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1929 Vol. 11 Mai-Juin.

SUR UN PROCEDE UNIFORME

DANS LA

RECHERCHE DES FISÜRES PLANBTAIRES

PAR

IS. WAVISE

(Ävec 1 fig.)

§ 1. LE PROCEDE.

Laplace et Poincare, dans leurs remarquables travaux sur les

figures d'equilibre d'une masse fluide heterogene, developpent
l'inverse de la distance en serie de polynömes de Legendre et,

pour calculer le potentiel newtonien du ä la matiere presente,
ils integrent ce developpement.

Or on sait que la serie envisagee procede suivant les

puissances: soit du rapport des distances aborigine du point potentie
et du point potentiant, soit du rapport inverse. Or, si le point
potentie est ä l'interieur de la masse ou encore en certains

points de la surface libre, il est impossible que ce developpement

converge toujours lorsque le point potentiant occupe une

position quelconque interieur ä la masse. Tisserand 1 a signale
cette difficulte analytique et a formule le desideratuim-fpie-
cette difficulte soit rigoureusement vaincue.

1 Tisserand, Traite de Mecanique celeste, T. II, page 317.

Archives, Vol. 11. — Mai-Juin 1929.
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132 SUR UN PROCEDE UNIFORME

Pour satisfaire au desideratum de Tisserand, nous detache-

rons par la pensee la partie centrale de l'astre, creusant ainsi

une cavite, et nous remplacerons la matiere enlevee par une
coucke de niveau situee sur la peripheric de la cavite. Le point
potentie restera dans la cavite et sera par consequent plus
rapproche de l'origine placee au centre de l'astre, que tout autre
point potentiant. Le developpement en les puissances du rapport
des distances sera absolument et uniformement convergent.
Cette methode, comme on le verra, remedie au defaut signale

par Tisserand. Elle permet d'obtenir des equations nouvelles
et de serier les principaux resultats classiques.

§ 2. — Les relations generales.

Considerons une masse fluide heterogene dont les differentes

particules s'attirent suivant la loi de Newton et supposons que
cette masse tourne tout d'une piece autour d'un axe polaire oz

avec une vitesse constante «. Soient i la constante de l'attrac-
tion universelle, p la densite, Vx le volume occupe par l'astre,
U le potentiel newtonien, $ le potentiel de la pesanteur et Q le

potentiel de la force centrifuge.
Les trois equations tirees de l'bydrodynamique se resument,

comme on sait1, en la suivante:

$ U + Q (l)

Le potentiel <I> ne depend que de p, il est done constant sur

chaque surface d'egale densite. Ces surfaces, pour une planete,
ont la connexite de la sphere; elles sont emboitees les unes dans

les autres et la densite croit de la surface au centre de l'astre.
En vertu de l'equation de Poisson, l'equation (1) implique

celle-ci:
A4> — ir.ip + 2w2 (2)

1 S'il y avait quelque difficulte ä suivre les developpements de ce

paragraphe, le lecteur pourrait se referer a notre article « Sur la
rotation permanente des planetes et la geodesie », Archives [5], 10,

p. 19 (1928).
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Soit S une des surfaces sur laquelle $ soit constant. Si S est
interieure ä l'astre, il s'agira d'une surface d'egale densite, si S

est exterieure ä l'astre, ce sera une surface fermee, Active au
sens materiel, qui sera equipotentielle pour le champ de la
pesanteur. Soient Sx la surface libre de la planete, Z la region
qui separe S et Sx, et V le volume interieur ä S. La masse
totale M peut s'ecrire sous la forme suivante:

Rem p la cons dans la premiere integrale p par sa valeur tiree
de (2) et faisons usage de la formule du flux et de la divergence

pour transformer cette integrale. On trouve la relation, ou

g -T- est l'intensite de la pesanteur:

Nous appellerons cette relation equation de Poincare, bien

que ce dernier n'ait pas creuse la cavite et qu'il n'ait formule
cette condition que pour S Sx, d'oü Z 0.

Le potentiel U peut se decomposer de la meme maniere:

r designant la distance d'un point potentiant P' ä un point
potentie P.

Dans la premiere integrale rernplacoris de nouveau p par sa

valeur tiree de (2) et supposons le point potentie P en dehors

de S, alors on peut ecrire, en vertu d'une identite de Green et

d'une propriete des potentiels de double couche:

+-7//^+ £///" w

Pour un point P exterieur k S on aura done:
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Affectons d'un indice 0 les quantites U et g lorsqu'elles sont

prises sur Faxe polaire. L'equation (1) s'ecrit alors, puisque Q

est nul sur oz:

U0 U + Q ('.)

Remplacons U par cette valeur (4) dans l'equation (3):

-v- + Q + lifl7ds + 1ff.ßJZ
+ £'///'"'= °- w

II est bien entendu que U0 est ä prendre au pole de la surface
<3> constante qui passe au point potentie. Cette formule est

encore valable lorsque le point P est sur S car le premier membre

represente une fonction continue.
Mais il y a plus, la formule (5) est encore valable ä Vinterieur

de S ä condition de prendre alors U0 au pole de la surface S et

non plus de la surface äquipotentielle passant par P. En effet,
le premier membre est nul sur S et harmonique ä l'interieur
de S. Cette remarque est la clef de notre methode. Elle permet
au point potentie de penetrer dans la cavite dont nous parlions
plus haut.

co

A
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Soit r le rayon OP allant du centre de l'astre au point po-
tentie et t' le rayon OP'. On a:

1 t / „ T T? \
7 7\ 0 + ' '7 + + ^

les Xg sont les polynömes de Legendre en le cosinus de Tangle y
des deux rayons OP et OP'; les premiers peuvent s'ecrire:

XQ 1 Xj cos V Xg 1 — — sin2 y » •

II sera utile pour la relation de Poincare de poser aussi

x-! *•

Le point potentie pourra etre suppose aussi voisin de l'origine
que Ton voudra, de sorte que dans les deux premieres integrales
do la formule (5) r sera toujours inferieur ä t'. Quant ä la
troisieme integrale, c'est un potentiel pour une masse homogene
de densite egale ä Turnte, que Ton calculera pour lui-meme.

L'equation (5) devra avoir lieu quel que soit r petit. 11

faudra done egaler ä zero tous les coefficients des puissances de

t dans le developpement du premier membre.

§3. LA PREMIERE APPROXIMATION.

Procedons a cette identification en premiere approximation,
le carre de la vitesse angulaire w2 et l'aplatissement a des

couches d'egale densite etant faibles. Avec Clairaut, Laplace et
Poincare, nous ne retiendrons que les termes du premier ordre

en w2 et a. Ce qui est dejä multiplie par w2 ou par a pourra etre
calcule dans l'hypothese d'une stratification spherique.

Soit alors t le rayon polaire de la surface S, 0 et *p la colatitude
geocentrique et la longitude du point P, 0' et ip' les elements

correspondent pour P':

P (t 9 <1) \"(t', r, f)
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tx sera le rayon polaire de la surface Sj7 et enfm nous poserons
sur S:

<' * + «;

f, exces d'un rayon quelconque sur le rayon polaire, sera fonc-
tion de t, de 9' et de ty'. Une relation analogue s'ecrira pour toute
surface äquipotentielle interieure ä Z.

Ceci etant, on a, comme on le verifie facilement:

&-¥< »»"

L'equation (5) et la relation de Poincare s'ecrivent:

— — """'l2 H—— 2~ •

-f*..
Sur une meme surface äquipotentielle, on a, comme on le sait:

dt _ / ÖS

hn Ip — r°dn
J ös_ noV ö<

+ öl

puis, en introduisant un angle solide älementaire dQ:

rfS (/ + ;)2dQ gdS + 2

dZ dS — dt dZ t2(\ + + ~)dQdt
dt \t bt J

et enfm:

1 1 1 1

_
1 /

(7T^ ~~
7?(x + Ly~ M
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1
En remplacant — par son developpement et en identifiant

en t on trouve les equations reunies dans le tableau suivant:

Ä».''-//1-1 + n-o7+

+ 1 + (7

2 (7)
— iM + — tu2!3 pour q — 1

O

— U0 + to212 » tjt 0

] — X2 (cos 6) » q 2

I 0 pour <jr 1, 3, 4,

L'equation de Poincare correspond au cas q — 1. Portons
dans les seconds membres les termes independants de e. Alors
dans les premiers, g0 pourra etre pris pour une constitution
spherique:

go ^r.iDt

oü D est la densite moyenne de la matiere interieure ä la couche

t. Posons encore:

£
A< •

ÖE
I

Öe
— — e d ou : — e 4- t—i dt di

et le Systeme (7) s'ecrira pour les memes valeurs de q:

— i M + g0 !2 + — tu2!3 + 4 r.i^ p t'2 dt
t

h

(8)

* t— U0 + g0t ~f~ c°2*2 + dl

— Xa(c°s I
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Developpons e en serie de fonctions spheriques sur chaque
surface t, la chose est possible et les coefficients eq, et
des fonctions spheriques fondamentales seront fonction de t:

e(t, 0, <{.)

00 r~ q

2 e?X?(cos0) ' "q,p
(7=0 L p—\

+ eT,Ps'mp^\,p (cos6>

Tenons compte des relations bien connues, 011 Y- est une
fonction spherique d'ordre 7:

ffXiicoBtfVjP, Y)dQ 0 i^j

f /x.(cosT)Yi(e', Y)dQ= |2?^ 1|Yi(8, 4)

Ces relations sont valables encore pour X_( 1 et

Y_j constante. Le Systeme (8) s'ecrira, debarrasse des

integrales spheriques:

I) de\
3 r'(l' + 'S7)

t
'

'2
tl

— i'M + g012 — co2i3 + 4 jzi J* pt2 dt
t

'i
X \ — Uo + oot + (°2'2 + fotdt

4 T.l \
l

_
u2

IT

la premiere ligne du second membre convient ä q — 1, e et)

la seconde » » » » » »5=0, e — ea

la troisieme » » » » » » q 2, e e2

la quatrieme a toutes les autres valeurs de q et des eq, e^p,

(9)
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Le Systeme (9) domine la resolution du probleme; il est

nouveau k notre connaissance. Une etude en seconde approximation,

plus longue, ne serait pas plus compliquee en principe,
le developpement de l'equation (5) et de l'equation de Poincare
se faisant automatiquement.

Montrons combien ces equations (9) perrr.ettent de demontrer
simplement les principaux resultats classiques.

§ 4. LE THEOREME DE LAPLACE ET L'EQUATION

de Clairaut.

Prenons la derniere ligne du Systeme (9) et passons ä la

notation de Newton pour les derivees:

Differentions, ce qui nous donnera une relation vraie aussi

pour q 2:

(q + 3) (2 — q) De + t(2De + 6pe' + <De") 0 (11)

tQr
En posant q — l'equation (10) s'ecrit, d'autre part:

Si l'on se place ä Vexterieur de Vastre, l'integrale precedente
est nulle et l'on a:

1° Si e 0, on a aussi e' 0 k l'exterieur et sur la surface

S,, mais l'equation differentielle 11) n'admet ä YInterieur

(10)

D t2-4e(q + n) f ll-1e(n — q + 2) dl (12)

e(q + v]) 0 (13)
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aucune autre solution que e 0 correspondant ä ces valeurs
initiales sur Sr

2° Si q -)- q 0, nous poserons q - q V+, 1+ 0 sur Sj et

l'equation (12) s'ecrit:

CT+ f i\+ + 2 — 2(f) dt (14)

Si q 1 cette equation n'admet d'autre solution que q+ 0.

Si q > 1, alors la parenthese du second membre est negative,
il en est de meme alors de ji+ puisque D est positif et cela quel

que soit le signe de e. De toute fa§on l'on a:

de dl e f
7] _ — q ou — ^ — q — ou L — ^ — qLy

d'oü enfin:

ce qui est impossible, car e augmenterait au delä de toute
limite au voisinage du centre de l'astre. II n'y a done que les

termes e0 et e2 qui ne soient pas identiquement nuls en premiere

approximation. On peut ecrire:

c r0 + e2X2(cosfl) «sin20 (15)

Car e est nul sur l'axe polaire. II n'y a que des ellipsoides de

revolution voisins des spheres qui satisfassent ä cette condition.
C'est le theoreme de Laplace.

3 3
On a e0 + e2 0, a — — e2 e0 et pour q 2 l'equation

(11) se reduit ä celle de Clairaut:

21 Ya + 6 p«' + /II«" 0 (16)
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5. —• L'APLATISSEMENT ET SA DER1VEE PAR RAPPORT

AU RAYON.

3M
Plagons-nous ä l'exterieur de l'astre et remplagons D par

dans les trois premieres equations (9). Les integrales dispa-
raissent et il reste en a:

d>>

qa + t~dl= (I,)
2

— (M + + |»!l! pour q — — 1

äSü I 2q + 1 I '?+1 x - U0 + «.' + » 1 0

q 2

dci
De ces trois equations on peut extraire a, -jj et U0, puis

revenir k la difference des axes equatoriaux et polaires s la;
cela donne, comme on le verifie sans difficulte:

2| ^-i + 4^. («)
do e>o'

<19>

"l DO DO

3U0i rV2 + 2.M (20)

En additionnant (18) et (19) on trouve la relation suivante:

s d £ 5 <u21

' + dt ~~ 2

qui s'ecrit encore, en designant par <p le rapport de la force

centrifuge «2 t ä la pesanteur g:

£pölp i'4quateur 5 Oi t CO /'
« +

g ä * avec * ~f IST :

c'est une relation de Clairaut tres utile en geodesie. Mais les

equations (18), (19) et (20) entrent davantage dans le detail de

l'equilibre.
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On peut aussi mettre en evidence dans les seconds membres
des equations (17) la partie principale de g0 et de U0, c'est-ä-dire
la partie correspondant ä une stratification spherique de meme
masse totale:

_ iM iM „
so — w »o,i L0 — — + <0 L0,l

Les equations (17) s'ecrivent alors:

4 -{»(- -% + <) <»>

da 5 5 to2 „2a + t-ü -9 -~V> (23;

L'equation differentielle (23) est lineaire; en la resolvant on

trouvera a et ^ exprimes au moyen d'une constante

arbitrage k. Des equations (21) et (22) on tirera ensuite U01
et g(l [. On trouve:

u<m - Tz
(2

3 k
(25)

U. t?-+ *'£ (26)

1 ©

" 27
da 3 o
~dl ~ TT

i'M

I- + •

3A to2 /' j37) 2(M \ ' '7
¥)

3->2 /
— 2(M~ \>+f.

(27)

(28)

(29)

On voit que les relations (27), (28), (29), valables pour toute
surface äquipotentielle exterieure ä l'astre et pour la surface

fibre, donnent les valeurs de la pesanteur, de I'aplatissement et

de sa derivee au moyen d'une seule constante k. Cette seconde

resolution est celle qu'il faudrait employer pour etudier la

seconde approximation.
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§ 6. LES MOMENTS ü'lNERTIE DES FIGURES

d'equilibre.

Soient A, B, C les moments d'inertie de l'astre par rapport
aux axes x, y, z respectivement. Pour une surface S: <I> c

quelconque mais fermee, exterieure ä l'astre, on aura, p etant
nul en dehors de S,:

A fff9(y% + £i)dy ;

les autres moments s'obtiennent par permutation des lettres.
En tirant p de l'equation (2) et faisant ä nouveau usage d'une
identite de Green on pourra ecrire:

4 k ."A 4 f I f(c- d>)d\ + f I g(y2 + z2)dS
t,' V «.' tJ

+ 2w2j"J" f^ + z^dx

Puis, par soustraction, ce qui fait disparaitre le premier
terme:

i-i(A - B) fJW - x2)dS + 2(0*1' j' J*(y2-x2)d\

La difference des moments d'inertie ne depend que de S et de

la pesanteur sur S.

La formule precedente est rigoureuse; elle ne suppose nulb-
ment que la rotation et l'aplatissement soient faibles.

Si V' est le volume compris entre la surface S et une sphere
de meme pole, la formule precedente peut encore s'ecrire:

4x i (A — B) j*J*g (y2 — x'2) dS -f 2 co2 ^ j* j (y2 — x2) d\'

Maintenant, si la rotation est lente, la region V' sera de

l'ordre de w2 et le second terme est du second ordre. Au premier
ordre il reste simplement:

//"Atc (C — A) I I g (x2 — z2)dS
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et l'on a A B puisque la figure d'equilibre est de revolution.

Or, sur la surface S on a: g g0 ^1 — g0 ^1 — ~ sin 0 cos 0^

et en utilisant la formule (19) on trouvera sans difficulte:

C — A i2^l — CV-'j (30)

D'Alembert et Poincare donnent l'expression suivante :

C_A _|f,.(«_|) p,|

formule que l'on deduit de la precedente par la formule (28).
La formule (30) est vraie quelque soit t > on en tire:

valeur qui doit comcider avec la valeur (27). On voit que la

constante k du paragraphe precedent est:

*={A-C)i>-

nombie negatif. puisque 1'astre est aplati. On sait d'autre
(; a

part que le rapport
' n'est autre que la constante J de

la precession des equinoxes.
Cette methode est rigoureuse, elle coordonne les resultats

classiques, elle en contient de nouveaux et, ä tout prendre,
elle simplifie la resolution de ce probleme si ardu qui est ä

la base de la geodesie superieure.

Geneve, le 2 juin 1929.
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