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1929 Vol. 11. Novembre-Decembre

SUR

LES FIGURES D'EQÜILIBRE ET Li GEÖDESIE

PAR

ltolin WAV HE

§ 1. — Introduction.

Dans deux articles anterieurs1 j'ai developpe une methode
de resolution du probleme des figures planetaires en premiere
et seconde approximation. Je cherchais avant tout ä satisfaire

au besoin de rigueur et de generalite qu'on eprouve dans toute
recherche mathematique. Cette rigueur a conduit, chose

interessante, a plus de simplicity.
Je vais tendre maintenant vers les applications ä la geodesie

en mettant les equations obtenues sous une forme telle que leur
sens concret apparaisse facilement. II faudra faire ressortir
les quantites physiquement mesurables et comparer la solution
theorique obtenue avec les mesures empiriques de la geodesie.

II s'agira de voir s'il est possible de coordonner les mesures de

l'aplatissement terrestre, Celles des variations de la pesanteur,
avec la theorie de la precession des equinoxes.

Ce probleme pose par d'Alembert n'est pas resoluble par la

premiere approximation. Poincare l'a bien demontre2. Mais nous
montrerons qu'en seconde approximation le desaccord entre
les mesures geodesiques et la theorie de la precession disparait.

1 I. Archives (V), 11, p. 131 (1929). / "üvTuc- ^
II. » » » Suppl., p. 19 (1929). \ <^>vv

2 Poingahe, Figures d'equilibre, p. 96. Paris, 1902, G. iNaud.^ ^
Akohivks, Vol. 11. — Novembre-Decembre 1929. I

I NEÜCHATEL
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Pour cela, il va falloir discuter d'une maniere assez approfon-
die une equation (85) qui pour la deuxieme approximation joue
un role analogue ä 1'equation de Clairaut pour la premiere.
Cette recherche des figures theoriques doit etre d'autant plus
meticuleuse que les mesures geodesiques et astronomiques
qu'on desire expliquer et retrouver deviennent elles-memes plus
precises grace au developpement considerable de la technique.

S'il persistait, sur un point, un desaccord tres faible entre
la theorie et les mesures, il faudrait tenir compte des faits
suivants:

1° La Terre n'est pas partout comparable ä un fluide meme

visqueux.
2° L'heterogeneite de la croüte, ocean, montagne, n'est pas

negligeable en seconde approximation.
3° II peut exister des deformations ä longues periodes

d'origine astronomique.
4° La gravifique newtonienne n'est qu'approchee, on le sait

aujourd'hui, et il faudrait, faute de pouvoir reprendre le pro-
bleme dans la gravifique d'Einstein, ce qui serait tres complique,
au moins indiquer la correction relativiste ä faire subir aux
mesures geodesiques et ä Celles de la precession.

Sans viser ä etre encyclopedique, je voudrais neanmoins
donner de la partie classique du sujet une vue pleine. A cette
fln je reprendrai, en la completant un peu, la discussion,

en premiere approximation, des variations de l'aplatissement
des couches d'egale densite avec la profondeur.

Notre methode differe beaucoup de celle de Callendreau1

et de M. Veronnet 2 et nos resultats different un peu des leurs.

Enfm, les quatre articles que je publie sur ce sujet formeront
un tout, je ferai de nombreux renvois aux deux memoires
anterieurs I et II et les references aux articles precedents seront
suivies des chiffres I et II indiquant ces deux memoires.

1 Callendreau, Memoire sur la theorie de la figure des planetes.
Annales de l'Observatoire de Paris, 19, 1889.

2 Veronnet, Rotation de Vellipsoide heterogene et figure exacte de
la Terre. These. Paris, 1912, Gauthiers-Villars.
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§2. — Discussion des variations de l'aplatissement
EN PREMIERE APPROXIMATION.

Comme precedemment, M sera la masse totale de l'astre,
t le rayon polaire d'une couche de densite p (t), a (t) l'aplatissement

de cette couche rapportee au carre de la vitesse angulaire,
w cette vitesse, D (t) la densite moyenne de la matiere interieure
ä la couche t, i la constante de l'attraction universelle, A le
moment d'inertie de l'astre par rapport ä un diametre equatorial,

C le moment d'inertie par rapport äl'axe polaire. J'affecterai
d'un indice (1) ce qui a trait k la surface libre tr et l'accent (')
indiquera une derivation par rapport k t.

Pour simplifier le langage je m'exprimerai comme si je decri-
vais Faxe polaire de l'infmi au centre de l'astre, done dans le sens

des t decroissants. Ainsi quand je dirai qu'une quantite y

croit, il faut entendre qu'elle croit de l'mfmi ä la surface libre
ou encore de la surface libre au centre de l'astre, qu'elle croit
quand i decroit.

A l'exterieur de l'astre, les surfaces d'egale densite sont

remplacees par les surfaces äquipotentielles pour le champ de la

pesanteur et dans le cas de la masse homogene les surfaces

d'egale densite sont ä l'interieur remplacees par les surfaces

d'egale pression.
Ces precautions de langage etant prises, partons de la troi-

sieme equation du Systeme (9, I) qui s'ecrit en a sous la forme

connue dans la theorie classique:

Derivee par rapport ä t, cette relation donne l'equation de

Glairaut:

D'autre part, en integrant par partie le dernier terme de (51)
et tenant compte de la formule classique:

(51)

2D 'a -\- 6 prt' + tDa" 0 (52)

p D + ¥«D' (53)
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on trouvera, apres quelques transformations simples:

t

(Da)' 3 r6J Fap'dt (54)
0

En dehors de l'astre, l'integrale de l'equation (51) disparait,
car pour t > t± on a p 0. L'aplatissement est alors regi

par l'equation differentielle:

ta' + 2a 5Xt3 (55)

oü X represente une constante egale, en premiere approximation,

ä:

L'equation (55) s'integre facilement et donne, k etant une
autre constante:

a \(t3 — 3*r2) (57) ta' 3X(f3 + 2ir2) (58)

et Ton a, comme on l'a vu, page 144, I, en premiere approximation

:

* -^(c-A)- (59)

Pour transformer l'equation de Clairaut posons avec Radau:

i ='£. (60) g 'F- (60,)

On obtient en y une equation differentielle du type de

Riccati:
lY)' — r,2 — (5 + G)r) — 2 G (61)

Une etude analytique de cette equation de Radau a ete faite

par Poincare1. Nous n'en retiendrons ici que l'essentiel en

simplifiant un peu les demonstrations au moyen des formules
(51) et (54). Mais avant d'etudier l'equation (61) examinons

1 Poincare, Figures d'equilibre, p. 69-81.
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des cas partieuliers. La relation (53) permet d'ecrire G sous la
forme suivante:

En dehors de l'astre G — 3 puisque p 0. A l'interieur
D rü p, l'egalite n'ayant lieu que pour la masse homogene.

Pour la masse homogene G 0, dans l'astre.
Pour toute autre distribution 0 ^ G ^ — 3. Au centre p D

et G 0, pour t 0. G tend toujours vers 0 avec t.

Un cas limite est ä signaler, celui oü la masse serait tout entiere
reunie au centre t 0, c'est le cas de Roche; serait nul, et

tout l'espace sauf 1'origine devrait etre considere comme
exterieur ä l'astre.

Reprenons maintenant l'equation (61). Elle montre ceci:

si yj < — 5 alors rj' < 0 yj croitrait ;

si — 2 < yj < 0 alors r\' > 0 -t] decroitrait.

Done si Tj est sur 1'intervalle ix: —<*> < y < 0, y se rapproche
de 1'intervalle i2: — 5 < y < — 2 et le point y resterait sur i2
s'il s'y trouvait dejä ou s'il y parvenait. L'intervalle i2 est

attractif pour l'intervalle iv Si V etait negatif pour une valeur
particuliere t1 < /1; on aurait done:

a etant positif. On en deduirait les relations suivantes:

et a augmenterait et tendrait vers l'infini, ce qui est exclu

a priori.
A l'interieur de l'astre rj > 0.

Je dis que r; est positif r; > 0 k l'exterieur de l'astre. En effet,
dans ce domaine les equations (57) et (58) donnent:

j] < — a pour 0 < t < < t1

da St
— < — a —

(65)
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Pour t + co, ri 3, et r; ne pourrait changer de signe

qu'une seule fois entre t + co et t <x, et cela quelle que
soit la constante k.

Si rj s'annulait pour une valeur t+ > lx on aurait ij1 < 0, mais

on a rj1 0.

Pour a et a' il en est de meme. Pour Z= + co,a= + coet
a' + c», a et a' devraient changer de signe en meme temps
sans quoi rj deviendrait negatif. Or cela n'est pas possible ä

l'exterieur de l'astre en vertu des expressions (57) et (58), ä

l'interieur non plus car la premiere fois que a et a' s'annule-
raient ensemble le premier membre de (51) serait nul et le

second positif.
En resume: on a toujours a 0, a' ^ 0, ij 0.

Les couches ne sont pas allongees et l'aplatissement ne croit
jamais, que l'astre soit en mouvement ou immobile, c'est un
resultat de Clairaut.

La fonction a' n'etant jamais negative, la formule (54)
donne:

(Drt)' < 0 (66)

Le produit Da ne decroit jamais. La relation (66) donne

successivement:

ce qui revient ä dire que ~n ne surpasse pas — G. En definitive,
on a pour toute valeur de t:

0<y]< — G<3 (67)

Gas particuliers:
Si la masse est homogene, D' 0, G 0, t] 0, a' 0 ä

l'interieur et les couches d'egale pression sont homothetiques.
Dans le cas de Roche, C — A 0, k 0, et l'on a q 3,

G — 3 pour 0 < t.

Reciproquement, si 7 0, (61) implique G 0, d'oü
D' 0, la masse est homogene. Si 7 3, (67) implique
G — 3 ce qui n'est possible que dans le cas de Roche.

Sauf dans le cas de Roche G —>- 0, 7 —0 lorsque t 0.
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Yoici maintenant un renseignement que nous utiliserons plus
tard: La quantite ay ne croit jamais.

En effet, cette quantite est nulle au centre et, sauf si la masse

est homogene, at; 0, on a at] > 0 pour t < fx; je dis que cette
fonction est bien monotone. Sans cela sa derivee s'annulerait,
sa derivee logarithmique aussi. On aurait:

Mais alors Fequation de Radau (61) donnerait:

Or cette valeur de r; qui annulerait la derivee de a rj serait

superieure ou egale k la racine non nulle de:

car q< — G et le second membre de (68) est plus grand ou egal

au second membre de (69). Or cette racine de (69) est egale k 3.

La valeur (68) de serait superieure ou egale ä 3 ce qui est

impossible ä Finterieur de la masse. La fonction ay est monotone,
elle ne croit pas k Finterieur ni ä l'exterieur ou a et sont
decroissants.

L'interet de cette remarque vient de ce que l'on ne sait pas si

q est monotone. La fonction ay s'ecrit aussi ta'. Remarquons
alors que 2a + ta' ne croit pas tandis que D (2a + ta') ne

decroit pas comme le montre la formule (51). De ^ ^ 3 on tire
(at~3)' < 0, resultat classique.

De (5') on deduit encore:

tr,' + r,« 0

(70)

l'egalite n'aurait lieu que pour la masse homogene.
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§3. — Sur un changement de variable et une substitution
DE CONSTANTES.

Dans les equations fondamentales, Systeme {9, I) et tableau
T, page 38, II, la derivee des fonctions a et e est toujours multi-
pliee par t. Ces equations conserveront la meme forme si on

pose t J1r. Les accents (') designeront ä l'avenir une derivation

par rapport ä t et l'on a bien:

da da
t —— T —— 71
dt dt

Ce changement de variable revient d'ailleurs ä prendre t,1 pour
unite de longueur. On reviendrait sans difficulte ä l'ancienne
unite, le centimetre, si l'on veut. La variable r, rapport de deux

longueurs, est sans dimension. La constante k s'exprimera
utilement au moyen d'une autre constante u et k2, page 30, II,
au moyen d'utie constante v par les formules:

* -!«<; (72) /2=|wi°. (73)

cela rend les formules homogenes, u et v seront des nombres

arithmetiques.
La formule (65) devient pour t > 1:

3t5— 2 u
1 .5 ' f74)

et pour i 1 on peut tirer u en fonction de vjj:

3 — r,,
(75)

2 +

La formule (57) devient apres ces substitutions:

a *a,sAz3 + ux~2) • (76)

La formule (75) montre que la constante u est comprise
3

entre 0 et limites qu'elle ne peut atteindre que dans les cas
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particuliers de Roche ijl 3, u 0 et de la masse homogene

0, u On a done:

0 < u < | (77)

Une etude theorique delicate est encore necessaire ahn d'in-
diquer des limites assez resserees de la constante e et nous
montrerons que u et v suflisent ä donner la solution du
Probleme en seconde approximation, les elements stokiens, M, w,
t1 etant supposes connus.

§ 4. — Ellipso'ides de reference et corrections.

Mettons en evidence des ellipsoides s (t) ayant meme equa-
teur et meme pole que les surfaces equipotentielies S(i), en
seconde approximation.

Soit e* l'aplatissement faible d'un ellipsoide voisin d'une
sphere.

2

La deformation ä partir de la sphere rapportee au rayon
de celle-ci, s'exprimera ä la colatitude e comme suit au 3me ordre

pres en e*:
2

e eT_ s26 — -|-eT s29c29 (78)
2" 2

Or la formule (49, II) peut s'ecrire sous la forme valable ä

Vexterieur:

e Xw2[a + ).(o2(ß + t)]s20 — X2,o4js2ä c29 (79)

oü a, ß1, y sont des fonetions de t, done de r, definies ä la page
31, II.

La deformation est de la forme generale:

e w2x(x)s20 + w4j/(t)s29 + w4(-)i29c29

1 Dans l'expression de ß qui suit la formule (49, II) il faut lire ^

au lieu de /S; et dans la derniere equation du § 13, II, il faut multiplier

par t le second terme du second membre.
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et nous ne pouvons pas prendre le parti de faire y (t) 0,

comme Callendreau 1, pas meme sur la surface libre. Ce coefficient

y (t) est ici:
Ä2(,3 + T) •

et la fonction de t : jS + / n'est pas identiquement nulle.
Cette remarque est essentielle et c'est cette fonction y (t) qui
augmentera l'aplatissement prevu par la precession jusqu'ä
rejoindre ä peu pres la valeur mesuree par les geodesiens.

Mettons en evidence dans l'expression (79) de la deformation
e une partie provenant de l'ellipsoide s (r) et la correction

c(r, o) ä faire subir ä s(t) pour retrouver la surface reelle S (*).
On doit ecrire:

e Xto2[Gt + Xw2(ß + t)]s20 — X2 w4 ~ ot-s2d c2 ß — c(T, 0) (81)

Les deux premiers termes repondent ä l'ellipsoide, au troisieme
ordre pres, et la correction est:

r(r, 6) X2(U4(^t — |.a^4-26c20 (82)

si c > 0, l'ellipsoide sera comprime entre le pole et l'equateur.
A VInterieur on fera une separation analogue ä partir de

l'expression (48, II) de e. La correction s'ecrira:

c(z, 0) w4E s20 c20

avec:

E-K")
La fonction c(t, ») est continue ainsi que ces derivees

partielles premieres pour 0<x< + QO, la derivee

ö—„ subit au contraire une discontinuite sur la surface libre si
9 -

p1 yL 0. Les deux expressions: (82) pour l'exterieur, (83) pour

(83)

(84)

1 Callendreau. Theorie de la figure des planetes, p. 31 et 34.
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l'interieur, doivent etre egales, ainsi que leurs derivees

premieres ^ sur la surface libre t 1. Nous tirerons parti de

cette remarque pour limiter les variations de c au § 6. Avant
cela formons une equation fondamentale en E (i).

§ 5. — Equation en E.

A l'interieur de l'astre la fonction ef'(r) est regie par la qua-
trieme equation {q 4) du tableau T page 28, II. Rempla^ons
«i2) par sa valeur en E tiree de (84), et l'equation en question
se simplifiera beaueoup et donnera:

l
4E + tE' pv-3(— 2E + -E')dx + xa'(2a + xa') (85)

Cette equation joue pour la seconde approximation le meme
role que l'equation (51) pour la premiere; derivee par rapport
ä t eile donnerait la relation analogue k celle de Clairaut. Une
etude approfondie des solutions en E (r) de l'equation (85)
serait tres delicate. Nous montrerons simplement ceci:

1° E-l ^ 0: la surface libre est un ellipsoide comprime entre
le pole et l'equateur; resultat etabli dejä par Callendreau.

2° E0: cette compression diminue quand on passe de la

surface libre aux surfaces interieures voisines.

1° Posons, en effet:

Z 4 + 3 5+ F to! (la + xa')
E

l'equation (85) devient, en remplagant E' par sa valeur en EU :

i
E3+ Jpt-»E(- 6 + E+)dx + F (86)

F est une fonction de t positive ou nulle de sorte que pour
t 1 on doit avoir Ex E+ +10. Si Ej etait negatif, on

aurait E+ < 0. La parenthese sous le signe integral serait
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negative pour % inferieur et voisin de 1; l'integrale serait

positive, E' serait positif, E decroitrait. Le second membre de

(86) resterait positif, E resterait negatif, W+ resterait negatif
de t 1 ä * 0, mais alors, on devrait avoir:

En integrant sur l'intervalle positif (t, 1), on obtiendrait:

| L(— Ii) < — 4 | Et |1 ou _E>_E1^iy,

— E augmenterait indefiniment, ce qu'il faut exclure. On a
done bien Ej ^ 0.

2° Nous avons vu que la quantite ra' (2a + ra') ne croit
jamais. La fonetion F(r) n'augmente done pas. Cette remarque
faite ecrivons (85) sous la forme:

4E + TE' F + H (87)

oü H represente le terme qui contient l'integrale, soit:

l
H J pT 3(— 2 E + TE')rfT (88)

On sait que Ex est positif ou nul. Si E,' etait negatif, la
parenthese dans (88) serait negative pour t voisin de 1, H serait

negatif, H diminuerait. E augmenterait, tandis que F n'augmente

pas, alors la relation (87) montre que E' diminuerait.
E' resterait negatif, la parenthese resterait negative et la crois-

sance de E ne cesserait pas jusqu'ä r 0. Or il y a lä une
absurdite. En effet, envisageons le terme H comme connu et
integrons l'equation (87) en E. On trouve:

E T-4 j' T3(F + H) T

ü
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mais H, nous l'avons vu, serait negatif et l'on aurait:

T

E < T-iyVFdT < -^-F(T)
0

Mais F(t) diminue, on le sait, et tend vers zero, comme %a'

lorsque t tend vers zero. E ne pourrait pas augmenter ä partir
de sa valeur positive ou nulle sur la surface libre. On a done

bien Ej > 0.

Un cas merite une attention speciale. Si la masse est homogene,

a' 0, F 0, ä l'interieur de l'astre et l'equation (85)
n'admet d'autre solution que E 0. En effet, eile coincide dans

ce cas avec l'equation en e4 de la premiere approximation (10),

page 39, I, et nous avons, en ce temps, montre que la solution
etait identiquement nulle. La correction serait nulle, on
retrouve ainsi l'ellipsoide de Maclaurin.

§ 6. — Limitation de la constante v.

A l'ext.erieur de l'astre p — 0, et l'equation (85) en E s'integre
faeilement, la fonction E s'obtient aussi ä partir de (84) en

remplacant c(p et a par leurs valeurs 47, II et 57. On trouve:

^ 3T6 — 4 HI — 3U2T-4 — 14 i-T"4 (89)

Les relations Ex > 0 et E^ > 0 demontrees au § 5 donnent
les limites de v suivantes:

— ^ b —r " — —1(2 < r < — — —u — — (90)
28 14 14 — ~ 14 14 v '

et la constante u est elle-meme comprise entre les limites (77):

0 < u < ~ (77')

Cette limitation de v est süffisante car cette constante n'inter-
vient que multipliee par m4.
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§ 7. — Le nombre des constantes deduit
DU THEOREME DE STOKES.

Le theoreme de Stokes 1 s'änonce ainsi: le potentiel newtonien
U ne depend ä l'exterieur de l'astre que de la surface libre Sj,
de la vitesse angulaire w et de la masse totale M. Or le potentiel
newtonien determine le potentiel de la pesanteur <J>:

<I> U + + y*)

et le potentiel $ determine les surfaces äquipotentielles
<t> constante. II räsulte du theoreme de Stokes que le potentiel
U sur l'axe polaire, soit U0, la pesanteur sur Taxe polaire

g0 — et la deformation des surfaces äquipotentielles ä

l'extärieur ne däpendent que de M, w, tx et ev Or la surface libre
est en seconde approximation:

et hijäs0 — n1.«28c20

Les donnäes M, m et mises ä part, U0, g0, e ne däpendent que
des deux constantes m1 et n1; pour r > 1. Nous avons vu que
les constantes u et v jouent deux roles bien distincts, par exemple
dans (89). Elles remplacent m1 et «1. On pourrait exprimerwet
v au moyen de m1 et de w1; ce sont des constantes stokiennes
däterminees entierement par les äläments de Stokes.

Pratiquement la surface libre n'est ni assez bien defmie,

montagnes, atmosphere, ni assez bien connue pour que nous
puissions däterminer directement par Sx les valeurs u et v. Ce

qu'il nous faudra faire, c'est de montrer qu'on peut attribuer
ä M, i, tx, u et v des valeurs qui rendent compte des mesures

gäodäsiques, qui fournissent notamment un m1 en accord avec
la thäorie de la precession.

Präcädemment, page 30, II, nous avions apparemment trois
constantes k, kx et k2, mais tant pour U que pour e, k± entre

toujours dans le groupe:

k' k - 2Xw2 k1 (91)

1 Voir Archives (V) 10, p. 30-35 (1928).
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II n'y a lä qu'une seule constante k'. II y a plus, lorsque k
intervient autrement que dans le groupement k', il est multiplie
par ft)4 de sorte que, aux termes d'ordre ft)6 pres, on pourra
remplacer k par k'. Maintenant la relation 50, II, s'ecrit:

et cette valeur a ete identifiee en premiere approximation aveo:

II n'y a done bien que k', c'est-ä-dire u et k2, c'est-ä-dire v,

qui interviennent.
On verifie ainsi le resultat theorique deduit du theoreme de

Stokes.

lntroduisons encore pour la suite une expression A sans

dimension, de l'ordre de t»2 qui ne depend que des elements
stokiens M, o> et

Ce n'est pas une constante nouvelle, c'est une notation
abregee.

§ 8. — Deformation a l'exterieur et pesanteur
sur l'axe polaire.

Les equations (43) et (49) de Particle II donnent en u et v.

e m (t) a20— n (t) ä29 c2Q (94)

,' __(C_A) (92)

a Xwn, (93)

m(t) A(t3 + ut ") + A2(^3t6 + 'Aux -f n * u-i

n(-) A2 (3 t6 + it t —

A'° 7^"[T
2

~~ 2Au~" + 8A'(T"2 ~ '')x °] '

r4), (95)

(96)

(97)

(98)
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§ 9. — La surface libre et la pesanteur au pole.

La surface libre correspond ä la valeur r 1, on a done:

»i1s29 — n1s29c26 (99)

w1 — A(1 + ») + A2(^3 + 3« + v — y"2) ' (100)

zq A (3 + u — Iv) (101)

A(t) T [4 ~~ 2A" + 8A2(y"2 ~ v')] (102)

La valeur m1 n'est autre que l'aplatissement de l'ellipsolde s1

de meme pole et de meme equateur que la surface libre.

§ 10. LA VARIATION DE LA PESANTEUR AVEC

LA LATITUDE.

Soit g la pesanteur en un point quelconque P d'une surface

equipotentielle t. On a comme on sait:

g_ _ dt_

go dn

dn etant un element de normale en P allant de la surface t ä la
surface t + dt. On trouverait, tout calcul fait:

g de „ öe / öe\2 1 /öe\2
— =1 — e — t e2 + 2 el — + M— + -v( -7 > (103)
g0 dt ot \ dt/ 2 \ö6/ v '

ou en t par l'intermediaire de (94):

^ 1 — AX(T).s29 + A2Y(T)s2dc20 (104)
oo

X (t) 4x3 — «T~2 + A^5T6 + 14 HT — 3^t-4 — y M2T~'^ (105)

Y (x) 7 t6 + 14 KT + 21I'T-6 + «2x-4 (106)
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et sur la surface libre S2 la pesanteur rapportee ä la pesanteur
au pole s'ecrira:

a (1 ]
1— AX(l)iÄ6 + A2 Y(j)s2flc2Ö (107)

no (')

X (I) 4 — u + A (b + 14« — 3r — y u2^ (108)

Y (1) 7 + 14« + 211- + u- (109)

Si l'on tient compte de la limite inferieure de v (90), on voit
que la fonction Y(l) est toujours positive. De meme A etant

tres petit et u < y X(l) est positif.

La Variation de la pesanteur avec le complement ö de la latitude
ä la surface d'une planete est donnee par une expression de la

forme:

— — 1 — a;.s,20 + y-s20c29 (110)
no

oü les deux constantes x et y sont positives.
II sera interessant de comparer ce resultat theorique avec les

formules empiriques fournies par les mesures des variations de

la pesanteur ä la surface terrestre, c'est ce que nous ferons ä la
fin de ce memoire.

(A siiivre.)
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