Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 10 (1928)

Artikel: Recherches sur l'étoile variable T Vulpeculae

Autor: Tiercy, Georges

DOI: https://doi.org/10.5169/seals-742785

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

RECHERCHES

SUR

L'ÉTOILE VARIABLE T VULPECULÆ

PAR

Georges TIERCY

(Avec 7 fig.)

§ 1. Introduction.

1. — Le présent mémoire est consacré à l'étude de l'étoile variable T *Vulpeculae*. La courbe de lumière a été déterminée en appliquant la méthode que nous avons donnée à l'occasion de nos recherches sur SU *Cassiopeiae* ¹; nous rappelons ci-dessous en quoi consiste cette méthode.

Une fois la courbe de lumière trouvée, nous nous sommes attaché à établir la variation du rayon de l'étoile au cours de la pulsation; nous nous sommes alors appuyé sur la « courbe des vitesses radiales » tracée d'après les données numériques de A. F. Beal ². La connaissance de la variation de la magnitude et de la courbe de pulsation a permis de déterminer la valeur de l'index de couleur pour chaque phase de la céphéide; nous avons dessiné, comme nous l'avions fait pour SU Cassiopeiae, la courbe représentant la relation qui existe entre l'index de couleur et la magnitude, au cours de la pulsation. Les derniers

¹ Publicazioni del R. Osservatorio Astrofisico di Arcetri (Firenze), fasc. 44, 1927.

² Publications of the Allegheny Observatory, vol. III, 1916.

paragraphes sont consacrés à l'établissement de la courbe de variation de la température T, ainsi que de la courbe de variation de la pression P.

La méthode utilisée pour trouver la courbe de lumière consiste dans les opérations suivantes:

- a) Mesure des largeurs des raies des spectres, et tout spécialement des largeurs de H_3 , H_4 , H_5 , H_6 , H_6 , H_8 . Il est essentiel de n'utiliser que des plaques également exposées, c'est-à-dire pour lesquelles on a adopté une même durée de pose θ (nous avons pris $\theta=12$ min.); si les durées des poses effectivement choisies ne sont pas les mêmes, il faut, par des formules convenables (voir § 2), ramener les mesures des largeurs des raies à ce qu'elles seraient si la durée de pose effectivement adoptée avait été la même pour tous les spectres, soit θ .
- b) Mesure des longueurs des spectres; il est essentiel, ici aussi, de ramener ces mesures à ce qu'elles seraient si la durée de pose avait été θ pour toutes les plaques; cela se fait au moyen des formules données au § 2.

Alors, en appelant L la longueur du spectre le plus long (spectre correspondant au maximum de lumière), on obtient, pour un spectre correspondant à une phase quelconque, une longueur (L-d).

Ce déficit (d) est traité, par la suite, comme une raie large; il est en effet la traduction du fait que, par rapport au maximum de lumière, une certaine quantité de lumière n'est pas arrivée sur la plaque. En tenant compte de (d), on peut donc dire que la longueur théorique de tous les spectres est L.

- c) Calcul, pour chaque plaque, du total (y) des largeurs des raies et de (d); puis calcul de la différence x = L y.
 - d) Calcul, pour chaque plaque, du rapport $q = \frac{y}{x}$.

La valeur du rapport (q) représente la magnitude (m); en effet, plus (y) est grand, moins il y a eu de lumière arrivant sur la plaque; (q) varie donc dans le même sens que la magnitude (m).

e) Calcul des valeurs de (m) correspondant respectivement à toutes les phases, grâce à la connaissance de deux d'entre elles seulement, par exemple celles du maximum et du minimum de lumière.

- § 2. Les clichés; les données numériques fondamentales; les formules de réduction.
- 2. Les clichés qui ont servi à cette étude portent les numéros E 20-25-41-43-48-52-60-62-64-65-68-70-71, et E 124-125-126-127-129-130-132-133-142-147-159 de la collection de l'Observatoire Astrophysique d'Arcetri (Florence); la première série (de 20 à 71) a été prise en 1924 par M. le Prof. Giorgio Abetti; la seconde série (de 124 à 159) a été prise par nous-même. Les plaques utilisées sont des plaques «Capelli-blu », sauf E 43-52-62-64 qui sont des plaques «Sensima ».

Ces photographies ont été obtenues au moyen du petit télescope d'Arcetri, dont le miroir a 30 cm de diamètre, et qui est muni de deux « prismes-objectifs »; ce télescope est monté sur l'axe de l'équatorial « Peratoner »; on en trouve la description détaillée dans le 41^{me} fascicule des Publications de l'Observatoire d'Arcetri.

Les clichés ont été mesurés par nous-même à Arcetri, au moyen d'un petit spectrocomparateur à deux microscopes, celui-là même qui nous a servi à faire les mesures relatives à SU Cassiopeiae. Le dépouillement de ce dossier de mesures, ainsi que l'établissement des conclusions présentées dans les paragraphes suivants, ont été effectués à Genève.

Les données numériques fondamentales relatives à T Vulpeculae ont été relevées dans le « Vierteljahrschrift der A. G. », 1914; on a:

```
Epoque (T. M. de Greenwich) = 2409849^{d},079; 
Période = 4^{d},435521; 
du min. au max. de lumière = 1^{d},361;
```

en temps moyen d'Arcetri, l'époque vaut:

```
2409849^{d},079 + 0^{d},031265 = 2409849^{d},110265.
```

Nous donnons ci-dessous le tableau des phases des différentes plaques:

SÉRIE 1924.

Plaque	Date	Heure sid.	Durée de pose	Date du cliché (J. J.)	Phase	Remarques
		h. m.)	d	d	
E 20	5 juill.	20 6	12 m.	2423963,546	0,608	médiocre
25	11 juill.	19 30	20 m.	3969,508	2,134	piquée
41	27 juill.	22 2	16 m.	3985,570	0,454	très bonne
43	28 juill.	22 2	15 m.	3986,567	1,451	quelques nuag.
48	5 août	21 31	16 m.	3994,524	0,537	très bonne
52	7 août	$22\ 32$	20 m.	3996,560	2,573	sensima-bonne
60	19 sept.	23 34	16 m.	4039,486	1,144	bonne
62	23 sept.	23 20	12 m.	4043,465	0,688	mauvaise
64	30 sept.	23 28	18 m.	$4050,\!452$	3,239	médiocre
65	5 oct.	22 33	14 m.	4055,400	3,751	très bonne
68	17 oct.	21 07	12 m.	4067,308	2,353	très bonne
70	21 oct.	23 32	12 m.	4071,397	2,006	très bonne
71	29 oct.	24 02	12 m.	4079,396	1,134	très bonne

SÉRIE 1927.

Plaque	Date	Heure sid.	Durée de pose	Date du cliché (J. J.)	Phase	Remarques
		h. m.		d	d	
E 124	25 juill.	19 8	40 m.	2425087,438	2,313	très bonne
125	26 juill.	19 32	60 m.	5088,463	3,338	un peu noire
126	27 juill.	18 59	30 m.	5089,431	4,306	mal guidée
127	29 juill.	20 22	40 m.	5091,479	1,919	médiocre
129	31 juill.	19 13	40 m.	5093,430	3,870	très bonne
130	-1 août	19 15	40 m.	5094,429	0,433	très bonne
132	4 août	20 12	60 m.	5097,465	3,469	bonne
133	5 août	19 14	40 m.	5098,428	4,432	assez bonne
142	27 août	19 25	40 m.	5120,377	4,203	très bonne
147	$31~{ m août}$	19 37	40 m.	5124,375	3,766	très bonne
159	28 sept.	19 25	80 m.	5152,297	0,641	très bonne

3. — Disons ici que les courbes de lumière, indiquées par les auteurs qui se sont occupés de T Vulpeculae, diffèrent quelque peu d'allure; le lecteur pourra comparer les courbes données par E. C. Pickering¹, Sawyer², Chandler², Yendell²,

¹ Harvard Annals, 1903, p. 156.

² Lick Bulletin IV, 1907, p. 137. Article Albrecht.

Luizet ¹, Hertzsprung ², Nijland ³, Hellerich ⁴, etc.; il constatera, par exemple, que la branche descendante de la courbe de Pickering est beaucoup moins « creusée » que la branche descendante dessinée par Luizet, ou par Hertzsprung, ou par Nijland; il verra aussi que Nijland n'exclut pas la possibilité d'une petite ondulation secondaire vers le bas de la branche descendante.

Les limites de magnitude indiquées par Luizet sont 5,50 et 6,40; tandis que celles indiquées par Nijland sont 5,43 et 6,32; nous adopterons les limites de Nijland.

4. — La première difficulté à résoudre a été de raccorder les mesures faites en 1927 avec celles effectuées en 1924; le miroir était neuf en 1924; il a été réargenté en 1927 pour prendre les clichés indiqués plus haut; et il s'est trouvé que l'argenture de 1927 a été moins bonne que celle de 1924.

Nous avons fait le raccord en étudiant une série de photographies du spectre de l'étoile invariable Boss 3855, qui est de 5^{me} magnitude; nous y avons mesuré les largeurs des raies H_β, H_γ, H_δ, H et K, ainsi que les longueurs des parties de spectres précédant H_β du côté du rouge et suivant K du côté de l'ultraviolet.

Nous avons trouvé les moyennes suivantes:

	Avant H _g	Après K	Н	H_{γ}	Нδ	Н	K	Remarques
1924	m m 1,730	m m 6,160	μ 67	μ64	μ.47	μ 89	ı 103	
1927	1,330	5,450	75	65	58	106	122	spectre plus court, raies plus larges
Différence	0,400	0,710	8	1 .	11	17	19	

¹ Astronomische Nachrichten 4596, 1912, p. 196.

² Astronomische Nachrichten V. 208, 1919, p. 51.

³ Utrecht, Recherches astronomiques 81, 1923.

⁴ Astronomische Nachrichten V. 228, 1926, p. 113.

ce qui donne les pourcentages ci-dessous pour effectuer le passage des mesures faites en 1927 à celles faites en 1924, ou vice-versa:

		Avant H _β	Après K	Нз	Н	Нδ	Н	К	
Pour ramener à 1927	% rapporté à 1924	0,23	-0,115	+ 0,12	+ 0,02	+ 0,23	+ 0,20	+ 0,18	moyenne pr les raies 0,15
Pour ramener à 1924	% rapporté à 1927	+ 0,30	+0,13	-0,11		-0,19		0,15	moyenne pr les raies 0,13

Nous nous sommes servi des pourcentages indiqués à la dernière ligne pour ramener toutes les mesures faites avec le miroir de 1927 à ce qu'elles auraient été, si elles avaient été effectuées avec le miroir de 1924.

5. — Nous avons dit, dans l'introduction, qu'il était essentiel de n'utiliser que des mesures relatives à des clichés obtenus après le même temps de pose. Or, pratiquement, les temps de pose effectivement choisis diffèrent les uns des autres, surtout dans la série de 1924. Il importe donc de trouver des formules permettant de calculer ce qu'auraient été les largeurs des raies d'un spectre et la longueur de ce spectre, si la durée de pose avait été différente de celle effectivement choisie.

Il faut, ici, prévoir deux formules; l'une se rapportant aux largeurs des raies; l'autre à la longueur du spectre.

a) Largeurs des raies (réduction des) en prenant une durée de pose différente de celle de la plaque.

Une série de mesures effectuées sur des plaques « Cappelliblu » nous a conduit à la formule suivante:

$$s' = s.10 \left(-\frac{0.105}{M} \cdot \frac{t'-t}{t} \right) ,$$

où (s) est la largeur de raie mesurée effectivement, (s') ce qu'aurait été la largeur si la durée de pose avait été (t') au lieu de (t), et où $\frac{1}{M}$ représente le module logarithmique 0,4342945;

dans cette formule, la durée t' est plus grande que t, mais vaut au maximum 2 t.

On a donc:

$$s' = s \cdot 10^{(-0.045601) \cdot \frac{t' - t}{t}}$$
 (1)

si l'on résoud cette relation par rapport à (s), on trouve:

$$s = s'. 10^{(+0.045601) \cdot \frac{t'-t}{t}}$$
,

formule qui serait valable pour passer d'une durée de pose t' effective plus longue à une durée t plus courte; ou bien, en remettant l'accent pour désigner la largeur cherchée et non la largeur mesurée:

$$s' = s \cdot 10^{(+0.045601) \cdot \frac{t-t'}{t'}}.$$
 (2)

où t' < t.

Mettant ces deux formules sous forme logarithmique, on a:

$$\begin{cases} \log s' = \log s - (0.045601) \cdot \frac{t' - t}{t}, & (t' > t), \\ \log s' = \log s + (0.045601) \cdot \frac{t - t'}{t'}, & (t' < t). \end{cases}$$

Notons qu'en développant les formules (1) et (2), et en ne gardant que les deux premiers termes de chaque développement, on retrouve les formules que nous avons utilisées dans l'étude de SU Cassiopeiae.

b) Réduction de la longueur d'un spectre, en prenant une durée de pose différente de celle de la plaque.

Une série de comparaisons effectuées sur des plaques « Cappelli-blu » nous a montré qu'en doublant le temps de pose, la partie du spectre qui précède la raie H₈ du côté du rouge ainsi que la partie suivant la raie K du côté de l'ultra-violet s'allongent des 0,105 de la différence entre la longueur mesurée de la partie considérée et la longueur maximum de cette partie.

On a donc les formules suivantes:

$$l' = l + (\mathcal{L} - l) \cdot (0,105) \left(\frac{t' - t}{t}\right); \qquad (3)$$

$$l' = l - (\mathcal{L} - l) \cdot (0,105) \left(\frac{t - t'}{t'}\right); \qquad (4)$$

- (3) correspond au cas de t' > t;
- (4) correspond au cas de t' < t.

Ces formules sont légèrement différentes de celles que nous avons utilisées pour SU Cassiopeiae, mais donnent des résultats comparables dans les conditions où l'on opère.

On a pris:

$$\left\{ \begin{array}{l} \mathcal{L} = 6000\,\mu \ \ \text{(côté ultra-violet)} \,; \\ \mathcal{L} = 3000\,\mu \ \ \text{(côté rouge)}. \end{array} \right.$$

§ 3. Rapport q; courbe représentative; courbe de lumière.

6. — Nous rappelons que les plaques « Cappelli-blu » utilisées donnent des spectres commençant un peu avant la raie H₃ du côté du rouge, et s'étendant dans l'ultra-violet, au-delà des raies H et K du calcium, plus ou moins loin suivant leur type.

Appliquant la méthode indiquée au paragraphe (1), nous établissons dans les tableaux ci-dessous, les valeurs de L, d et t pour chaque plaque. Les deux premiers tableaux conduisent à connaître L et les valeurs des (d); on remarquera que la valeur de L est à prendre dans le second tableau (clichés 1927; E 133). D'autre part, de H_{β} à K, on mesure 11780 μ .

PLAQUES 1924 (mesures en μ).

					N e	+ £,			
65	1770	1717	18005		133	2003	1145	1879	18419 0
79	1200 800	1092	13594 4825		126	1512 5213	1184	1539 4518	17837
Min.				990	142	1753	1274	1656	17992
52	1453 —700	1279	12247	(E)	129	1610	1162	1511 3979	17270
89	1214 1600	1214 1600	14594 3825		147	1480	1068 2819	1388 3185	16353 2066
25	926 1723	815 1500	14095 3424		132	1351 3531	860 2166	1117	15344 3075
10	1076 1200	1076 1200	14056 4363		125	1230 3900	790	1027 2723	15530 2889
643	1912 1428	1826 1359	14965 3454	927.	Min.				
09	1380 3813	1297 3565	16642	PLAQUES 1927.	124	1033	745	969	14336 4083
71	1016 2146	1016 2146	14942 3477	PLA	127	900	649 2618	844 2958	15582 2837
62	1496 847	1496 847	14123 4296	14	159	2030	1213	1577 3765	17122
20	1217 4140	1217 4140	17137		E 130	1874 5303	1353 3723	1759 4207	17746 673
84	1468 5588	1380	18385			t Hg K	H ₃	t H _β K	
E 41	1402 4732	1318	17522 867			avant H _g	$\left\{\begin{array}{c} \text{acant H}_3 \\ \text{après K} \end{array}\right.$	$\left\{\begin{array}{c} \text{avant } H_{\beta} \\ \text{après } K \end{array}\right.$	*
	mesures $\left\{ egin{array}{l} { m avant} \ { m H}_{eta} \end{array} ight.$ directes $\left\{ egin{array}{l} { m après} \ { m K} \end{array} ight.$	Réd. à avant H _s 12 m. après K	L-d			Mesures directes	Réd. à 12 min. 1927	Réd. à 12 min. 1924	$\frac{L-d}{d}$

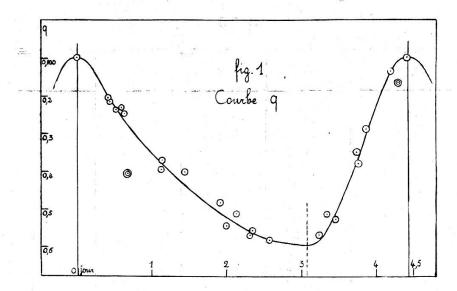
Plagues 1924 (mesures en μ).

	E 41	84	50	62	71	09	43	7.0	25	89	52	Min.	79	65
$egin{align*} H_{\gamma} & H_{\gamma} $	60 60 60 182 186	61 54 53 180 187	63 62 55 185	64 52 56 178 186	55 60 54 170 180	52 50 46 139	50 62 54 218 232	38 62 61 212 250	30 55 61 209 241	30 60 65 237 272	28 60 61 (?)		28 60 66 (300) (400)	65 70 57 203
$\left\{ \begin{array}{c} H_{\beta} \\ K\acute{e}d.\ \grave{a} \\ 12\ min. \end{array} \right. \left\{ \begin{array}{c} H_{\gamma} \\ H_{\gamma} \\ K \end{array} \right.$	62 62 61 189 194	63 56 53 187 194	63 55 185 192	64 52 56 178 186	55 60 54 170 180	55 52 48 145	51 63 55 214 227	38 62 61 212 250	32 60 66 226 260	30 60 65 237 272	30 65 67 (?) (?)		30 65 71 (300) (400)	66 71 58 207 246
Autres [jusqu'à K raies [après K	350 1475	330 2610	220 1380	220 255	500	310	745	810 700	(20) (250)	1040	394		402	650
Total t	2394	3473	2157	1011	1734	3191	1805	2133	1914	2764	596		1844	4348

PLAQUES 1927.

	E 130	159	127	124	Min.	125	132	147	129	143	126	133
°H J	83	25	30	50		37	05	45	45	(06)	98	70
	63	50	50	70	*	62	20	79	04	,09	57	(06)
Mesures directes 1927 { H ₈	61	57	55	61		53	62	84	(24)	55	62	09
	130	140	178	240		154	210	(218)	137	123	140	116
X	188	161	245	260		180	217	(205)	150	125	138	121
H	100	34	36	61		84	52	54	54	109	66	85
Î.H.	92	89	61	85		80	65	77	84	73	99	109
Réd à 12 min. 1927 { His	74	78	67	74		89	75	58	29	67	71	73
	157	190	215	290	e :	199	271	564	166	149	162	140
K	227	218	296	315		233	280	248	182	151	160	146
H J		30	32	54		43	94	48	84	97	88	76
ÎH	74	67	09	83		78	7 9	75	47	72	65	107
Réd à 12 min. 1924 } Hs	09	63	54	09		55	61	47	23	24	58	59
	132	160	181	244	-	167	228	222	139	125	142	118
<u> </u>	201	193	262	279		206	248	220	161	134	136	129
K insqu'à K	095	320	470	810		800	850	800	570	150	425	0
Autres raies { après K	1402	1506	1986	1058		2014	1790	1592	1990	1140	1130	1140
Total t	2418	2339	3045	2588		3363	3287	3004	2978	1772	2044	1629

Les deux tableaux précédents établissent les valeurs respectives de t.


Rassemblant en un tableau général les valeurs respectives des (d) et des (t), on en tire les valeurs correspondantes des (y), des (x) et des (q):

Plaque	t	d	y	x = L - y	$q = \frac{y}{x}$
			100 W NO F		
E 130	2418	673	3091	15328	0,202
41	2394	867	3261	15158	0,215
48	3473	34	3507	14912	0,235
20	2157	1282	3439	14980	0,230
159	2339	1297	3636	14783	0,246
62	1011	4296	5307	13112	(0,405)
71	1734	3477	5211	13208	0,395
60	3191	1777	4968	13451	0,369
43	1805	3454	5259	13160	0,400
127	3045	2837	5882	12237	0,481
70	2133	4363	6496	11923	0,545
25	1914	4324	6238	12181	0,512
124	2588	4083	6671	11748	0,568
68	2764	3825	6589	11830	0,557
52	596	6172	6768	11651	0,581
Min. lum.	E EA COMO	3 S S S S S S S S S S S S S S S S S S S			
64	1844	4825	6669	11750	0,568
125	3363	2889	6252	12167	0,514
132	3287	3075	6362	12057	0,528
65	4348	414	4762	13657	0,349
147	3004	2066	5070	13349	0,380
129	2978	1149	4127	14292	0,289
142	1772	427	2199	16220	0,135
126	2044	582	2626	15793	(0,166)
133	1629	0	1629	16790	0,097
Max. lum.)			- *		

On relève dans ce tableau deux «irrégularités» concernant respectivement les plaques E 62 et E 126. Pour la plaque E 62 (Sensima), on constate que le spectre est trop court dans sa partie ultra-violette (après K); (d) est donc trop fort; la raison probable est signalée dans le carnet de notes du professeur G. Abetti, qui a indiqué, en date du 23 septembre 1924: « veli sparsi »; il y avait donc un léger écran nébuleux; et l'on sait bien qu'un tel écran influe d'abord sur la partie ultra-violette

d'un spectre. Quant au cliché E 126, il présente un spectre beaucoup trop large; l'appareil a donc été mal conduit, et l'image obtenue correspondrait à une pose inférieure à 30 min.

7. — Courbe représentative de la variation de (q). — Le tableau numérique précédent permet de tracer la courbe (q), dont le minimum correspond à la valeur q=0.597.

Cette courbe présente visiblement l'allure de la courbe de lumière de Luizet ou de celle de Nijland, avec la branche descendante creusée dès le maximum de lumière.

Il est d'ailleurs possible que la branche descendante porte une petite ondulation secondaire, comme Nijland l'a signalé pour sa courbe de lumière; mais nous ne possédons pas suffisamment de plaques se rapportant aux phases comprises entre 1^d et 3^d pour pouvoir l'affirmer. Nous adopterons donc la courbe marquée dans la figure (1).

8. — Valeurs de m et M_v ; courbe de lumière. — Le tableau numérique précédent et la courbe (q) permettent dès lors de trouver la magnitude (m) et la grandeur absolue M_v de l'étoile à chaque instant de sa pulsation. Pour la magnitude (m), nous avons pris les limites 5,43 et 6,32 de Nijland (voir tableau ci-dessous).

Quant à la magnitude absolue \mathbf{M}_v correspondant au maximum

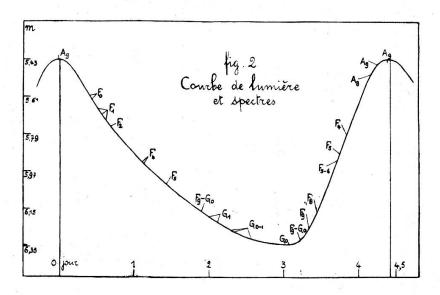
de lumière, nous l'avons déterminée en utilisant les tables et les courbes données par MM. Russell-Dugan-Stewart dans le volume II de leur traité d'astronomie (p. 734 et 764); on trouve alors:

$$M_p = -1.5$$
 , $M_v = -1.2$;

et comme M_v oscille entre (— 1,2) et (— 0,3), la table de la page 690 montre que la masse de l'étoile est environ:

$$\mu = 5.5$$
.

Plaque	Phase	Courbe (q)	m	M_v
	d			
E 133	4,432	0,097	5,43	-1,20
130	$0,\!433$	0,200	5,61	— 1,02
41	$0,\!454$	0,205	$5,\!62$	— 1,01
48	$0,\!537$	0,228	$5,\!66$	- 0,97
20	0,608	0,246	5,70	0,93
159	0,641	0,255	5,71	0,92
62	0,688	(0,270)	5,74	- 0,89
71	1,134	0,374	5,92	— 0,71
60	1,144	0,380	5,93	— 0,70
43	1,451	0,436	6,03	- 0,60
127	1,919	0,507	6,16	- 0,47
70	2,006	0,512	6,17	- 0,46
25	2,134	0,536	6,21	- 0,42
124	2,313	0,558	6,25	0,38
68	2,353	0,562	6,26	- 0,37
52	2,573	0,581	6,29	- 0,34
Min. lum.	3,075	0,597	6,32	- 0,31
64	3,239	0,583	6,30	- 0,33
125	3,338	0,557	6,25	0,38
132	3,469	0,512	6,17	- 0,46
65	3,751	0,382	5,94	- 0,69
147	3,766	0,370	5,92	-0.71
129	3,870	0,296	5,78	0,85
142	4,203	0,135	5,50	— 1,13
126	4,306	(0,108)	5,45	— 1,18
133	4,432	0,097	5,43	-1,20
100	7,704	1 0,007	1 0,10	1 -,-0


La phase 1^d,165 dont nous aurons besoin plus loin, lors de l'étude de la variation du rayon, correspond à:

$$q = 0.385$$
,
 $m = 5.94$,
 $M_v = -0.69$;

RECHERCHES SUR L'ÉTOILE VARIABLE T VULPECULAE 1 de même, la phase 3^d,575 correspond à:

$$\begin{cases} q = 0.464, \\ m = 6.08, \\ M_{V} = -0.55. \end{cases}$$

On trouve ainsi la courbe de lumière (fig. 2). Nous y avons joint l'indication des spectres correspondant aux différentes phases, tels que nous les avons obtenus au § 4.

§ 4. DÉTERMINATION DES SPECTRES.

9. — Les clichés ont été étudiés et mesurés au moyen du petit spectrocomparateur d'Arcetri. Sur chacun d'eux, on a repéré un nombre de raies plus ou moins grand, variant de 50 à 80 suivant le cliché. La connaissance de ces raies a permis de déterminer le type spectral de chaque plaque.

Nous nous sommes basé, pour établir cette détermination, sur un certain nombre de renseignements généraux, que nous avons déjà signalés et utilisés à l'occasion de notre étude sur SU Cassiopeiae ¹; nous avons aussi comparé les spectres de T Vulpeculae aux spectres de quelques étoiles pseudocéphéides, les mêmes qui nous ont servi pour SU Cassiopeiae.

¹ Publicazioni del R. Osservatorio Astrofisico di Arcetri. Fasc. 44.

Nous avons ainsi obtenu les spectres suivants, que nous avons reporté sur la figure (2):

Plaque	Spectre
	1
E 133	A_9
130	\mathbf{F}_{0}
41	\mathbf{F}_{0}^{0}
48	$\mathbf{F_1}^{o}$
20	$\mathbf{F}_{1}^{\mathbf{I}}$
15 9	F_1^1
62	F_2^1
71	$\mathbf{F_4}^2$
60	$\mathbf{F_4^4}$
43	F_{5}^{4}
127	F_9
70	G,
25	G_1

Plaque	Spectre
124 68 52 Min. lum. 64 125 132	G_{0-1} G_{0-1} G_{0-1} G_{0-1} G_{0} G_{0
65	$\mathbf{F_{5-6}}_{5}$
129 142	$\mathbf{F_{4}^{5}}$ $\mathbf{A_{8}}$
126 133	$egin{array}{c} A_{m{9}}^{m{o}} \\ A_{m{9}} \end{array}$

§ 5. CALCUL DES RAYONS, ET COURBE DE PULSATION.

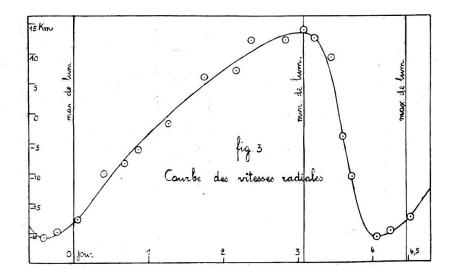
10. — Rayon au maximum de lumière. — Connaissant la magnitude absolue $M_v = -1,2$ au maximum de lumière, un calcul simple ¹ indique que le rayon correspondant est 9,2 fois plus grand que celui de notre Soleil. On a donc:

$$R = 9.2 R_{\bigodot} ;$$

et comme $R_{\bigodot} = 696000$ km, le rayon de T Vulpeculae au maximum de lumière vaut: 6.403.200 km.

Pour trouver les valeurs de R correspondant aux autres phases, nous avons employé la courbe des vitesses radiales de T Vulpeculae, telle qu'elle résulte des éléments numériques donnés par A. F. Beal ².

¹ Publicazioni del R. Osservatorio Astrofisico di Arcetri, Fasc. 44.


² Publ. of the Allegheny Observatory, Vol. III, 1916.

11. — Courbe des vitesses radiales de A. F. Beal. — Les données numériques de Beal sont les suivantes (vitesse en km):

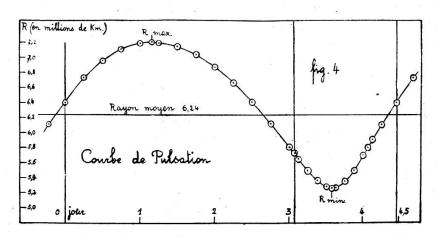
Phase	Vit. v
d	
0,057	— 17,7
0,408	-10,0
0,672	-8,2
0,868	-6,1
1,227	_ 1,7
1,759	+ 6,1
2,179	+ 7,2
2,380	+ 12,4

Phase		V	it. v
 ď	1	.;	
2,837		+	12,4
3,082		+	14,0
3,221		+	12,6
3,444		+	9,4
3,596			3,2
3,727	ĺ		10,5
4,043			20,8
4,251			19,6

On en déduit la courbe dite « des vitesses radiales » (fig. 3).

De la courbe et du tableau précédents, nous avons déterminé la vitesse V du centre de l'étoile par la condition suivante: la somme des augmentations du rayon pendant la période de croissance de l'étoile doit être égale à la somme des diminutions pendant la période de décroissance. Nous avons ainsi trouvé V=-1,367.

On aperçoit alors que le maximum de R correspond à la phase 1^d,165; tandis que le minimum de R correspond à la phase 3^d,575.


12. — Calcul des rayons aux différentes phases. — La courbe du Nº 11 permet d'établir le tableau suivant:

Phase	v + V	Intervalle en sec.	Vitesse moyenne		Phase	v + V	Inter- valle en sec.	Vitesse moyenne
d 0	- 18,4				d 3,075	+ 13,46	21 N	
0,250	— 14,3	21600	— 14 ,983		3,125	+ 13,4	4752	+ 14,797
	•	21600					10800	+ 14,267
0,500	— 10,3	21600			3,250	+ 12.4	10800	+12,267
0,750	6,6	${21600}$	-3,683		3,375	+ 9,4	10800	+ 7,817
1,000	- 3,5	21600			3,500	+ 3,5	10800	+ 0,367
1,250	- 0,4	21600	$\begin{vmatrix}$		3,625	- 5,5	10800	
1,500	+ 2,4				3,750	— 12,5		
1,750	+ 5,0	21600 ———	+ 5,067		3,875	— 18,5	10800	— 14,133 ————
2,000	+ 7,3	21600	+ 7,517 		4,000	- 20,6	10800	— 18,183 ————
2,250	+ 9,5	21600	+ 9,767		4,060	20,7	5184	<u>19,283</u>
2,500	+ 11,4	21600	+ 11,817	2		_ 20,5	5616	19,233
,		21600	+ 13,517		4,125		10800	18,683
2,750	+ 12,9	21600	+14,517		4,250	— 19,6	16070	<u></u>
3,000	+ 13,4	6048	+14,797		4,436	— 18,4		-

On en déduit les variations de rayon de proche en proche, et par conséquent les valeurs successives que prend le rayon à partir de la phase du maximum de lumière. Les résultats sont présentés ci-dessous:

Phase	ΔR de proche en proche	R. en km	Phase	ΔR de proche en proche	R. en km
d 0	+ 323.633	6.403.200	d 3,075		5.723.004
0,250	+ 236.153	6.726.833	3,125		5.652.689
0,500	+ 152.993	6.962.986	3,250	——————————————————————————————————————	5.498.605
0,750	+ 79.553	7.115.979	3,375	 84.424	5.366.121
1,000	+ 15.204	7.195.532	3,500	<u> </u>	5.281.697
1,165	— 3.551	7.210.736 max.	3,575	+ 8.927	5.265.928 min
1,250	51.127	7.207.185	3,625	+ 82.436	5.274.855 5.357.291
1,500 1,750	109.447	7.156.058 7.046.611	3,750	+ 152.636	5.509.927
2,000	<u> </u>	6.884.244	4,000	+ 196.376	5.706.303
2,250	210.967	6.673.277	4,060	+ 99.963	5.806.266
2,500		6.418.030	4,125	+ 108.013	5.914.279
2,750		6.126.063	4,250	+ 201.776	6.116.055
3,000	$ \begin{array}{c cccc} - & 313.567 \\ - & & 89.492 \end{array} $	5.812.496	4,436	$-\frac{+(287.145)}{\Sigma\Delta R = 0}$	6.403.200

13. — Courbe de Pulsation. — La courbe de variation de R, en fonction du temps, ou courbe de pulsation, est alors donnée par la figure (4):

De cette courbe et du tableau précédent, on tire les valeurs de R correspondant respectivement aux phases des différents clichés considérés dans ce travail. Voici ces valeurs de R:

		The second secon
Plaque	Phase	R en km
	d	
E 133	4,432	6.403.200
130	0,433	6.899.697
41	0,454	6.917.645
48	0,537	6.985.629
20	0,608	7.029.079
159	0,641	7.049.274
62	0,688	7.078.036
71	1,134	7.207.879
60	1,144	7.208.801
R. max.	1,165	7.210.736
43	1,451	7.166.079
127	1,919	6.936.851
70	2,006	6.922.412
25	2,134	6.771.166
		a a

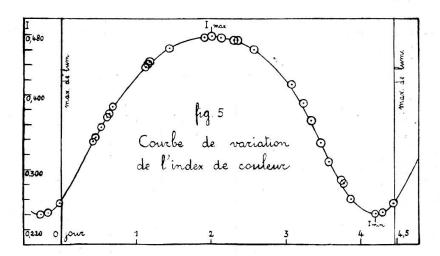
Carlot and otherwise for	34 4	2 2 2 2 2 3 4 4 4 5 6 92 92 92
Plaque	Phase	R en km
	d j	
124	2,313	6.608.955
68	2,353	6.568.115
52	2,573	6.332.776
Min. lum.	3,075	5.723.004
64	3,239	5.512.165
125	3,338	5.405.336
132	3,469	5.302.634
R. min.	3,575	5.265.928
65	3,751	5.358.512
147	3,766	5.376.828
129	3,870	5.503.822
142	4,203	6.040.187
126	4,306	6.202.507
133	4,432	6.403.200
(max. lum.)		N

§ 6. Index de couleur. — Courbe (1; q).

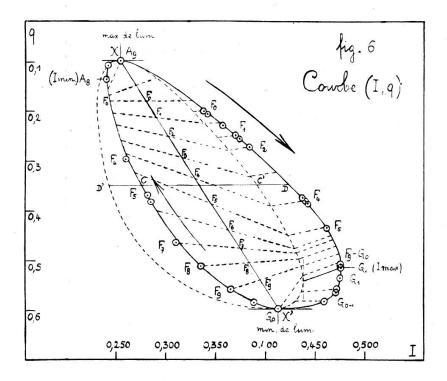
14. — Les valeurs de l'index de couleur correspondant aux différentes phases ont été calculées au moyen de la formule fondamentale ¹:

$$0.819 I = log R + 0.20 M_{\nu} - 0.515$$
.

On trouve ainsi les valeurs indiquées dans le tableau suivant; le cliché E 70 correspond donc à la valeur maximum de I, tandis que E 142 correspond à la valeur minimum. On voit qu'il s'écoule des temps égaux de I max. à I min. et de I min. à I max.


¹ Publicazioni del R. Osservatorio Astrofisico di Arcetri, Fasc. 44.

Plaque	Spectre	$R (R_{\mathfrak{I}} = 1)$	log R	M_v	I	Courbe q	
1		i i		1			***************************************
E 133	$\mathbf{A_9}$	9,200	0,96379	-1,20	0,255	0,097	
130	$\mathbf{F_0}$	9,913	0,99621	-1,02	0,338	0,200	
41	\mathbf{F}_{0}^{0}	9,939	0,99734	-1,01	0,342	0,205	
48	$\mathbf{F_1}^{0}$	10,037	1,00160	-0.97	0,357	0,228	
20	$\mathbf{F_1}^{\mathbf{I}}$	10,098	1,00424	-0,93	0,370	0,246	
159	F_1^1	10,128	1,00552	-0.92	0,374	0,255	
62	$\mathbf{F_2^1}$	10,170	1,00732	0,89	0,384	(0,270)	569.0
71	F_4^2	10,356	1,01519	-0.71	0,437	0,374	23
60	$\mathbf{F_4}^{4}$	10,357	1,01523	-0.70	0,440	0,380	
R. max.		10,360	1,01536	-0.69	0,442	0,385	
43	F ₅	10,296	1,01267	-0.60	0,461	0,436	
127	$\mathbf{F_9} \stackrel{\bullet}{-} \mathbf{G_0}$	9,967	0,99856	-0,47	0,476	0,507	
70	G_1	9,946	0,99766	-0,46	0,477	0,512	I ma
25	G_1	9,729	0,98807	-0,42	0,475	0,536	
124	G_{0-1}	9,496	0,97754	-0,38	0,472	0,558	
68	G_{0-1}	9,437	0,97483	-0.37	0,471	0,562	
52	G ₀₋₁	9,099	0,95899	-0.34	0,459	0,581	
Min, lum.	$\mathbf{G}_{0}^{\mathbf{G}_{0}}$	8,223	0,91503	-0.31	0,413	0,597	
64	$\mathbf{F_9} \stackrel{\bullet}{-} \mathbf{G_0}$	7,920	0,89873	-0,33	0,388	0,583	
125	$\mathbf{F_9}$	7,766	0,89020	-0.38	0.365	0,557	
132	$\mathbf{F_8}$	7,617	0,88178	-0.46	0,336	0,512	
R. min.		7,566	0,87887	[-0,55]	0,310	0,464	
65	$\mathbf{F_{5-6}}$	7,699	0,88643	-0.69	0,285	0.382	
147	F_5	7,725	0,88790	[-0,71]	0,282	0,370	-
129	\mathbf{F}_{4}	7,908	0,89807	[-0.85]	0,260	0,296	
142	A ₈	8,678	0,93842	1,13	0,241	0,135	I m
126	$\mathbf{A_9}$	8,912	0,94998	-1,18	0.243	(0,108)	
133	$\mathbf{A_9}$	9,200	0,96379	-1,20	0,255	0,097	
(max. lum.)	•				1		


Nous avons joint au tableau ci-dessus une colonne supplémentaire rappelant les valeurs du rapport (q); cela facilitera la construction de la courbe (I; q) du no 16.

15. — Courbe de variation de l'index I. — Portant les phases en abscisses et les indices I en ordonnées, on obtient le dessin de la fig. 5.

Cette courbe est visiblement beaucoup plus « symétrique » que la courbe de lumière.

16. — Courbe (I; q). — Le tableau du nº 14 permet de tracer immédiatement cette courbe (fig. 6).

On constate que la partie supérieure de la courbe (petites valeurs de q) est plus étroite que la partie inférieure; la courbe présente la forme d'une « poire », avec renflement vers le bas.

La courbe n'est pas symétrique par rapport à la droite XX' (direction de symétrie parallèle à l'axe I), comme c'était le cas

pour SU Cassiopeiae, où la courbe se rapprochait fort d'une ellipse. Ici, la branche descendante est fortement boursoufflée; cela est dû au fait que, pour T Vulpeculae, les décalages de I max. et de I min., par rapport au minimum et au maximum de lumière respectivement, sont très différents l'un de l'autre (tandis que, pour SU Cassiopeiae, ils étaient presque égaux).

Dans la figure (6), nous avons tracé en pointillé une branche de courbe symétrique de la branche montante (direction de symétrie parallèle à l'axe I); cela donne une courbe de largeur CC' au niveau moyen; c'est la courbe (I; q) que l'on obtiendrait si les deux branches, descendante et ascendante, de la courbe de lumière avaient la même durée, celle de la branche montante. On voit que cette courbe de largeur CC' n'est pas tout à fait une ellipse; elle est un peu plus large dans la partie inférieure que dans la partie supérieure; ce détail n'était pas sensible dans le cas de SU Cassiopeiae.

De même, nous avons construit la branche symétrique de la branche descendante XDX'; cela donne une « poire » de largeur DD' au niveau moyen; c'est probablement la courbe que l'on obtiendrait si les deux branches de la courbe de lumière avaient la même durée, celle de la branche descendante.

Les cordes joignant les types spectraux de même nom situés sur la courbe CC' ont été tracées; elles n'ont pas tout à fait les mêmes inclinaisons sur XX' que pour SU Cassiopeiae. Il semble que ces inclinaisons doivent varier un peu d'un cas à l'autre, soit avec les décalages de I max. et de I min., soit avec le domaine de variation du type spectral. Il semble en particulier que l'inclinaison maximum des cordes sur XX' soit plus faible lorsque le domaine de variation spectrale est plus étendu.

Il faut remarquer cependant que la courbe CC' n'est plus une ellipse, comme c'était le cas pour SU Cassiopeiae. Il est bien possible que, pour toute Céphéide à période voisine de 2 jours, on trouve une ellipse, à peu près, comme courbe (I; q); alors, les inclinaisons des cordes seraient exactement celles relevées pour SU Cassiopeiae. Par contre, pour T Vulpeculae, la période est plus du double de 2 jours; l'ellipse CC' se déforme en se renflant davantage dans la partie inférieure; ce qui entraîne une légère modification des inclinaisons des cordes.

§ 7. LA VARIATION DE LA TEMPÉRATURE T.

17. — Les formules fondamentales, qui lient entre eux les nombres T, M_v , I et R, sont 1 :

$$T = \frac{7200}{I + 0.611}; \qquad (1)$$

$$0.819 I = \log R + 0.2 M_{\nu} - 0.515; \qquad (2)$$

$$T = \frac{5896.8}{\log R + 0.2 M_{\nu} - 0.0154}. \qquad (3)$$

Comme nous connaissons les valeurs de I, de R, et de M_v , nous pouvons employer les formules (1) et (3) pour trouver T.

Plaque	Phase	Log R	M_v	I	T par (1)	T par (3)	Moyenne
	d l						7
E 133	4,432	0,96379	— 1,20	0,255	8314	8324	8319
130	0,433	0,99621	— 1 ,02	0,338	7587	7592	7590
41	0,454	0,99734	- 1,01	0,342	7555	7561	7558
48	0,537	1,00160	— 0,97	0,357	7438	7444	7441
20	0,608	1,00424	- 0,93	0,370	7339	7345	7342
159	0,641	1,00552	0,92	0,374	7310	7315	7313
62	0,688	1,00732	- 0,89	0,384	7236	7245	7241
71	1,134	1,01519	-0,71	0,437	6870	6874	6872
60	1,144	1,01523	- 0,70	0,440	6851	6858	6855
R. max.	1,165	1,01536	- 0,69	0,442	6838	6841	6840
43	1,451	1,01267	- 0,60	0,461	6716	6722	6719
127	1,919	0,99856	-0,47	0,476	6624	6632	6628
70	2,006	0,99766	- 0,46	0,477	6618	6624	6621
25	2,134	0,98807	- 0,42	0,475	6630	6636	6633
124	2,313	0,97754	0,38	0,472	6648	6654	6651
68	2,353	0,97483	- 0,37	0,471	6654	6660	6657
52	2,573	0,95899	- 0,34	0,459	6729	6735	6732
Min. lum.	3,075	0,91503	- 0,31	0,413	7031	7040	7036
64	3,239	0,89873	- 0,33	0,388	7207	7215	7211
125	3,338	0,89020	- 0,38	0,365	7377	7382	7380
132	3,469	0,88178	- 0,46	0,336	7603	7615	7609
R. min.	3,575	0,87887	-0,55	0,310	7818	7826	7822
65	3,751	0,88643	0,69	0,285	8036	8044	8040
147	3,766	0,88790	- 0,71	0,282	8063	8072	8068
129	3,870	0,89807	- 0,85	0,260	8266	8274	8270
142	4,203	0,93842	— 1,13	0,241	8451	8460	8456
126	4,306	0,94998	1,18	0,243	8431	8440	8436
133	4,432	0,96379		0,255	8314	8324	8319

 $^{^{\}rm 1}$ Publicazioni del R. Osservatorio Astrofisico di Arcetri, fasc. 44, p. 41 et 42.

Le minimum de T correspond donc à la plaque E 70 (phase $2^d,006$) et le maximum de T à la plaque E 142 (phase $4^d,203$); c'est-à-dire que le minimum de T accompagne le maximum de I, et vice-versa. La courbe de variation de T, que l'on déduit de ce tableau, ne présente rien d'anormal.

§ 8. CALCUL DES PRESSIONS.

18. — Nous avons utilisé la relation suivante, que nous avions déjà signalée dans notre étude de SU Cassiopeiae:

$$\frac{T^4}{T_1^4} = \frac{1-\beta}{1-\beta_1} \cdot \frac{P}{P_1} \; . \label{eq:T4}$$

En voici d'ailleurs rapidement la démonstration. En tout point de la masse gazeuse de l'étoile, on a:

$$P = p + p_r,$$

où P est la pression totale, p la pression due à la force élastique du gaz, et p_r la pression de radiation.

On a aussi:

$$p_r = \frac{a}{3} T^4 .$$

où (a) est la constante de Stephan.

On peut donc écrire, en comparant deux étoiles, ou, ce qui revient au même, deux phases différentes d'une même Céphéide:

$$\frac{p_r}{(p_r)_1} = \frac{\mathrm{T^4}}{\mathrm{T_1^4}} \ .$$

D'autre part, d'après la théorie de M. A.-S. Eddington 1, on a:

$$\left\{ \begin{array}{l} p_r = (1-\beta) P ; \\ 1-\beta = \frac{Hk}{gc} ; \end{array} \right.$$

H est la quantité d'énergie passant en un point, dans une direction radiale, par seconde et par cm^2 ; k est le coefficient d'absorption, c la vitesse de la lumière, et g l'accélération due à la gravité.

¹ Monthly Notices, 1916-17-18; Astrophysical Journal, 1918.

Nous avons adopté ici les deux hypothèses primitives de M. A.-S. Eddington; c'est-à-dire: 1º H est, en chaque point, proportionnelle à g; 2º dans toute l'étoile, k est une constante.

En réalité, k varie avec la température; il décroît de la surface au centre de l'étoile ¹; mais, en même temps, le quotient $\left(\frac{H}{g}\right)$ croît; de sorte que le produit $\left(\frac{Hk}{g}\right)$ reste à peu près constant.

La quantité β est donc une constante pour chaque étoile; chacune d'elles (ou chaque phase d'une Céphéide) possède son coefficient β . On trouve alors:

$$\frac{p_r}{(p_r)_1} = \frac{1-\beta}{1-\beta_1} \cdot \frac{P}{P_1};$$

et finalement:

$$\frac{T^4}{T_1^4} = \frac{1-\beta}{1-\beta_1} \cdot \frac{P}{P_1} = \gamma \cdot \frac{P}{P_1} \,. \label{eq:T4}$$

Comme nous connaissons la variation de la température de T Vulpeculae, il suffit de trouver les valeurs successives de γ pour pouvoir connaître celles du rapport $\frac{P}{P_1}$.

Pour trouver la valeur de γ , on part de:

$$H = \frac{(1 - \beta) gc}{k} ;$$

et l'on sait que la luminosité L est donnée par la relation:

$$L = 4\pi R^2 H .$$

où H est alors le flux d'énergie relatif à la surface. On a aussi:

$$g = \frac{f\mu}{R^2}$$
 [f = (6.66).10⁻⁸ unités C.G.S.],

où μ est la masse de l'étoile. On tire de tout cela:

$$H = \frac{(1 - \beta) f \mu c}{R^2 k}; \qquad L = \frac{4 \pi f c \mu}{k} (1 - \beta);$$

$$\frac{L}{L_1} = \frac{k_1}{k} \cdot \frac{1 - \beta}{1 - \beta_1};$$

le rapport $\left(\frac{k_1}{k}\right)$ restant voisin de l'unité, on pourra poser :

$$\gamma = \frac{L}{L_1} = \frac{1 - \beta}{1 - \beta_1};$$

¹ A.-S. Eddington. Monthly Notices, 1922.

or, $\left(\frac{L}{L_1}\right)$ est donné par la loi de Pogson:

$$\log \frac{L}{L_{1}} = 0.4 (m_{1} - m) ,$$

où les différences $(m_1 - m)$ sont connues, puisqu'on connaît la courbe de lumière.

La formule en question:

$$\frac{P}{P_1} = \frac{1}{\gamma} \cdot \left(\frac{T}{T_1}\right)^4$$

conduit alors au tableau numérique suivant, pour lequel on a $T_1=8319^\circ,$ et log $T_1=3{,}92007.$

* * * * * * * * * * * * * * * * * * *					3		
Plaque	m	$m_1 - m$	log γ	$\log\left(\frac{1}{\gamma}\right)$	$\log \left(\frac{T}{T_1}\right)^4$	$\log \frac{P}{P_1}$	P en fonction de P ₁
E 133	5,43	0	0	0	0	0	Pı
130	5,61	0,18	7,92800	0,07200	$\bar{1},84068$	$\bar{1},91268$	0,81786 Pı
41	5,62	-0,19	1,92400	0,07600	7,83334	$\bar{1},90934$	0,81160 Pı
48	5,66	-0,23	$\overline{1},90800$	0,09200	$\bar{1},80624$	$\overline{1},89824$	0,79112 Pı
20	5,70	-0,27	$\bar{1},89200$	0,10800	$\bar{1},78297$	$\bar{1},89097$	0,77798 Pı
159	5,71	0,28	7,88800	0,11200	$\bar{1},77610$	1,88810	0,77286 Pi
62	5,74	0,31	1 ,87600	0,12400	$\bar{1},75891$	$\bar{1},88291$	0,76368 Pi
71	5,92	0,49	$\bar{1},80400$	0,19600	1,66805	$\bar{1},86405$	0,73122 Pr
60	5,93	-0,50	$\bar{1},80000$	0,20000	$\bar{1},66375$	$\overline{1},86375$	0,73072 P
R. max.	5,94	0,51	$\bar{1},79600$	0,20400	$\bar{1},65994$	$\overline{1},86394$	0,73104 P
43	6,03	-0,60	$\bar{1},76000$	0,24000	$\bar{1},62893$	$\bar{1},86893$	0,73949 P
127	6,16	-0,73	$\bar{1},70800$	0,29200	$\bar{1},60525$	$\bar{1},89725$	0,78932 P
70	6,17	-0,74	$\bar{1},70400$	0,29600	$\bar{1},60341$	$\bar{1},89941$	0,79325 P
25	6,21	0,78	$\bar{1},68800$	0,31200	$\bar{1},60656$	$\bar{1},91856$	0,82901 P
124	6,25	0,82	$\bar{1},67200$	0,32800	$\bar{1},61126$	$\bar{1},93926$	0,86948 P
68	6,26	-0,83	$\bar{1},66800$	0,33200	$\bar{1},61283$	$\overline{1},94483$	0,88070 P
52	6,29	0,86	$\bar{1},65600$	0,34400	$\bar{1},63229$	$\overline{1},97629$	0,94687 P
Min. lum.	6,32	0,89	$\bar{1},64400$	0,35600	$\bar{1},70902$	0,06502	1,16150 P
64	6,30	0,87	$\bar{1},65200$	0,34800	$\bar{1},74810$	0,09610	1,24767 P
125	6,25	-0,82	$\bar{1},67200$	0,32800	$\bar{1},79194$	0,11994	1,31809 P
132	6,17	-0,74	$\bar{1},70400$	0,29600	$\bar{1},84503$	0,14103	1,38368 P
R. min.	6,08	-0,65	1,74000	0,26000	$\bar{1},89299$	0,15299	1,42230 P
65	5,94	-0,51	$\bar{1},79600$	0,20400	1,94074	0,14474	1,39554 P
147	5,92	-0,49	7,80400	0,19600	1,94678	0,14278	1,38924 P
129	5,78	0,35	1,86000	0,14000	$\bar{1},98974$	0,12974	1,34817 P
142	5,50	0,07	$\bar{1},97200$	0,02800	0,02838	0,05638	1,13862 P
126	5,45	-0,02	1,99200	0,00800	0,02426	0,03226	1,07711 P
133	5,43	0	0	0	0	0	Pı

19. — Il nous reste à choisir une valeur de P₁, quoique cela ne soit pas absolument nécessaire pour dessiner l'allure de la courbe de variation de P.

On trouve une approximation de P₁ en appliquant la formule de Stephan-Bolzmann; la pression de radiation vaut:

$$(p_r)_1 = \frac{\sigma}{3} T_1^4$$
,

où $\sigma = (1,374)$. 10^{-12} unités C. G. S.; on a donc :

$$(p_r)_1 = \frac{(1,374) \cdot 10^{-12} \cdot (8319)^4}{3} = 2194 \text{ unités C.G.S.};$$

mais on a d'autre part:

$$(p_r)_1 = (1 - \beta_1) P_1$$
, d'où $P_1 = \frac{(p_r)_1}{1 - \beta_1}$;

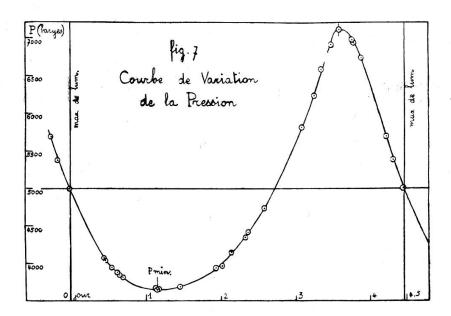
et comme $R_1 = 9.2 R_{\bigodot}$ et $\mu = 5.5$:

$$1 - \beta_1 = 0.450$$
;

on trouve donc:

$$P_1 = \frac{2194}{0,450} = 4876 \text{ baryes}$$

$$P_1 = atm. 0.004876$$
,


soit environ 0,005 atmosphère.

Le tableau du nº 18 donne alors immédiatement les valeurs des pressions successives. On trouve:

Plaque	P (atm.)
E 133	0.005000
130	0,004089
41	0,004058
48	0,003956
20	0,003890
159	0,003864
62	0,003818
71	0,003656
60	0,003653
R. max.	0,003655
43	0,003697
127	0,003946
70	0,003966
25	0,004145

Plaque	P (atm.)
124	0,004347
68	0,004404
52	0.004734
Min. lum.	0,005808
64	0,006238
125	0,006590
132	0,006908
R. min.	0,007112
65	0,006978
147	0,006946
129	0,006741
142	0,005693
126	0,005386
133	0,005000

20. — Courbe de variation de P (fig. 7). — On constate que l'étoile met plus de temps à passer par la série des basses pressions qu'elle n'en met à passer par la série des hautes pressions;

l'état de compression maximum semble donc moins « supportable » que l'état de dilatation maximum.

Cependant, la différence entre la durée des pressions inférieures à celle qui règne lors du maximum de lumière (5000 baryes), et la durée des pressions qui lui sont supérieures, n'est pas si grande que la différence entre les durées respectives des branches descendante et ascendante de la courbe de lumière.

Remarque. — Les résultats obtenus dans ce mémoire pourront servir de base à une étude de la variation de l'ionisation dans T Vulpeculae.