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1929 Vol. 11. Novembre-Décembre

SUR

LES FIGURES DEQUILIBRE ET LA GEODESIE

PAR

Kolin WAVRE

§ 1. — INnTRODUCTION.

Dans deux articles antérieurs! j’ai développé une méthode
de résolution du probléme des figures planétaires en premiére
et seconde approximation. Je cherchais avant tout a satisfaire
au besoin de rigueur et de généralité qu’on éprouve dans toute
recherche mathématique. Cette rigueur a conduit, chose inté-
ressante, a plus de simplicité.

Je vais tendre maintenant vers les applications a la géodésie
en mettant les équations obtenues sous une forme telle que leur
sens concret apparaisse facilement. 11 faudra faire ressortir
les quantités physiquement mesurables et comparer la solution
théorique obtenue avec les mesures empiriques de la géodésie.
Il s’agira de voir §’il est possible de coordonner les mesures de
I’aplatissement terrestre, celles des variations de la pesanteur,
avec la théorie de la précession des équinoxes.

Ce probléme posé par d’Alembert n’est pas résoluble par la
premiére approximation. Poincaré I’a bien démontré 2. Mais nous
montrerons qu’en seconde approximation le désaccord entre
les mesures géodésiques et la théorie de la précession disparait.

1 1. Archives (V), 11, p. 131 (1929). { \\(S*HF Xi

II. » » » Suppl, p. 19 (1929). i % {/(/f ‘
? PoINCARE, Figures d’équilibre, p. 96. Paris, 1902, G. 1Nlaﬁ W H’\SHF
. NEUGHATEL |

7 T TR S

ArcHIVEs, Vol. 11. — Novembre-Décembre 1929.
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Pour cela, il va falloir discuter d’une maniére assez approfon-
die une équation (85) qui pour la deuxiéme approximation joue
un role analogue & I’équation de Clairaut pour la premiére.
Cette recherche des figures théoriques doit étre d’autant plus
méticuleuse que les mesures géodésiques et astronomiques
qu’on désire expliquer et retrouver deviennent elles-mémes plus
précises griace au développement considérable de la technique.

S’il persistait, sur un point, un désaccord trés faible entre
la théorie et les mesures, il faudrait tenir compte des faits
suivants :

1 La Terre n’est pas partout comparable & un fluide méme
visqueux.

20 1’hétérogénéité de la crotite, océan, montagne, n’est pas
négligeable en seconde approximation.

30 11 peut exister des déformations & longues périodes
d’origine astronomique.

40 Ta gravifique newtonienne n’est qu’approchée, on le sait
aujourd’hui, et il faudrait, faute de pouvoir reprendre le pro-
bléme dans la gravifique d’Einstein, ce qui serait trés compliqué,
au moins indiquer la correction relativiste a faire subir aux
mesures géodésiques et & celles de la précession.

Sans viser a4 é&tre encyclopédique, je voudrais néanmoins
donner de la partie classique du sujet une vue pleine. A cette
fin je reprendrai, en la complétant un peu, la discussion,
en premiére approximation, des variations de 1’aplatissement
des couches d’égale densité avec la profondeur.

Notre méthode différe beaucoup de celle de Callendreau?!
et de M. Véronnet 2 et nos résultats différent un peu des leurs.

Enfin, les quatre articles que je publie sur ce sujet formeront
un tout, je ferai de nombreux renvois aux deux mémoires
antérieurs I et II et les références aux articles précédents seront
suivies des chiffres I et Il indiquant ces deux mémoires.

1 CALLENDREAU, Mémoire sur la théorte de la figure des planétes.
Annales de ’Observatoire de Paris, 19, 1889,

* VERONNET, Rotation de Uellipsoide hétérogéne et figure exacte de
la Terre. Thése. Paris, 1912, Gauthiers-Villars.
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§ 2. — DISCUSSION DES VARIATIONS DE L’APLATISSEMENT
EN PREMIERE APPROXIMATION.

Comme précédemment, M sera la masse totale de D’astre,
t le rayon polaire d’une couche de densité p (¢), a (t) aplatisse-
ment de cette couche rapportée au carré de la vitesse angulaire,
® cette vitesse, D (t) la densité moyenne de la matiére intérieure
a la couche ¢, ¢ la constante de ’attraction universelle, A le
moment d’inertie de I’astre par rapport & un diamétre équato-
rial, C le moment d’inertie par rapportal’axe polaire. J’affecterai
d’un indice (1) ce qui a trait a la surface libre ¢, et I'accent (')
indiquera une dérivation par rapport a t.

Pour simplifier le langage je m’exprimerai comme si je décri-
vais ’axe polaire de 'infini au centre de I’astre, donc dans le sens
des t décroissants. Ainsi quand je dirai qu’une quantité 7
croit, il faut entendre qu’elle croit de I'infini & la surface libre
ou encore de la surface libre au centre de 'astre, qu’elle croit
quand ¢ décroit.

A TDextérieur de Dastre, les surfaces d’égale densité sont
remplacées par les surfaces équipotentielles pour le champ de la
pesanteur et dans le cas de la masse homogéne les surfaces
d’égale densité sont a I'intérieur remplacées par les surfaces
d’égale pression.

Ces précautions de langage étant prises, partons de la troi-
siéme équation du systéme (9, I) qui s’écrit en a sous la forme
connue dans la théorie classique:

31
D(2a + ta") = -!—5— 43 [ pa’dt . (51)
8=t
t
Dérivée par rapport a ¢, cette relation donne I’équation de

Clairaut:
2D'a + 6za’ 4 tDa" = 0 . (52)

D’autre part, en intégrant par partie le dernier terme de (51)
et tenant compte de la formule classique:

P=D+%tD’, (53)
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on trouvera, aprés quelques transformations simples:

t

(Da)’ — 3t_ﬁfl5ap'dt . (54)
0

En dehors de ’astre, I'intégrale de 1’équation (51) disparait,
car pour ¢ >1% on a p = 0. L’aplatissement est alors régi
par I’équation différentielle:

ta” + 2a = 5AE? (55)

ol A représente une constante égale, en premiére approxima-
tion, a:
1

)‘:mvl'

(56)

L’équation (55) s’intégre facilement et donne, k& étant une
autre constante:

o= (e —3kY),  (57) ta = SN(£ + k), (58)

et ’on a, comme on I’a vu, page 144, I, en premiére approxima-
tion: ‘

s = e B = ] - (59)

w

Pour transformer I’équation de Clairaut posons avec Radau:

a’ D’ s
n=1t—, (60) G=1t5.  (60)
On obtient en » une équation différentielle du type de
Riccati:
i’ = — 72— (5 + G)qg — 2G . (61)

Une étude analytique de cette équation de Radau a été faite
par Poincaré!. Nous n’en retiendrons ici que 1’essentiel en
simplifiant un peu les démonstrations au moyen des formules
(51) et (54). Mais avant d’étudier ’équation (€1) examinons

1 PoINCARE, Figures d’équilibre, p. 69-81.
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~des cas particuliers. La relation (53) permet d’écrire G sous la
forme suivante:
— 3(f _ ‘
¢ =s(5—1), o

En dehors de I'astre G = — 3 puisque p = 0. A I'intérieur
D = p, ’égalité n’ayant lieu que pour la masse homogéne.

Pour la masse homogéne G = 0, dans I’astre.

Pour toute autre distribution 0 = G = — 3. Au centre p =D
et G = 0, pour t = 0. G tend toujours vers 0 avec ¢.

Un cas limite est & signaler, celui o la masse serait tout entiére
réunie au centre t = 0, c¢’est le cas de Roche; t; serait nul, et
tout l'espace sauf Dorigine devrait é&tre considéré comme
extérieur a D’astre.

Reprenons maintenant 1’équation (61). Elle montre ceci:

si < —5 alors 7 <0 7 croitrait ;
si —2<n<<0 alors 7 >0 7 décroitrait.

Done si 7 est sur Uintervalle ;: —®© < » < 0, » se rapproche
de l'intervalle i,: — 5 < 7 < — 2 et le point 7 resterait sur i,
§'il 8’y trouvait déja ou s’il y parvenait. L’intervalle ¢, est
attractif pour lintervalle i;. Si 7 était négatif pour une valeur
particuliére {1+ < ¢;, on aurait donc:

0N < — a pour 0<t§t+_<_!1.

o étant positif. On en déduirait les relations suivantes:

da dt a>(t+"
i o o e o =)

et a augmenterait et tendrait vers l'infini, ce qui est exclu
a priori.

A Pintérieur de astre 7 = 0,

Je dis que 7 est positif » > 0 a Pextérieur de ’astre. En effet,
dans ce domaine les équations (57) et (58) donnent:

] 9 L
gt
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Pour t = 4 o, » = 3, et 7 ne pourrait changer de signe
qu'une seule fois entre t = 4+ ®© ettt = t;, et cela quelle que
s01t la constante k.

Si 7 s’annulait pour une valeur ¢t > ¢, on aurait »; < 0, mais
on an = 0.

Pour a et a’ il en est de méme. Pourt = + ®,e¢ = + ® et
a’ = + ®, a et a’ devraient changer de signe en méme temps
sans quol » deviendrait négatif. Or cela n’est pas possible a
Pextérieur de 'astre en vertu des expressions (57) et (58), a
I'intérieur non plus car la premiére fois que a et a’ s’annule-
raient ensemble le premier membre de (51) serait nul et le
second positif.

En résumé: on a toujours a =~ 0, o= 0, 5 = 0.

Les couches ne sont pas allongées et I’aplatissement ne croit
jamais, que l’astre soit en mouvement ou immobile, ¢’est un
résultat de Clairaut.

La fonction a’ n’étant jamais négative, la formule (54)

donne:
(Da)” < 0 . (66)

Le produit Da ne décroit jamais. La relation (66) donne
successivement :

ce qui revient a dire que » ne surpasse pas — G. En définitive,
on a pour toute valeur de ¢:

0<n<—G<3. (67)

Cas particuliers:

Si la masse est homogéne, D' =0, G=0,7=0,a"'=0 a
Pintérieur et les couches d’égale pression sont homothétiques.

Dans le cas de Rocke, C — A =0, k = 0, et I'on a » =3,
G=—3 pour 0 < t.

Réciproquement, si » = 0, (61) implique G=0, dou
D’=0, la masse est homogeéne. Si » =3, (67) implique
G = — 3 ce qui n’est possible que dans le cas de Roche.

Saut dans le cas de Roche G — 0, » — 0 lorsque ¢t — 0.
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Voicl maintenant un renseignement que nous utiliserons plus
tard: La quantité an ne croit jamais.

En effet, cette quantité est nulle au centre 2t, sauf si la masse
est homogeéne, ap = 0,ona ay > 0 pour? < t;; je dis que cette
fonction est bien monotone. Sans cela sa dérivée s’annulerait,
sa dérivée logarithmique aussi. On aurait:

a’ 7' a !
— + L =0. t7+tn_:{)‘ trq + 12 =0,
a T a |

Mais alors I’équation de Radau (61) donnerait:

_ —2G
T 55— (—G)

)

(68)
Or cette valeur de » qui annulerait la dérivée de ay serait
supérieure ou égale & la racine non nulle de:

27

=5-—1]'

(69)

i

car # <—G et le second membre de (68) est plus grand ou égal
au second membre de (69). Or cette racine de (69) est égale a 3.
La valeur (68) de 7 serait supérieure ou égale & 3 ce qui est
impossible & 'intérieur de la masse. La fonction a7 est monotone,
elle ne croit pas a I'intérieur ni & P'extérieur cu a et 7 sont
décroissants. '

L’intérét de cette remarque vient de ce que 1'on ne sait pas si
n est monotone. La fonction ay s’écrit aussi fta’. Remarquons
alors que 2a + ta’ ne croit pas tandis que D (2a 4 ta’) ne
décroit pas comme le montre la formule (51). De # < 3 on tire
(at™2)" < 0, résultat classique.

De (b') on déduit encore:

B4 1
U e T (70)

I’égalité n’aurait lieu que pour la masse homogéne.
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§ 3. — SUR UN CHANGEMENT DE VARIABLE ET UNE SUBSTITUTION
DE CONSTANTES.

Dans les équations fondamentales, systéme (9, 1) et tableau
T, page 38, I1, la dérivée des fonctions a et e est toujours multi-
pliée par t. Ces équations conserveront la méme forme si on
pose t = t,z. Les accents (') désigneront & ’avenir une dériva-
tion par rapport a z et ’on a bien:

iii—a = Tﬁ . (71)

Ce changement de variable revient d’ailleurs & prendre ¢, pour
unité de longueur. On reviendrait sans difficulté a I’ancienne
unité, le centimétre, si ’on veut. La variable z, rapport de deux
longueurs, est sans dimension. La constante % s’exprimera
utilement au moyen d’une autre constante u et k,, page 30, 11,
au moyen d’une constante ¢ par les formules:

= — %mf (72) hy = %wi" : (78)
cela rend les formules homogénes, u et ¢ seront des nombres
arithmétiques.

La formule (65) devient pour v = 1:

315 — 2u

= "0 4 u L4}
et pour 7 = 1 on peut tirer u en fonction de 7,:
s — 1,
= 4 75
e (75)
La formule (57) devient aprés ces substitutions:
a = )\t]a(r3 g ll.t_")) . (76)

La formule (75) montre que la constante u est comprise

3 .. .
entre 0 et o, limites qu’elle ne peut atteindre que dans les cas
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particuliers de Roche 7, = 3, u = 0 et de la masse homo-

g 3
géne 7, =0, u = 7 On a donec:

051&3%. (77)

Une étude théorique délicate est encore nécessaire afin d’in-
diquer des limites assez resserées de la constante ¢ et nous
montrerons que u et ¢ suffisent & donner la solution du pro-
bléme en seconde approximation, les éléments stokiens, M, o,
I, étant supposés connus,

§ 4. — ELLIPSOIDES DE REFERENCE ET CORRECTIONS.

Mettons en évidence des ellipsoides s (r) ayant méme équa-
teur et méme pole que les surfaces équipotentielles S(z), en
seconde approximation.

Soit, e- P'aplatissement faible d’'un ellipsoide voisin d’une
sphére. *

La déformation a partir de la sphére rapportée au rayon
de celle-ci, s’exprimera a la colatitude 6 comme suit au 3me ordre
prés en ex:

2
s20c20 (78)

a w

e = 81529——%6

2

ve |

Or la formule (49, I1) peut s’écrire sous la forme valable a
Vextérieur :

e = lo?la + Lo?(B + 7)]s%0 — X2wtys?0cl (79)
ou @, 81, y sont des fonctions de ¢, done de 7, définies & la page

31, 11
La déformation est de la forme générale:

e = 0’z(t)s?0 + oly(t)s?0 + w?(c)s0c0

! Dans I’expression de # qui suit la formule (49, II) il faut lire g-

au lieu de $3; et dans la derniére équation du § 13, II, il faut multi-
plier par t le second terme du second membre.
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et nous ne pouvons pas prendre le parti de faire y (z) = 0,
comme Callendreau !, pas méme sur la surface libre. Ce coeffi-
cient y (z) est ici:

W+ ) .

et la fonction de 7z: 8 + y n’est pas identiquement nulle.
Cette remarque est essentielle et ¢’est cette fonction y (z) qui
augmentera D’aplatissement prévu par la précession jusqu’a
rejoindre a peu prés la valeur mesurée par les géodésiens.

Mettons en évidence dans I’expression (79) de la déformation
¢ une partie provenant de ’ellipsoide s(z) et la correction
¢(z, #) a faire subir & s(z) pour retrouver la surface réelle S (7).
On doit écrire:

L]

e = ho’[x + ko’ (§ + 7)]s%0 _12(»4%0@326629 —c(z,0) . (81)

Les deux premiers termes répondent & I’ellipsoide, au troisiéme
ordre pres, et la correction est:

e, 8) = )\20)4<Y —_ %o@)szﬁcz@ . (82)

si ¢ > 0, 'ellipsoide sera comprimé entre le pole et I'équateur.
A Dintérieur on fera une séparation analogue a partir de
I’expression (48, 11) de e. La correction s’écrira:

c(z, 0) = w*Es?0c20 , (83)
avec:

, 35/ (2 12

L= ?<ng - ggeﬂ) : (84)

La fonction c¢(z, #) est continue ainsi que ces dérivées par-
tielles premiéres pour 0 <7 < 4+ ®, 0 <4 < m, la dérivee

9

0~ ¢ 5 ¢ . . ey . :
572 subit au contraire une discontinuité sur la surface libre si

o172 0. Les deux expressions: (82) pour I’extérieur, (83) pour

1 CALLENDREAU. Théorie de la figure des planétes, p. 31 et 34&.
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I'intérieur, doivent étre égales, ainsi que leurs dérivées pre-

i % 0c¢ . . .
miéres _ sur la surface libre 7 = 1. Nous tirerons parti de

.

cette remarque pour limiter les variations de ¢ au § 6. Avant
cela formons une équation fondamentale en E (7).

§ 5. — Equartion EN E.

A Pintérieur de I'astre la fonction e{”(z) est régie par la qua-
triéme équation (¢ = 4) du tableau T page 28, II. Remplacons
{) par sa valeur en E tirée de (84), et I’équation en question
se simplifiera beaucoup et donnera:

1
-2
4E + <E' = 2 fpr‘3(— 28 + <E)dt + ta'(2a + ta) . (85)

D

Cette équation joue pour la seconde approximation le méme
role que 1’équation (51) pour la premiére; dérivée par rapport
4 7 elle donnerait la relation analogue a celle de Clairaut. Une
étude approfondie des solutions en E (z) de I’équation (85)
serait tres délicate. Nous montrerons simplement ceci:

1o E, = 0: la surface libre est un ellipsoide comprimé entre
le pole et I’équateur; résultat établi déja par Callendreau.

r . . .
20 E = 0: cette compression diminue quand on passe de la
surface libre aux surfaces intérieures voisines.

10 Posons, en effet:

- —
< _

[
.
4}_
[
I
[
+

El
T "= ta'(2a + td) .

I’équation (85) devient, en remplacant E’ par sa valeur en =7 :

v Rt
D .

?F_!
.

et 3E(—6 4+ Zt)dt + F (86)

F est une fonction de 7 positive ou nulle de sorte que pour
=1 on doit avoir E;Z" > 0. Si E, était négatif, on
aurait =% < 0. La parenthése sous le signe intégral serait
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négative pour 7 inférieur et voisin de 1; l'intégrale serait
positive, E’ serait positif, E décroitrait. L.e second membre de
(86) resterait positif, E resterait négatif, =" resterait négatif
dez = 1 & = = 0, mais alors, on devrait avoir: |

E' ) — B 5
T

E g

En intégrant sur Pintervalle positif (z, 1), on obtiendrait:
1 1 1\1?
IL— )| <—4|Le®  ou —E>—}31(?) ,

— E augmenterait indéfiniment, ce qu’il faut exclure. On a
donc bien E, =~ 0.

20 Nous avons vu que la quantité 7a’ (2a 4+ ra’) ne croit
jamais. La fonction F(z) n’augmente donc pas. Cette remarque
faite écrivons (85) sous la forme:

4 + tE' = F + H , (87)

ou H représente le terme qui contient I'intégrale, soit:

3]; cT=%(— 2K 4+ tE/)dt . (88)

H =

On sait que E, est positif ou nul. Si E, était négatif, la
parenthése dans (88) serait négative pour z voisin de 1, H serait
négatif, H diminuerait. E augmenterait, tandis que F n’aug-
mente pas, alors la relation (87) montre que E’ diminuerait.
E’ resterait négatif, la parenthése resterait négative et la crois-
sance de E ne cesserait pas jusqu'a z = 0. Or il y a 14 une
absurdité. En effet, envisageons le terme H comme connu et
intégrons I’équation (87) en E. On trouve:

E — t— ['13(1? + B)dr ,

0
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mais H, nous I’avons vu, serait négatif et ’on aurait:

- 1
E<t [oFdi < F(r) .

(1]

Mais F(z) diminue, on le sait, et tend vers zéro, comme za’
lorsque z tend vers zéro. E ne pourrait pas augmenter & partir
de sa valeur positive ou nulle sur la surface libre. On a donc
bien E, > 0.

Un cas mérite une attention spéciale. Si la masse est homo-
géne, o’ = 0, F = 0, a Pintérieur de 'astre et ’équation (85)
n’admet d’autre solution que E = 0. En effet, elle coincide dans
ce cas avec I’équation en e, de la premiére approximation (10),
page 39, I, et nous avons, en ce temps, montré que la solution
était identiquement nulle. La correction serait nulle, on
retrouve ainsi ’ellipsoide de Maclaurin.

§ 6. — LIMITATION DE LA CONSTANTE ¢.

A Pextérieur de Iastre p = 0, et I’équation (85) en E-s’intégre
facilement, la fonction E s’obtient aussi a partir de (84) en
remplacant e? et a par leurs valeurs 47, Il et 57. On trouve:

2E
F = 378 — hut — 3ult=t — 1lhvr-t . (89)

Les relations E; =~ 0 et E, > 0 démontrées au § 5 donnent
les limites de ¢ suivantes:
9 1 3 3

Ly S 2
28+ 7 w? < v <

AT e (30)

et la constante u est elle-méme comprise entre les limites (77):

0<u<

g.. (77

Cette limitation de ¢ est suffisante car cette constante n’inter-
vient que multipliée par w?
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§ 7. — LE NOMBRE DES CONSTANTES DEDUIT
DU THEOREME DE STOKES.

Le théoréme de Stokes ! s’énonce ainsi: le potentiel newtonien
U ne dépend a 'extérieur de 'astre que de la surface libre S;,
de la vitesse angulaire w et de la masse totale M. Or le potentiel
newtonien détermine le potentiel de la pesanteur ®:

2
O = U+ ?;J,—(xﬁ—i—yz) ,
et le potentiel ® détermine les surfaces équipotentielles
® = constante. Il résulte du théoréme de Stokes que le potentiel
U sur P'axe polaire, soit Uy, la pesanteur sur I’axe polaire

dl 5 P . i
g = — dt" et la déformation des surfaces équipotentielles a

Pextérieur ne dépendent que de M, w, ¢; et ¢,. Or la surface libre
est en seconde approximation:

— 20 20 .2
e, = my;s*0 ny s e?h .

Les données M, m et ¢, mises & part, Uy, g,, e ne dépendent que
des deux constantes m, et n;, pour z > 1. Nous avons vu que
les constantes u et ¢ jouent deux rdles bien distinets, par exemple
dans (89). Elles remplacent m, et n,. On pourrait exprimer u et
¢ au moyen de m; et de n;, ce sont des constantes stokiennes
déterminées entiérement par les éléments de Stokes.

Pratiquement la surface libre n’est ni assez bien définie,
montagnes, atmosphére, ni assez bien connue pour que nous
puissions déterminer directement par S, les valeurs u et ¢. Ce
qu’il nous faudra faire, c’est de montrer qu’on peut attribuer
a M, i, ¢, uet o des valeurs qui rendent compte des mesures
géodésiques, qui fournissent notamment un m, en accord avec
la théorie de la précession.

Précédemment, page 30, 11, nous avions apparemment trois
constantes &, k; et k,, mais tant pour U que pour e, k; entre
toujours dans le groupe:

K= F — 2k, . (91)

! Voir Archives (V) 10, p. 30-35 (1928).
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Il n’y a la qu’'une seule constante £’. Il y a plus, lorsque &
intervient autrement que dans le groupement £', il est multiplié
par w? de sorte que, aux termes d’ordre w® prés, on pourra
remplacer & par &’. Maintenant la relation 50, I1, s’écrit:

vo=—tc—n, (92)

43]
et cette valeur a été identifiée en premiére approximation avec:

1 5
—gul .

Il n’y a donc bien que k', ¢’est-a-dire u et k,, c’est-a-dire ¢,
qui interviennent.

On vérifie ainsi le résultat théorique déduit du théoréme de
Stokes.

Introduisons encore pour la suite une expression A sans
dimension, de 'ordre de ®2 qui ne dépend que des éléments
stokiens M, o et #;:

A = holf . (93)

Ce n’est pas une constante nouvelle, c¢’est une notation
abrégée.

§ 8. — DEFORMATION A L’EXTERIEUR ET PESANTEUR
SUR L'AXE POLAIRE.

Les équations (43) et (49) de I’article 11 donnent en u et ¢:

e = m(t)s?0 — n(t)s?0620 (9%)
, . 2 .
m(t) = A(=* + ut") + ;\2(3‘»6 + But + v1 — U i ) » (95}
n(z) = AZ(37® + ut — Tv17Y) (96)
M 2,y 8 2(2 _ ) 5 (#4)
Uo—lel\; _Ei&”. —+ 51\ VT

M ; 4 -6
g, = %E'[ 2 _92Aut 4 SA-(—H — v)*: C:| § (48)
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§ 9. — LA SURFACE LIBRE ET LA PESANTEUR AU POLE.

La surface libre correspond a la valeur 7 = 1, on a donc:
e, = mys?h — n;s%0c%0 (99)

my = Al + u) + A2(3 4+ 3u + v — %u“*) ,  (100)

n= A3 4+ u—7v), (101)
@ 1) = l—-\; |:1 — 2Au + SAZ(;cﬂ — v):l , (102)
tl

La valeur m, n’est autre que 'aplatissement de I’ellipsoide s,
de méme poéle et de méme équateur que la surface libre.

§ 10. — LA VARIATION DE LA PESANTEUR AVECG
LA LATITUDE.

Soit g la pesanteur en un point quelconque P d’une surface
équipotentielle z. On a comme on sait:

dn étant un élément de normale en P allant de la surface ¢t a la
surface t + dt. On trouverait, tout calcul fait :

de de pe\2 1 /oe\?
—1 2 4 9 ( ) (
e tnt + e + Zet— + tat + 70/ (103)

ot

gQ |9

ou en 7 par 'intermédiaire de (94):

= 1 — AX(z)s20 + A?Y(t) 52020 | (104)

o
s |7

e
e
I

478 — yo? + A(Sre 4+ 1but — 3wt %u?r—") , (105)

Y(t) = 7<% + 1but + 21078 + wirt i (106)
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et sur la surface libre S, la pesanteur rapportée & la pesanteur
au pole s’écrira:

g(1)
8o (1)

XA(1) =-’l—u—|—1\(5—]—,’léu,-—3v ——iu?) , (108)
7

=1 — AX(1)s20 + A2Y(1)s%0¢%0 , (107)

-t
—_—

[
—

|

74+ 1ha 4+ 21y 4 u® . (109)

51 'on tient compte de la limite inférieure de ¢ (90), on voit
que la fonction Y (1) est toujours positive. De méme A étant

. . 3 "
trés petit et u < -, X(1) est positif.

La variation de la pesanteur avec le complément 6 de la latitude
@ la surface d'une planéle est donnée par une expression de la
forme :

|
|

a I — xs20 4+ ys20c20 . (110)

ou les deux constantes x et y sont positives.

I1 sera intéressant de comparer ce résultat théorique avec les
formules empiriques fournies par les mesures des variations de
la pesanteur a la surface terrestre, ¢c’est ce que nous ferons a la
fin de ce mémoire. '

(A suivre.)
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