \frac{t' - t}{t} \; , \qquad \text{si} \quad t' > t \; ; \\ \\ l' = l - (\mathcal{L} - l) \cdot (0{,}105) \cdot \frac{t - t'}{t'} \; , \qquad \text{si} \quad t' < t \; . \end{array} \right.$$

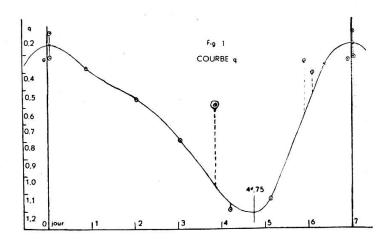
¹ Archives (5), 10, p. 107 et p. 159 (1928); le même dans Publ. de l'Obs. de Genève, fasc. 2 et 4.

l représente la valeur effectivement mesurée (largeur de raie ou longueur d'une partie de spectre), l' la valeur réduite, t la pose effective, t' la pose uniforme choisie. On a pris:

 $\mathcal{L}=3000$ s'il s'agit de la partie du spectre située après la raie K du côté de l'ultra-violet; $\mathcal{L}=2000 \text{ pour la partie du spectre précédant la raie } H_3 \text{ du côté du rouge;}$ $\mathcal{L}=0 \text{ pour les largeurs de raies.}$

Calcul de d.

 $\left(\begin{array}{ccc} de \ H_{3} \ \dot{a} \ K\colon 11\,780 \\ longueur \ totale \ maxima & L = 16\,780 \end{array}\right)$

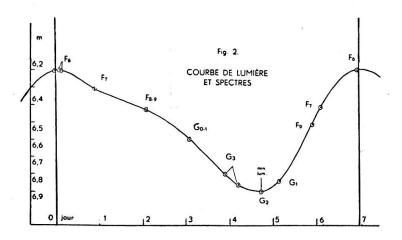

	Mesures en	directes µ		tion à min.		
Plaque	$\begin{array}{c} \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \end{array}$	après K	avant H _β	après K	L — d	d
II. 450	4505	2525	4450	2524	45054	000
E 158	1505	2727	1470	2721	15971	908
160	794	1200	775	1150	13705	3075
172	1086	1560	1086	1560	14026	2354
161	(tot. =	11550)	(108	300)	10800	5980
162	(tot. =	9170)	(98	370)	9370	7410
169	570	— 124 0	570	— 124 0	12110	5670
144	624	2900	330	 4110	8000	8780
156	0	3800	0	- 3800	7980	8800
170	1500	1800	1492	1780	15052	1728
157	1020	735	1024	744	13548	3232
171	570	800	579	820	13179	3601

Calcul de t.

		M	esures	direc	tes en	μ	Re	ducti	on à	50 m	in.	Autre	es raies	
Plaque	Pose 100 μ	$\mathbf{H}_{\mathfrak{z}}$	Н	Нδ	н	К	Н	Н	Нδ	Н	К	$\operatorname{avant}_{\beta}$	après K	t
	min.													
E 158	84	45	60	70	175	268	48	64	75	187	287	250	500	1411
160	58	105	105	106	250		107	107	108	254		145	230	951
172	49	45	95	80	206	246	45	95	80	206	246	740	780	2192
161	100	-												
162	45						_							
169	50	40	78	25			40	78	25			400		543
144	200	30	35	35			33	39	39			240		351
156	50	50	64				50	64						114
170	58	44	47	60	185	268	45	48	61	188	272	900	1080	2594
157	48	56	60	67	246	280	56	60	67	245	279	500	370	1577
171	47	40	50	30	180		40	50	30	17 9	1	120	160	579

Calcul de q.

Plaque	Phase	d	t	y=d+t	x = L - y	$q = \frac{y}{x}$	Remarques
	d						
E 158	0,075	809	1411	2220	14560	0,152	courbe 0,230
160	0,079	3075	951	4026	12754	0,316	*
172	0,894	2354	2192	4546	12234	0,372	
161	2,071	5980		5980	10800	0,554	_ "
162	3,075	7410		7410	9370	0,791	
169	3,914	5670	543	6213	10567	(0,588)	mauvais
							$(courbe\ 1,070)$
144	4,205	8780	351	9131	7649	1,194	courbe 1,160
156	5,160	8800	114	8914	7866	1,133	
170	5,914	1728	2594	4322	12458	0,347	courbe 0,670
157	6,117	3232	1577	4809	11971	0,402	courbe 0,530
171	6,950	3601	579	4180	12600	0,332	courbe 0,236


On trouve ainsi une courbe dont l'allure se rapproche de celle de la courbe donnée par Pickering (Harvard Annals, 46), et de celle de la courbe de Luizet (Astronomische Nachrichten, 4097); la phase du minimum de lumière semble être 4^d,75 comme l'indique Luizet (tandis que Pickering indique 5^d,04); par contre, dans la fig. 1, la partie inférieure de la branche descendante affecte la forme indiquée par Pickering, moins « creusée » que celle de Luizet.

Quoi qu'il en soit, nous adopterons la forme de la courbe de la fig. 1; les valeurs extrêmes de la magnitude m étant 6,2 et 6,9.

0		7	7	7 .,
6. —	. / 0111	no	do	lumière.
U.	Cour	UU	uc	culture c.

Plaque	Phase	Courbe q	m
E 158	d 0,075	0,220	6,20
160 172 161	0,079 0,894 2,071	$egin{array}{c} 0,220 \ 0,372 \ 0,554 \end{array}$	6,20 \\ 6,31 \\ 6,43
162 169	3,075 3,914	0,791 1,070	6,60 6,80
144 Min. lum. 156	4,205 4,750 5,160	1,160 $1,220$ $1,133$	6,86 6,90 6,84
170 157	5,914 6,117	$0,670 \\ 0,530$	6,52 $6,42$
171 Max. lum.	6,950 7,024	$0,225 \ 0,220$	$6,20-\varepsilon$ $6,20$

Et voici la courbe de lumière (fig. 2), avec l'indication des spectres trouvés par les clichés:

§ 3. — Utilisation des courbes moyennes 1.

7. — Nous avons utilisé ici les cinq premières courbes (courbes moyennes) proposées dans le mémoire intitulé « Etude sur un groupe de huit Céphéides »; d'ailleurs, le groupe comprend

¹ Archives (5), 11, p. 197 (1929); le même dans Publ. de l'Obs. de Genève, fasc. 8.

maintenant deux étoiles de plus, Y Sagittarii et SU Cygni, et compte dix unités, comme nous l'avons annoncé récemment 1.

8. — Le logarithme de la période étant 0,85, la courbe moyenne (4) du mémoire cité donne immédiatement:

$$I_m = 0.58$$

environ; voilà donc connu, au moins approximativement, l'index de couleur moyen.

Du même coup, on trouve, par la courbe moyenne (5), que le spectre moyen doit être voisin du type F_8 ; or, on a trouvé F_9 par l'étude des clichés, comme le montre la figure (2) du nº 6 ci-avant, puisque les spectres s'échelonnent du type F_5 au type G_3 .

9. — La courbe moyenne (1) indique maintenant que le rayon moyen R_m vaut de 18 à 20. Comme le rayon R_1 valable lors de la phase du maximum de lumière est peu différent de R_m , nous prendrons ici $R_1 = 18,5$. D'autre part la courbe moyenne (2) donne la valeur de la magnitude absolue moyenne, soit environ:

$$(M_v)_m = -1.95$$
.

10. — On peut d'ailleurs trouver autrement cette valeur $(M_v)_m$; cela servira de contrôle.

On sait qu'on peut poser 2:

$$(M_{\varrho})_{1} = M_{g}' - 5 \log R_{1}$$
,

la valeur de M'_s étant fournie par la figure (3) du mémoire cité.

¹ Archives (5), 11, suppl., p. 139 (1929); le même dans Publ. de l'Obs. de Genève, fasc. 10.

L'étude sur Y Sagittarii a été publiée dernièrement, simultanément dans les Archives (5), 13, p. 5, et dans le fascicule 14 des Publ. de l'Obs. de Genève.

L'étude sur SU Cygni a paru dans les Archives (5), 13, p. 121 (1931) et simultanément dans le fasc. 16 des Publ. de l'Obs. de Genève.

² Archives (5), 11, p. 197 (1929); le même dans Publ. de l'Obs. de Genève, fasc. 8.

Le spectre, au maximum de lumière de U Aquilae, est du type F_6 ; d'où $M_s'=4{,}10$ environ; et l'on obtient:

$$\begin{split} \left(\mathbf{M}_v \right)_{\mathbf{1}} &= 4.10 \, - 5 \, \log 18.5 \, = 4.10 \, - - 6.40 \\ & \left(\mathbf{M}_v \right)_{\mathbf{1}} = - 2.24 \;\; . \end{split}$$

Mais on a vu au § 2 de la présente étude que la magnitude m de U Aquilae varie de 6,2 à 6,9; l'amplitude de la variation est donc égale à 0,7; il en résulte que M_v vaut — 1,54 au minimum de lumière; on a donc enfin:

$$(\mathbf{M}_v)_m = \frac{-2,24-1,54}{2} \qquad \text{soit} \quad (\mathbf{M}_v)_m = -1,9 \ .$$

11. — On peut dès lors écrire le tableau de variation de M_v , avec $(M_v)_1 = -2.30$:

Plaque	Phase	M_v	Plaque	Phase	M_v
	d	<u>'</u>		d	
E 158	0,075	-2,30	Min. lum.	4,750	1,60
160	0,079	-2,30	156	5,160	1,66
172	0,894		170	5,914	-1,98
161	2,071	-2,07	157	6,117	-2,08
162	3,075	— 1 ,90	171	6,950	$-2,30+\varepsilon$
169	3,914	-1,70	Max. lum.	7,024	-2,30
144	4,205	— 1.64	200 September 200 (00 Septembe		

§ 4. — CALCUL DES RAYONS, COURBE DE PULSATION.

12. — Il s'agit ici d'appliquer la formule suivante 1:

$$I = (3,633 - 0,0212 \Delta m) \cdot [\log R + 0,2 M_v - 0,372] - 0,64$$
 (1)

où Δm représente l'excès de la magnitude m sur la valeur m=5.

¹ Archives (5), 11, p. 260 (1929); le même dans Publ. de l'Obs. de Genève, fasc. 9.

Voici le tableau des Δm :

Plaque	Δm
E 158	1,20)
160	$\frac{1,20}{1,20}$
172	1,31
161	1,43
162	1,60
169	1,80
144	1,86

Plaque	Δ m
Min. lum. 156 170	1,90 1,84 1,52 1,42
157 171 Max. lum.	$1,42$ $1,20-\varepsilon$ $1,20$

13. — Il faut maintenant donner des valeurs de I, au moins approximatives. Nous connaissons la succession des spectres de U Aquilae (fig. 2 précédente); et, en nous basant sur les résultats des études que nous avons faites antérieurement sur les étoiles variables X Sagittarii, W Sagittarii, S Sagittae, η Aquilae, SU Cygni, Y Sagittarii, nous proposons les valeurs indiquées dans le premier des deux tableaux suivants. Pour un même spectre, la valeur de I est plus forte lors d'une phase de la branche descendante de la courbe de lumière que lors d'une phase de la branche ascendante; et l'on constatera (2^{me} tableau) que, pour chaque spectre, la moyenne des deux valeurs (branche descendante et branche ascendante) est en bon accord avec la valeur moyenne admise généralement dans le cas des géants (voir Russell-Degan-Stewart II, p. 734).

0	Plaque	Spectre	I
Branche descendante	E 158 160 172 161 162 169 144	$\left.\begin{array}{c} F_{6} \\ F_{7^{-8}} \\ F_{8^{-9}} \\ G_{0-1} \\ \end{array}\right\}$	0,50 0,59 0,69 0,75 0,82

Plaque	Spectre	I
171	F ₆	0,48
 157	$\mathbf{F_{5}}$	$0,44 \\ 0,50$
170	F_{9-8}	0,54
156	G ₁	0,71

Branche ascendante

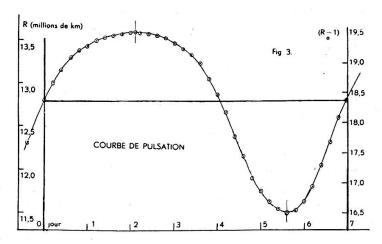
Min. lum.

 $G_2 = 0.76$

Spectre	I moyen	I d'après Russell
$\mathbf{F_5}$	0,46	0,47
$\mathbf{F_6}$	0,49	0,51
$\mathbf{F_7}$	0,55	0,55
$\mathbf{F_8}$	0,58	0,59
$\mathbf{F_9}$	0,64	0,63
G_{0}	0,68	0,67
$G_{f 1}$ $G_{f 2}$	$\begin{array}{c c} 0,72 \\ 0,76 \end{array}$	$0,72 \\ 0,77$
G_{3}	0,82	0,82

Remarquons que, si des mesures de magnitudes photographiques avaient pu être effectuées en même temps que les clichés, on aurait les valeurs de I directement.

C'est évidemment le premier des deux tableaux précédents que l'on a utilisé pour calculer R d'après la formule du nº 12; celle-ci s'écrit:


$$\log R = \frac{I + 0.64}{0.633 - 0.0212 \,\Delta m} - 0.2 \,M_v + 0.372 \;. \tag{2}$$

14. — Tableau des valeurs de R. (
$$R_s = 1$$
)

Plaque	Phase	I	Δm	M_v	Log R	${ m R}$	
E 158 160 172 161	d 0,075 0,079 0,894 2,071	0,50 -0,50 -0,59 -0,69	1,20 1,20 1,31	$\begin{bmatrix} -2.30 \\ -2.30 \\ -2.19 \\ 2.07 \end{bmatrix}$	1,269 1,269 1,282 1,297	18,58 19,14 19,59	R max.
161 162 169 144 Min. lum.	3,075 3,914 4,205 4,750	0,09 0,75 0,82 0,82 0,76	1,43 1,60 1,80 1,86	$egin{array}{c c} -2.07 \\ -1.90 \\ -1.70 \\ -1.64 \\ -1.60 \\ \end{array}$	1,297 1,286 1,274 1,263 1,232	19,39 19,32 18,80 18,32 17,06	п шах.
156 170 157 171	5,160 5,914 6,117 6,950	0,76 0,71 0,54 0,50 0,48	1,90 1,84 1,52 1,42 1,20-ε	$\begin{bmatrix} -1,66 \\ -1,98 \\ -2,08 \end{bmatrix}$	$egin{array}{c} 1,225 \ 1,222 \ 1,226 \ \end{array}$	16,80 16,67 16,83 18,24	R min.
Max. lum.	7,024	$0,48 \ 0,50$	1,20-6	$\begin{vmatrix} -2,30+\epsilon \\ -2,30 \end{vmatrix}$	1,277	18,58	

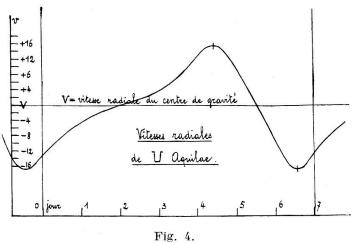
15. — Courbe de pulsation. — Le tableau du nº 14, traduit graphiquement, donne la courbe de pulsation (fig. 3)

On constate la symétrie de cette courbe par rapport à un axe perpendiculaire à Ox et passant par l'un quelconque des sommets.

Rappelons qu'au nº 9, nous avions pris $R_1=18,5$, tandis que la figure (3) indique $R_1=18,4$. D'autre part, on trouve ici $R_m=18$; et nous avions annoncé R_m compris entre 18 et 20; la concordance est satisfaisante.

16. — Valeurs de R en kilomètres ($R_s = 696000$ km).

	The same of the sa		• •			
Phase	$\begin{vmatrix} \text{Rayon} \\ (\mathbf{R}_{s} = 1) \end{vmatrix}$	R en km		Phase	$\begin{vmatrix} \text{Rayon} \\ (\mathbf{R}_{s} = 1) \end{vmatrix}$	R en km
d				d	-	F
0	18,40	12.806.400		3,8	18,76	13.056.960
0,2	18,70	13.015.200		4,0	18,50	12.876.000
0,4	18,90	13.154.400		4,2	18,20	4 12.667.200
0,6	19,10	13.293.600	ļ	4,4	17,80	12.388.800
0,8	19,22	13.377.120		4,6	17,45	12.145.200
1,0	19,30	13.432.800		4,8	17,10	11.901.600
1,2	19,40	13.502.400		5,0	16,88	11.748.480
1,4	19,45	13.537.200		5,2	16,70	11.623.200
1,6	19,48	13.558.080		5,4	16,60	11.553.600
1,8	19,50	13.572.000	1/57	5,6	16,52	11.497.920
2,0	19,53	13.592.880		5,8	16,55	11.518.800
2,1	19,54	13.599.840	23	6,0	16,70	11.623.200
$_{2,2}$	19,53	13.592.880		6,2	16,94	11.790.240
2,4	19,51	13.578.960		6,4	17,30	12.040.800
2,6	19,48	13.558.080		6,6	17,70	12.319.200
2,8	19,43	13.523.280		6,8	18,10	12.597.600
3,0	19,35	13.467.600		7,02	18,40	12.806.400
3,2	19,25	13.398.000				
3,4	19,15	13.328.400		(\mathbf{R}_m)	a = 12.54	8.880 km)
3,6	19,00	13.224.000				**


§ 5. — Des vitesses radiales.

17. — Vitesses radiales par rapport au centre de gravité de l'étoile. — Dans le tableau suivant, v représente la vitesse radiale du centre du disque visuel par rapport au centre de gravité de l'étoile.

Phase	ΔR de proche en proche	v par sec.
d		
0,0	+208.800	
0,2	+139.200	——————————————————————————————————————
0,4	+ 139.200	
0,6		$\phantom{00000000000000000000000000000000000$
0,8	+ 83.520	<u> 4,8</u>
1,0	+ 55.680	
1,2	+ 69.600	<u> 4,0</u>
1,4	+ 34.800	
1,6	+ 20.880	1,2
1,8	+ 13.920	- 0,8
501	+ 20.880	1,2
2,0	+ 6.960	- 0,8
2,1	<u> </u>	+ 0,8
2,2	— 13.920	
2,4		$\begin{vmatrix} \\ + 1,2 \end{vmatrix}$
2,6	- 34.800	
2,8		$\begin{vmatrix} \\ + & 3,2 \end{vmatrix}$
3,0	- 69.600	$\begin{vmatrix} - & & & & \\ & + & 4,0 & & \end{vmatrix}$
3,2		$\begin{vmatrix} -1, & \\ +4, & \end{vmatrix}$
3,4	-104.400	
3,6		$\begin{vmatrix} + & 6,0 \\ \end{vmatrix}$

Phase	ΔR de proche en proche	v par sec.
d	— 167.040	+ 9,6
3,8	——————————————————————————————————————	$\frac{1}{10,5}$
4,0		
4,2	208.800	$\begin{array}{ccccc} + & 12,1 \\ \hline & & \end{array}$
4,4		$\left egin{array}{c} + 16,1 \\ \hline \end{array} \right $
4,6	243.600	+ 14,1
4,8	243.600	+ 14,1
5,0	— 153.12 0	+ 8,8
	125.280	+ 7,3
5,2	- 69.600	+ 4,0
5,4		+ 3,2
5,6	+ 20.880	
5,8	+104.400	-6,0
6,0	+ 167.040	9,6
6,2	+250.560	${-14,5}$
6,4		
6,6	+278.400	
6,8	+278.400	
7,02	+208.800	
,		
l	i	I

Et l'on tire de ce tableau la courbe de variation de la vitesse radiale rapportée au centre de gravité de l'étoile (fig. 4):

1 1g. 4.

On voit que la phase de R_{max} est 2^d ,1 à peu près; tandis que celle de R_{min} est 5^d ,6.

La courbe de la figure (4) présente bien l'allure ordinaire des courbes de vitesses radiales des Céphéides dont la période est de l'ordre de grandeur de 7 jours. On y constate une ondulation secondaire évidente entre les phases 1^d et 3^d; elle correspond à la légère ondulation secondaire trouvée sur la branche descendante de la courbe de lumière.

18. — Vitesses radiales. — Pour connaître les vitesses radiales par rapport au système solaire, il suffit dès lors de connaître celle V du centre de gravité de l'étoile, ou bien celle v correspondant à une phase connue.

Les indications sommaires que j'avais en 1929 m'ont poussé à adopter tout d'abord la valeur V=-6 km environ 1; cela fournit, pour la vitesse radiale par rapport à l'observateur solaire, les valeurs extrêmes + 10 km et - 22 km.

On sait maintenant 2 que V = -7 km; en adoptant cette nouvelle valeur, on trouve pour valeurs extrêmes +9 km et -23 km.

¹ Archives (5), 13, suppl. (1931); le même dans Publ. de l'Obs. de Genève, fasc, 14.

² R. F. Sanford, Astrophysical Journal, 1930, no 404.

19. — Comparaison avec les résultats obtenus au Mont Wilson ¹. — M. Roscoe F. Sanford a utilisé 22 spectrogrammes obtenus au Mont Wilson; il obtient une courbe ayant sensiblement la même forme que la nôtre, mais décalée d'environ 0^d,5 vers la droite, et présentant une amplitude totale de 40 km environ, alors que nous avons trouvé 32 km. Il y a donc accord satisfaisant entre les résultats obtenus par notre méthode indirecte et les résultats des mesures directes effectuées par M. R.-F. Sanford.

¹ R. F. SANFORD, loc. cit.