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1929 Vol. 11 Mai-Juin.

SUR UN PROCEDE UNIFORME

DANS LA

RECHERGHE DES FIGURES PLANE'TAI'RES

PAR

IR. WAVRE

(Avec 1 fig,))

§ 1. — LE PROCEDE.

Laplace et Poincaré, dans leurs remarquables travaux sur les
figures d’équilibre d’une masse fluide hétérogéne, développent
P'inverse de la distance en série de polynémes de Legendre et,
pour calculer le potentiel newtonien dii a la matiére présente,
ils intégrent ce développement.

Or on sait que la série envisagée procéde suivant les puis-
sances: soit du rapport des distances a I’origine du point potentié
et du point potentiant, soit du rapport inverse. Or, si le point
potentié est & l'intérieur de la masse ou encore en certains
points de la surface libre, il est impossible que ce développement
converge toujours lorsque le point potentiant occupe une
position quelconque intérieur & la masse. Tisserand ! a signalé
cette difficulté analytique et a formulé le desideratum —qwe -
cette difficulté soit rigoureusement vaincue. %‘%\,\%lflig@

' TisseranD, Traité de Mécanique céleste, T. 11, page 317. L'UNIVERSITE

ArcHIvEs, Vol. 11. .— Mai-Juin 1929. NEUCHATEL
\, /S
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Pour satisfaire au desideratum de Tisserand, nous détache-
rons par la pensée la partie centrale de I’astre, creusant ainsi
une cavité, et nous remplacerons la matiére enlevée par une
couche de niveau située sur la périphérie de la cavité. Le point
potentié restera dans la cavité et sera par conséquent plus
rapproché de 'origine placée au centre de I'astre, que tout autre
point potentiant. Le développement en les puissances du rapport
des distances sera absolument et uniformément convergent.
Cette méthode, comme on le verra, remédie au défaut signalé
par Tisserand. Elle permet d’obtenir des équations nouvelles
et de sérier les principaux résultats classiques.

§ 2. — LES RELATIONS GENERALES.

Considérons une masse fluide hétérogeéne dont les différentes
particules s’attirent suivant la loi de Newton et supposons que
cette masse tourne tout d’'une piéce autour d’un axe polaire oz
avec une vitesse constante ®. Soient ¢ la constante de 'attrac-
tion universelle, p la densité, V,; le volume occupé par Tastre,
U le potentiel newtonien, @ le potentiel de la pesanteur et Q le
potentiel de la force centrifuge.

Les trois équations tirées de I’hydrodynamique se résument,
comme on sait 1, en la suivante:

®=U+0Q. (1)

Le potentiel ® ne dépend que de p, il est donc constant sur
chaque surface d’égale densité. Ces surfaces, pour une planéte,
ont la connexité de la sphére; elles sont emboitées les unes dans
les autres et la densité croit de la surface au centre de I’astre.

En vertu de I'équation de Poisson, I'équation (1) implique

celle-ci:
Ab = — brmip + 202 . (2)

1 @11 y avait quelque difficulté a suivre les développements de ce
paragraphe, le lecteur pourrait se référer a notre article «Sur la
rotation permanente des planetes et la géodésie », Archives [5], 10,
p- 19 (1928).
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Soit S une des surfaces sur laquelle ® soit constant. Si S est
intérieure & l'astre, il s’agira d’une surface d’égale densité, si S
est extérieure & 'astre, ce sera une surface fermée, fictive au
sens matériel, qui sera équipotentielle pour le champ de la
pesanteur. Soient S; la surface libre de la planéte, Z la région
qui sépare S et S;, et V le volume intérieur 4 S. La masse
totaf]é M peut s’écrire sous la forme suivante: ‘

W= [ f fors [ foar

Remplacons dans la premiére intégrale p par sa valeur tirée
de (2) et faisons usage de la formule du flux et de la divergence
pour transformer cette intégrale. On trouve la relation, ou

d : .
g = d_:I{) est l'intensité de la pesanteur:

f/'gds — 4rmiM _4m'fffpdz — 262V,

Nous appellerons cette relation équation de Poiﬁcaré, bien
que ce dernier n’ait pas creusé la cavité et qu’il n’ait formulé
cette condition que pour S = S,;, d’ou Z = 0.

Le potentiel U peut se décomposer de la méme maniére:

o= if [ [E s f [

r désignant la distance d’un point potentiant P’ & un point
potentié P. 7

Dans la premiére intégrale remplacons de nouveau p par sa
valeur tirée de (2) et supposons le point potentié P en dehors
de S, alors on peut écrire, en vertu d’'une identité de Green ct
d’une propriété des potentiels de double couche:

SIS = [

Pour un point P extérieur & S on aura donc:

=k SR LI LSS
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Affectons d’un indice 0 les quantités U et g lorsqu’elles sont
prises sur axe polaire. L’équation (1) s’écrit alors, puisque Q
est nul sur oz:

U =U-<+Q

0 2 - (

-
—

Remplacons U par cette valeur (4) dans I’équation (3):

e L[ if f [l
CELf =0 o

11 est bien entendu que U, est a prendre au péle de la surface
® = constante qui passe au point potentié. Cette formule est
encore valable lorsque le point P est sur S car le premier membre
représente une fonction continue.

Mais il y a plus, la formule (5) est encore valable & I'intérieur
de S @ condition de prendre alors Uy au pole de la surface S et
non plus de la surface équipotentielle passant par P. En effet,
le premier membre est nul sur S et harmonique & l'intérieur
de S. Cette remarque est la clef de notre méthode. Elle permet
au point potentié de pénétrer dans la cavité dont nous parlions
plus haut.

s 4
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Soit 7 le rayon OP allant du centre de 'astre au point po-
tentié et ¢’ le rayon OP’. On a:

1 1/.. . -7 @
T:? :\0+‘\1‘[F—}—...—I—-Xq;;q—+ gl (h)

les X, sont les polyndmes de Legendre en le cosinus de 'angle
des deux rayons OP et OP’; les premiers peuvent s’écrire:

2

X; =1, X, = cosy . ng’l——%sin?]',... .

Il sera utile pour la relation de Poincaré de poser aussi
X, = 1. ’

Le point potentié pourra étre supposé aussi voisin de I'origine
que I'on voudra, de sorte que dans les deux premiéres intégrales
de la formule (5) = sera toujours inférieur a t’. Quant a la
troisiéme intégrale, ¢’est un potentiel pour une masse homogéne
de densité égale a I'unité, que I'on calculera pour lui-méme.

L’équation (5) devra avoir lieu quel que soit = petit. 1l

audra donc égaler & zéro tous les coefficients des puissances de
7 dans le développement du premier membre.

§ 3. — LA PREMIERE APPROXIMATION.

Procédons & cette identification en premiére approximation,
le carré de la vitesse angulaire w? et I’aplatissement o des
couches d’égale densité étant faibles. Avec Clairaut, Laplace et
Poincaré, nous ne retiendrons que les termes du premier ordre
en @* et a. Ce qui est déja multiplié par @* ou par a pourra étre
calculé dans I'hypothése d’une stratification sphérique.

Soit alors ¢ le rayon polaire de la surface S, 6 et y la colatitude
géocentrique et la longitude du point P, 6’ et y’ les éléments
correspondant pour P’:

Pz, 0, ) P, 0, ),
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t, sera le rayon polaire de la surface S,, et enfin nous poserons
sur S:

V' =1t4 <

¢, excés d’un rayon quelconque sur le rayon polaire, sera fone-
tion de ¢, de 6" et de y’. Une relation analogue s’écrira pour toute
surface équipotentielle intérieure a Z.

Ceci étant, on a, comme on le vérifie facilement:

w? 1 1
— A 2 2_  ~ .2
2n./‘ffrd\/_2o)(t 3)

)
V ’
2= - 3

2 w? ?
— {3 Q=—2—T2Sll126 5

L’équation () et la relation de Poincaré s’écrivent:

LI SEas i [

. 5 3
= U, — 0?1 4 %ﬁ(i —3 sin”)) ,

!{1zu[‘fga’s + it[.b[’fpdz = M —%wzﬁ )

Sur une méme surface équipotentielle, on a, comme on le sait:

_odt 2o . 1 de
“_"°dn_1+os_°° ot )
ot

puis, en introduisant un angle solide élémentaire dQ:

dS = (L 4 9?dQ , £dS = g0,2(1 n 2;_5_?)019 |

d7 =Js%dt, dZ:tﬂ('l +2%+—)dﬂdt,

et enfin:
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1 . .
En remplacant — par son développement et en identifiant

en 7 on trouve les équations réunies dans le tableau suivant:

1 . 1_'4 g oe | ..
grbo! ff[— Plg=17+ E?]‘\q‘m

. 0)
— M + -3—00213 pour g = — 1

— Uo 4+ w?i » q = 0

2
— %-‘\2 (cos 8) » g = 2
0 pour ¢ =1, 3, 4, ...

L’équation de Poincaré correspond au cas ¢ = — 1. Portons
dans les seconds membres les termes indépendants de & Alors
dans les premiers, g, pourra étre pris pour une constitution
sphérique:

= g‘ﬁiDt ,

ou D est la densité moyenne de la matiére intérieure a la couche
t. Posons encore:

& - o€

d L
— = e , ou : — = e —
b ot at !

et le systéme (7) s’écrira pour les mémes valeurs de g¢:

%m‘-’-qff (qe + z%%) X, dQ
4
+ i(tf‘pli_th‘/‘f[(q—-2)ewtg]quQ

' t (8)
| : 2 3 i

M gt Sts azzfpt-dt

t

51
s

= —U0+g0t+w2z2+4xi'j ptdt

4
2
&)

5 X, (cos 6)
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Développons e en série de fonctions sphériques sur chaque
surface ¢, la chose est possible et les coefficients e, eg; et eéfz),
des fonctions sphériques fondamentales seront fonction de ¢:

e(t, 0, 4

o q
3 QRO @ r o8 6}
= [ cus()) -+ Z(eq,Pcospdg—{—eq,psmpxy)xg”p(tosﬁ,].

q=0 pr=1

Tenons compte des relations bien connues, ou Y, est une
fonction sphérique d’ordre ;:

[ [ X(cosy) Y, (0", ¥)d2 = 0, i,
\ \ ’ ,I "— 1
.ff‘\i(COSTin(e' ?) ‘ I 29 + 1| 6’ ".’) .
Ces relations sont valables encore pour X_ | = 1 et
Y_, = constante. Le systéme (8) s’écrira, débarrassé des int¢-

grales sphériques:

I) 2_9 ()’e
-‘gt (qe + td—t)

t

de
+fpt“‘-’[(q—2)e—td—°;Jdt

t .
) f (9)
— iM + got2§w2t3 + 4n£fpt2 dt

t

¥
1
E)
::liihl_lx [ — U, + g t+m?t2+ir1[‘p£dt
bri
1
(1)2
3
b0
la premiére ligne du second membre convient 4 ¢ = — 1, e = ¢,
la seconde » » » » » » q = O’ e = ¢
la troisiéme » » » » » W g =G e = e

P 2 (1) ()
la quatrieme & toutes les autres valeurs de g et des e, e, , e." .
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Le systéme (9) domine la résolution du probléme; il est
nouveau & notre connaissance. Une étude en seconde approxi-
mation, plus longue, ne serait pas plus compliquée en principe,
le développement de I'équation (5) et de équation de Poincaré
se faisant automatiquement.

Montrons combien ces équations (9) permettent de démontrer
simplement les principaux résultats classiques.

§ 4. — LE THEOREME DE LAPLACE ET L'EQUATION
DE CLAIRAUT.

Prenons la derniére ligne du systéme (9) et passons a la
notation de Newton pour les dérivées:

1
3D (ge + 1) = [otI[@2 —g)e + te'jdr . (10)

L

Différentions, ce qui nous donnera une relation vraie aussi
pour g = 2:

(g +3)(2 — ¢q)De + t(2De 4 6ge” 4 tDe") = 0 . (11)

’

En posant » = t—Z— I’équation (10) s’écrit, d’autre part:

3]

D fe(q + 1) = f@tl'qe(ﬂ —q + 2)dt . (12)

(X

t

Si T'on se place a lextérieur de Iastre, 'intégrale. précédente
est nulle et 'on a:

elg +7) = 0. (13)

1% Si e = 0, on a aussi ¢’ = 0 a lextérieur et sur la surface
S;, mais I'équation différentielle 11) n’admet a Dintérieur
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aucune autre solution que e = 0 correspondant & ces valeurs
initiales sur S;.

2° Si g + ¢ = 0, nous poserons 7 = —g + 7", 7 = 0sur S, et
I'équation (12) s’écrit:

4
DA enT = [‘pt1_qe(1]+ + 2 — 2¢)dt . (14)

¢

t

Si ¢ = 1 cette équation n’admet d’autre solution que 77 = 0.
Si ¢ > 1, alors la parenthése du second membre est négative,
il en est de méme alors de 7™ puisque D est positif et cela quel
que soit le signe de e. De toute facon 'on a:

di
n= —¢q ' on d—:-é—qT ou Le—é—qbfz—

d’ou enfin:

ce qui est impossible, car e augmenterait au dela de toute
limite au voisinage du centre de 'astre. Il n’y a donc que les
termes ¢, et e, qui ne soient pas identiquement nuls en premiére
approximation. On peut écrire:

e = o, + 52X2(COSQ) = a sin?f ’ (]5)

Car e est nul sur axe polaire. Il n’y a que des ellipsoides de
révolution voisins des sphéres qui satisfassent a cette condition.
C’est le théoréme de Laplace.

3 3 , .
Onae, + ¢, =0,a =—¢ =5 ¢et pour ¢ = 21'équation

(11) se réduit a celle de Clairaut:

2D%a + 6pa” + tHa" = 0. (16)



DANS LA RECHERCHE DES FIGURES PLANKETAIRES 141

§ 5. — L’APLATISSEMENT ET SA DERIVEE PAR RAPPORT
AU RAYON.
R L) r* D) 3\]
Placons-nous a 'extérieur de I’astre et remplagons D par et

dans les trois premiéres équations (9). Les intégrales dispa-
raissent et il reste en a:

d” ! -
: -
— M 4+ g2 —!—§w 2 pour g = —1
3
m]2q+1llq+lx’——Uo—i—goi—i—wzt2 » g =0
2
)
= 2.
2 3 .)) q
5. ; ; da :
De ces trois équations on peut extraire a, }WEt Uy, puis

revenir & la différence des axes équatoriaux et polaires ¢ = ta:
cela donne, comme on le vérifie sans difficulté:

= (l)2t IN[
2 — — — 1 ; 18)
t Bo i &t 18)
ds w? ¢ M
Fomele oy gy i , 19
dt = g, + 8 &t (19
3Ut = g 12 + 2iM . (20)

En additionnant (18) et (19) on trouve la relation suivante:

£ a’s__
T A =

1o on

qui s’écrit encore, en désignant par ¢ le rapport de la force
centrifuge ®?¢ & la pesanteur g:
w? ¢ w??

avec s = —
‘ ? 8 M

QA —_— T '
~Apoble ~équateur
a + i =
o

=]

-8

Mfc.n

¢’est une relation de Clairaut trés utile en géodésie. Mais les
équations (18), (19) et (20) entrent davantage dans le détail de
Iéquilibre. '
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On peut aussi mettre en évidence dans les seconds membres
des équations (17) la partie principale de g, et de Uy, ¢’est-a-dire
la partie correspondant & une stratification sphérique de méme
masse totale:

tM . ‘(M
80 — t2 + ngﬁ,l 5 I';O = -t—— —i— (l)zUo,! -

Les équations (17) s’écrivent alors:

da 3 2
a—td—t == )G( gﬂql—'gl) . (2])
da 3 U .
t—r = ;?(go,l = —;’" + t) (22)
da 5 5 w?
a t -—- — — — — — .3 (23)
& ¥op 7 = 7 !

L’équation différentielle (23) est linéaire; en la résolvant on
da
dt
traire k. Des équations (21) et (22) on tirera ensuite U, ,

et g, (. On trouve:

trouvera a et exprimés au moyen d’une constante arbi-

Vo = 5 24
Soq = i—f v (25)

B, = i:i 2% (26)
ST T T

On voit que les relations (27), (28), (29), valables pour toute
surface équipotentielle extérieure a I'astre et pour la surface
libre, donnent les valeurs de la pesanteur, de Uaplatissement et
de sa dérivée au moyen d’une seule constante k. Cette seconde
résolution est celle qu’il faudrait employer pour étudier la
seconde approximation.
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§ 6. — LES MOMENTS D’'INERTIE DES FIGURES
D’EQUILIBRE.

Soient A, B, C les moments d’inertie de I'astre par rapport
aux axes z, y, 2 respectivement. Pour une surface S: ® = ¢
quelconque mais fermée, extérieure & Pastre, on aura, 5 étant
nul en dehors de S;:

A = 'ft/a‘[.'o(y“ + 25dV ;

les autres moments s’obtiennent par permutation des lettres.
En tirant p de I'équation (2) et faisant & nouveau usage d’une
identité de Green on pourra écrire:

AriA = Qf[ {‘(c — d)dV + f’g‘(y'z + 2% dS
4 Qzusz {‘(y'z + 3 dV .

Puis, par soustraction, ce qui fait disparaitre le premier
terme:

ini(A — B) = rfg(y'z— ) dS + 2&02['[‘[(3/2—932‘}6{\7 5
. o

La différence des moments d’inertie ne dépend que de S et de
la pesanteur sur S.

La formule précédente est rigoureuse; elle ne suppose nullz-
ment que la rotation et I’aplatissement soient faibles.

St V' est le volume compris entre la surface S et une sphére
de méme pole, la formule précédente peut encore s’écrire:

hrilA — B) = ffg(yQ—ﬁ)dS»{—szfrf (y* — 3 dV’ .

Maintenant, si la rotation est lente, la région V' sera de
Pordre de w? et le second terme est du second ordre. Au premier
ordre 1l reste simplement:

bri(C — A) = [‘r;z(x?ng)d's,
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et 'on a A = B puisque la figure d’équilibre est de révolution.
Or, sur lasurface Sona: g=g, (1 ——git) = g (1 — f—;-; sin 6 cos 0)

et en utilisant la formule (19) on trouvera sans difficulté:

C—Azf_'(31—g—9t2). (30)
3 { S
D’Alembert et Poincaré donnent I'expression suivante :

28 ¢ ;

formule que 'on déduit de la précédente par la formule (28).
La formule (30) est vraie quelque soit ¢ > ¢, on en tire:

l C—A
g0=t—2(1\1—3 D ),

valeur qui doit coincider avec la valeur (27). On voit que la
constante & du paragraphe précédent est:

k= (A_C)"i‘i'

(O]

nombre négatif. puisque l'astre est aplati. On sait d’autre
C—A

C
la précession des équinoxes.

Cette méthode est rigoureuse, elle coordonne les résultats
classiques, elle en contient de nouveaux et, a tout prendre,
elle simplifie la résolution de ce probléme si ardu qui est &
la base de la géodésie supérieure.

part que le rapport n’est autre que la constante J de

Genéve, le 2 juin 1929.
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