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SUR

LA ROTATION PERMANENTE DES PLANETES

ET LA GEODESIE
PAR

H. WAV ItE

§ 1. Introduction.

Des que Newton eut decouvert le principe de l'attraction
universelle, une question immensement vaste s'est posee, aussi

captivante par son interet mathematique que fondamentale

pour l'etude de la formation et de revolution des astres ä

partir d'une nebuleuse rarefiee.

Quelle sera revolution future d'une masse fluide dont ehaque

particule est soumise ä l'attraction de la masse entiere, vers
quelle constitution limite cette nebuleuse va-t-elle tendre ä la
longue, ä, quel monde donnera-t-elle naissance

L'honneur d'avoir pose le probleme avec ce degre de generality
revient certes ä Kant et ä Laplace, apres Newton, plus qu'ä
tout autre.

Les equations qui regissent le mouvement du fluide peuvent
etre ecrites formellement, c'est un fait ä remarquer, mais leur
resolution presente une difficulte, inhärente ä la nature de la

question, que 1'analyse mathematique est encore impuissante ä

surmonter. En effet, la force attractive est determinee par la
forme de la masse entiere, qui est precisement l'inconnue.

Toutefois, quelques-unes des caracteristiques qualitatives
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et quantitatives du mouvement peuvent etre degagees et il est

facile dans certains cas, c'est-ä-dire suivant la nature des

conditions initiales, etat des vitesses, etat de rarefaction, de

prevoir que le fluide se concentrera et donnera une etoile, qu'il
tendra au contraire vers la forme d'un anneau, ou encore qu'il
restera extremement dissemine dans l'espace.

Dans le cas d'une concentration, les differentes particules du
fluide en contact les unes avec les autres exercent des pressions

reciproques et c'est la pression qui contrebalance l'effet de

l'attraction newtonienne et de la force de D'Alembert.
La viscosite, si faible soit-elle, tendra ä supprimer, au cours

des temps, tout mouvement relatif, tout glissement des parties
l'une sur l'autre.

A l'etat limite, celui de la lune et des petites planetes dejä
refroidies et sensiblement solidifiees, le fluide se trouvera en

equilibre relatif et tournera tout d'une piece autour de l'axe
polaire; quitte ä ce que cet axe so it entraine par l'attraction des

autres corps; ce dernier mouvement releve d'un autre chapitre
de la mecanique celeste; dans 1'etude actuelle nous ferons

abstraction des mouvements des axes de rotation.
Mais l'equilibre relatif n'est pas le seul dont les astres de

notre voisinage nous imposent l'etude. L'observation astrono-

mique montre, en effet, qu'il existe des fluides dejä condenses

qui ne tournent pas tout d'une piece sur eux-memes. Le soleil,

Jupiter, Saturne presentent une particularity de ce genre fort
interessante. Dans la rotation de ces corps, les zones paralleles
ne font pas un tour complet en un meme temps. L'equateur
solaire accomplit sa revolution en 25 jours, tandis que le voisinage

des poles en exige 28. Aux latitudes intermediaires, la
periode serait differente encore.

La viscosite du fluide tendra ä faire disparaitre ces glissements
des zones paralleles et le mouvement du soleil tel qu'il est

aujourd'hui n'est pas un mouvement stable. Cette rotation
variee est une etape dans revolution de l'astre, qui doit petit ä

petit laisser place ä l'equilibre relatif.
Une etude mathematique des rotations variees oü l'on ferait

abstraction de la viscosite n'aurait qu'un interet theorique si

les effets des frottements internes etaient prompt ä se faire
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sentir. C'est peut etre pour cette raison qu'elle n'a pas ete l'objet
de travaux methodiques comme ce fut le cas des figures d'equi-
libre.

Mais on possede aujourd'hui de fortes raisons de penser que la
viscosite est tres faible au contraire et son effet tres lent ä se

manifester.
Les etudes thermodynamiques de MM. Jeans et Eddington

et de leurs eleves sur le rayonnement stellaire sont en faveur
d'une extreme petitesse de la viscosite dans des astres comme le

soleil portes ä une tres haute temperature.
On connait d'autre part, ce raisonnement d'Helmholtz d'apres

lequel, ä pression, densite et vitesses egales, l'effet des frottements
mettrait n fois plus de temps ä se faire sentir dans un fluide n fois

plus etendu qu'un autre. Puis il faut aussi remarquer que le

frottement est proportionnel ä la vitesse relative des matieres
en contact dans le cas d'un liquide, de sorte qu'ä, vitesse petite
frottement petit et ä vitesse infiniment petite frottement
infmiment petit, ce qui n'a pas lieu pour les solides oü il y a

un frottement au depart. Une etude anterieure sur le mouve-
ment avec frottement de deux spheres concentriques nous a

dejä montre que, si la force de frottement est proportionnelle ä

une puissance superieure ou egale ä l'unite de la vitesse relative,
cette derniere ne disparaitrait qu'en un temps infmi.

II est clair d'autre part qu'un astre comme le soleil mettra
un temps enorme ä tourner d'une seule piece puisque les planetes
mille fois plus petites comme Saturne et Jupiter n'ont pas encore
atteint cet etat limite. Aussi etudierons-nous les rotations
variees dans le cas ideal oü il n'y aurait pas de viscosite; nous

appellerons ces mouvements des rotations permanentes.
II y aurait, dans le cas du soleil, une autre correction ä faire,

aussi importante peut-etre que la correction due ä la viscosite.
Ce serait de tenir compte de la courbure d'espace et d'appliquer
la statique d'Einstein en partant de la formule de Schwarzchild.
Le probleme pose dans le Systeme d'Einstein ne serait pas
completement insoluble, je veux dire qu'il serait possible de se

faire une idee de la correction relativiste ä faire subir aux
resultats newtoniens. II faudrait aussi tenir compte des donnees

thermodynamiques du probleme, en particulier de la pression
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de radiation; nous ne le ferons pas, imitant en cela les etudes

classiques de Glairaut, Laplace et Poincare.
Une autre raison encore nous pousse ä poursuivre cette etude

hydrodynamique du mouvement des astres sur eux-memes d'un
point de vue plus general que celui de la rotation en bloc, c'est
la geophysique actuelle et les conceptions nouvelles sur la
fluidite relative de la terre et meme de l'ecorce terrestre envisages

dans son ensemble. On connait la theorie geologique de

M. Wegener, tres en vogue aujourd'hui, de la derive des

continents. II est probable que le magma terrestre a la consistance
d'un liquide de moins en moins visqueux, quand on s'enfonce

en profondeur. II suffit qu'il se comporte comme un liquide ä

coefficient de viscosite quelconque, fut-il tres grand, pour que
des forces interieures, des tractions tangentielles par exemple,
puissent exercer leur effet ä la longue en depla§ant les corps, les

lies, les continents sur lesquels elles s'exercent, et nous avons
montre dans une etude tres developpee que les continents
etaient soumis ä une traction tangentielle dirigee vers l'equa-
teur.

Ce que l'on vient de rappeler ä propos du soleil et des grosses
planetes doit pouvoir s'affirmer de la terre pourvu qu'on recule
dans l'histoire et qu'on augmente simplement l'importance des

effets de la viscosite. II est vraisemblable que la terre elle-meme,
durant les epoques anciennes, ait aussi presente, avant d'etre
sensiblement figee, un mouvement relatif appreciable des zones

paralleles et des differentes couches d'egale densite les unes sur
les autres.

Les conceptions geologiques recentes nous inclinent done
aussi ä reprendre d'un point de vue plus general 1'etude de la
rotation des astres sur eux-memes.

Voici maintenant quelques renseignements sur la methode
suivie dans cette recherche. Clairaut, Laplace, Poincare, dans
1 urs memorables travaux sur les figures d'equilibre d'une
masse heterogene, ont applique des precedes approximatifs ä la
recherche de la repartition de la matiere ä l'interieur du corps,
du champ de la pesanteur, de l'accroissement de g, de la forme
de la surface exterieure. Clairaut, notamment, neglige les

termes de l'ordre de la quatrieme puissance de la vitesse angu-
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laire. D'autre part, Laplace et Poincare, Legendre aussi, em-

ploient des developpements en Serie de fonctions spheriques
dont pratiquement on ne conserve que les premiers termes.
En plus, ces auteurs n'ont pu etudier par cette methode que
les stratifications voisines des spheres. Iis sont parvenus ainsi
ä des resultats pratiques fort interessants, ils ont fait une

ample moisson de resultats utiles. Mais on peut se demander
si les approximations faites des le debut ne vont pas, dans le

cas des aplatissements notables, rendre impossible la decou-

verte de certaines relations rigoureuses. J'en ai une preuve
en ceci, c'est que ni les auteurs precedents, ni Tisserand dans

son traite de mecanique celeste, ni Helmert dans son traite de

geodesie superieure, ouvrages encyclopediques, ne donnent la
formule rigoureuse de l'accroissement du coefficient g de la

pesanteur avec la profondeur, tandis que la discipline que nous

nous imposons permet d'exprimer tres simplement la valeur
exacte de cet accroissement.

Nous renoncerons a l'emploi des fonctions spheriques qui
paraissait etre la voie royale, depuis que Laplace, Legendre et
Poincare s'y etaient engages. Car si pratiquement cette methode
est peut etre la bonne, on doit desesperer, ne conservant que les

deux premiers termes du developpement, de trouver les proprie-
tes rigoureuses de la fonction developpee. Comment voulez-vous

que Ton etudie en toute rigueur une fonction quand on ne retient

que les premiers termes de son developpement en serie de

Fourier? Poincare a obtenu des resultats remarquables et rigou-

reux, qu'on songe au theoreme dit de Stokes, mais justement ce

n'est pas au moyen des fonctions spheriques. C'est dans cette
autre voie que je voudrais que Ton s'engageät resolument,
oü, sans faire aucune approximation, on mettrait en evidence
les rapports differentiels entre la charge, la pesanteur, la
stratification. Et nous pouvons esperer que cet article permettra
peut-etre ä un mathematicien habile de determiner la forme
exacte des surfaces d'egale densite dans l'astre tout entier
en fonction des elements observables ä la surface libre.

L'equilibre relatif, objet des etudes classiques n'est qu'un cas

particulier des rotations permanentes que nous etudions ici
et en cours de route nous obtiendrons certains resultats dont
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quelques-uns sont nouveaux, croyons-nous, meme dans le cas

special des anciennes recherches.

Les principaux sont les suivants:

1. L'extension du theoreme de Stokes-Poincare.

2. La formule (20') donnant le potentiel newtonien ä l'ex-
terieur d'un astre au moyen des seuls elements superficiels:
la surface libre, la vitesse angulaire et la pesanteur sur la
surface. La mesure geodesique de ces elements permettrait d'ob-
tenir pour la theorie de la lune une expression plus exacte de

1'attraction terrestre que celle dont on fait usage en general.

3. La formule (24) rigoureuse de l'accroissement de la

pesanteur avec la profondeur, formule qui montre qu'une
mesure de cet accroissement peut remplacer une mesure
geodesique de la courbure moyenne de la surface libre.

4. Les formules (40) et (41) donnant la densite et la pesanteur

en tout point au moyen de la repartition geometrique des

surfaces d'egale densite et de l'attraction en l'un des poles.

5. L'equation (48) exprimant un fait purement geometrique
et qui traduit la condition necessaire et süffisante pour qu'il y
ait equilibre relatif.

§ 2. La rotation permanente et le champ de la pesanteur.

Par « rotation permanente » nous entendons que chaque par-
ticule tourne autour de Faxe polaire avec une vitesse constante

au cours du mouvement, mais la vitesse angulaire, la meme pour
tous les points d'un meme cercle parallele, pourra fort bien
varier quand on passera d'un parallele ä un autre.

La simplicity de la mise en equation du probleme des figures
d'equilibre relatif provient du fait que la vitesse angulaire est

au contraire constante et independante des particules conside-

rees. Dans ce cas special il existe un potentiel du champ de la

pesanteur; mais nous allons le voir, la pesanteur se definit tres

simplement dans toute rotation permanente et il existe un cas

plus etendu que 1'equilibre relatif oü eile derive encore d'un
potentiel.
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Soit, en effet, P une particule de masse unite. Son acceleration

provient de sa rotation uniforme; eile est dirigee vers le centre du
cercle trajectoire, l'acceleration renversee sera la force centrifuge
et la pesanteur en P sera la resultante de la force centrifuge et de

l'attraction de la masse entiere telle qu'elle se manifeste sur la

particule P. Cette resultante, qui est done rapportee a l'unite de

masse, possede en chaque point P une direction qui definit
la verticale en P et une intensite qui n'est autre que la valeur
du coefficient g bien connu en geodesie. Toute direction normale
ä la verticale en P sera horizontale en P.

La pesanteur est done representee par un vecteur attache ä

chaque point du fluide; le champ vectoriel peut deriver d'un
potentiel ou n'en point dependre. Nous appelerons mouvement
de genre un, les rotations permanentes pour lesquels il existe un
potentiel du champ de la pesanteur et mouvement de genre deux,
les rotations permanentes pour lesquelles ce potentiel n'existe

plus.
Representons par $ le potentiel du champ de la pesanteur,

pour abreger, dans le petit tableau suivant qui donne la
genealogie des rotations permanentes.

Rotations permanentes

Mouvements de genre un Mouvemenls de genre deux
<f> I existe <I> | n'existe pas

Mouv. de lre espece Mouv. de 2e espece Mouvement de M. Dive
ou ou

equilibre relatif de 3e espece

On sait que M. Dive a demontre dans ses articles aux
«Archives » l'existence des mouvements de genre deux ou le

champ de la pesanteur ne derive pas d'un potentiel et oü les

couches d'egale densite ne coincident pas avec les couches

d'egale pression et ne sont pas horizontales en chacun de leurs

points.
Ge sont au contraire les rotations permanentes du premier

genre qui sont l'objet des paragraphes suivants.
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§ 3. Caracteristiques des mouvements de genre un.

Partons des equations de l'hydrodynamique regissant le

mouvement d'un fluide parfait dans un champ newtonien

dependant du potentiel U:

1 öp öU d?x

p ix ix dt2

J_ bp bU
_ (Py

p iy iy dt2

i öp _
öU _d?z _

p dz bz dt2

p est la densite, p la pression, t le temps. Ces equations convien-
nent ä tout mouvement d'un fluide parfait soumis ä l'attraction
universelle. II faudrait leur ajouter l'equation caracteristique
du fluide et l'equation de continuity, mais nous n'avons pas ä

nousen occuper ici, puisqu'il s'agit d'une masse heterogene et
d'une rotation permanente.

Soit m(x, y, z) la vitesse angulaire de la particule x, y, z

dans sa rotation autour de l'axe polaire que l'on peut prendre

pour ligne des 2. L'acceleration s'exprime au moyen de w, eile

ne contient plus le temps:

d2x d2y „ d2z

w -"'x' w - wy ' W 0 •

La force centrifuge agissant sur 1'unite de masse admettra
les composantes:

i>2 X i>2y 0

et le vecteur pesanteur, poids de l'unite de masse qui resulte de

l'attraction et de la force centrifuge, aura les projections:

1 2
LT bU

s* 0^ + " * • e» ^ + w y ' g* ^ • (2)

Les equations fondamentales (1) s'ecrivent:

1 öp 1 bp 1 bp
T*y=8v 7^ §2-
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Elles montrent qu'en chaque point le vecteur pesanteur est
normal ä la surface ä pression constante passant par ce point.
Les surfaces d'egale pression sont done horizontales. Multiplions
les equations (3) respectivement par les composantes dx, dy, dz

d'un deplacement arbitraire, de maniere ä former la differentielle
totale de p:

l-dp gx dx + g dy + g dz (4)
P J

De cette derniere relation on deduit les proprietes caracteris-

tiques des mouvements de genre un:
1° Les couches d'egale densite sont horizontales.
2° La vitesse angulaire ne depend que de la distance ä Faxe.

3° II existe un potentiel A des accelerations.
4° II existe un potentiel Q de la force centrifuge.
5° II existe un potentiel du champ de la pesanteur.
Chacune de ces propositions implique chacune de sautres et

caracterise un mouvement de genre un. En effet, si les
surfaces d'egale densite sont horizontales, elles coincident avec
les surfaces d'egale pression; o est constant ä p constant
et l'on a par consequent une relation entre p et p indepen-
dante de x, y, z: p f{p). Le premier membre de l'equation (4)

coincide avec la differentielle totale de l'expression:

<J> (5)
J f(p)

et l'on a, quelles que soient les differentielles dx, dy, dz:

gxdx + gy dy + g.dz

ce qui exige que l'on ait aussi en tout point x,y,z:
ö<I> Ö<1> £>$

Sx • Sv IT ' Sz '•x ö x y dy •* dz

le champ de la pesanteur derive done du potentiel $. Inverse-

ment, si le potentiel $ existe, les couches d'egale densite sont
horizontales. Car l'equation (4) s'ecrit sous la forme:

jdp d* (7) ou f>=|| (8)
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et, pour un deplacement ä $ constant, p est constant, p n'est
fonction que de $ et $ de p et l'equation (8) montre que p ne

depend que de <J>, c'est-ä-dire que de p; les surfaces d'egale
densite coincident avec les surfaces d'egale pression, elles sont
horizontales comme ces dernieres. Les propositions 1° et 5° sont
done equivalentes, elles s'impliquent mutuellement.

S'il existe un potentiel du champ de la pesanteur, il existera un
potentiel de la force centrifuge; les equations (2) s'ecrivent, en
effet:

ö(4.-U) ö(4> — U) ö(4> —U)
— to v — 0 — (9)

ö« öy i>z

La force centrifuge derive done du potentiel Q $ — U.
Ce potentiel Q ne saurait dependre de z comme le montre la
derniere equation (9), ot non plus en vertu des deux premieres.
La vitesse angulaire ne depend que de la distance l de la particule
ä l'axe de rotation. Le potentiel Q s'ecrit, on le verifie aisement:

L

Q /w2(I id? (10)

Inversement, s'il existe un potentiel Q, il ne peut dependre

que de la distance ä l'axe, w aussi, et les equations (2) montrent
que le vecteur g derive du potentiel $ U + Q. Enfin, s'il
existe un potentiel Q de la force centrifuge, il existe un potentiel
A — Q des accelerations.

Les propositions 2°, 3°, 4° sont equivalentes entre elles et

equivalent ä 5° et par consequent ä 1°.

Les mouvements de genre un sont analvtiquement caraterises

par l'equation:
p f(p) (H)

qui exprime qu'il existe une relation directe et independante
des coordonnees x, y, z, entre la densite et la pression quoique
le fluide ne soit pas suppose a priori posseder une equation
caraeteristique de ce genre. On peut aussi les caracteriser par
l'equation:
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qui exprime que la vitesse angulaire ne depend que de la
distance ä, l'axe de rotation.

Pour tout mouvement de genre un, les equations fondamen-
tales (1) s'ecrivent:

$ et Q ont les valeurs (5) et (10). Elles se resument en la relation
unique, oü K est une constante:

Le potentiel de la pesanteur est la somme du potentiel
newtonien et du potentiel de la force centrifuge, ä une constante

pres que l'on pourrait incorporer ä <D. L'equation (12), vraie

pour tout mouvement de genre un, sera le point de depart de

l'etude qui va suivre.

§ 4. Sur une propriete des charges electriques en equilibre.

Dans le paragraphe suivant nous aurons besoin d'une
propriete du potentiel cree par une charge repartie sur une surface
fermee.

Designons par S la surface envisagee, et soit p la densite de la
couche et r la distance du point potentie au point potentiant.

Definissons le potentiel de simple couche:

et soit V, sa valeur ä l'interieur de S, VE sa valeur ä l'exterieur.
On sait que la densite est donnee en chaque point de S par la
relation:

q> u + Q + K (12)

s
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Si le potentiel est constant ä l'interieur, on aura simplement:

_^ kr. dnE

VE est alors constant sur S, il est nul ä l'infini. Supposons

que VE soit positif sur S, la densite devra etre positive ou nulle,
car si ft etait negatif la derivee normale de VE serait positive,
VE serait croissant vers l'exterieur sur une normale au moins ä

la surface S et VE devrait avoir un maximum a l'exterieur de S,

ce qui est impossible puisque dans cette region ce potentiel est

harmonique. Si VE etait negatif sur S, p serait negatif ou nul.
En d'autres termes, si une simple couche repartie sur une

surface fermee cree un potentiel constant ä, l'interieur de cette
surface, la densite et le potentiel ne peuvent avoir un signe

contraire en quelque point de la surface. Dans le langage de

l'electricite, cette proposition devient presque immediate:
Une charge en equilibre ä la surface (Sun conducteur ne peut pas

changer de signe.

§ 5. Extension du theoreme de Stokes-Poincare.

Stokes et Poincare ont demontre un theoreme fondamental au

sujet de l'equilibre relatif d'une planete.
Le potentiel newtonien est entierement defini ä l'exterieur

de l'astre par la surface libre S, la vitesse angulaire w c, -

et la masse totale M.
Suivant Helmert, Stokes avait omis la masse totale et c'est

Poincare qui a donne la demonstration rigoureuse et l'enonce

exact du theoreme.
Dans ses « Figures d'equilibre d'une masse fluide », Poincare

part de la relation:

U + Q + K 0 avec Q (xi + y2)

qui exprime que la surface S est une surface de niveau. Cette

equation donne U sur la surface S, et U peut etre defini partout ä

l'exterieur de S par le principe de Dirichlet. La constante K est
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determinee par la masse totale, comme le montre Poincare qu1

indique ä ce propos la theorie des charges electriques en equilibre
ä la surface d'un conducteur.

Pour l'extension aux mouvements de genre un, nous suivrons

une route differente qui conduira en meme temps ä un autre
resultat.

Soit A Poperation de Laplace; l'equation fondamentale (12):

<I> U + Q + K (12)

implique la relation suivante (13), mais n'est pas impliquee par
celle-ci:

A«I> AU + AQ (13)

L'equation (13) exprime, en effet, que les fonctions $ et U + Q

qui ont le meme laplacien ne peuvent differer que par une fonc-
tion H dont le laplacien est nul, AH 0, c'est ä dire par une
fonction harmonique. L'equation (13) est done equivalente ä la
relation plus generale que (12):

<!>= U + Q+ K + H, (14)

oü H represente une fonction harmonique ä l'exterieur de l'astre.
Mais voici le fait essentiel dont le theoreme de Stokes exprime

un des aspects: si la relation (13) est satisfaite dans la planete et
la relation (12) sur une surface fermee 2 quelconque, situee eile
aussi dans la planete ou coincidant en partie ou au total avec la
surface S, l'equation (12) sera satisfaite partout. En effet, la
fonction harmonique H, continue dans l'astre et sur sa frontiere,
devrait etre nulle sur la surface fermee 2; eile serait nulle dans

l'astre tout entier. Dans le but que nous poursuivons, on choisira

pour surface 2 la surface libre S et sur celle-ci on devra avoir:

U + Q + K 0 (15)

le potentiel $ etant nul sur S qui est une surface ä densite
constante.

Or la relation (13) donne, en vertu de l'equation de Poisson:

A3> — br.tp + AQ (16)

e est la constante de la gravitation universelle.
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De cette derniere relation tirons p. et calculons formellement
le potentiel newtonien U. L'element de volume sera dt, r sera
la distance du point potentie au point potentiant, les integrales
triples s'etendent ä la masse entiere, les integrales doubles ä la
surface exterieure S. Enfin, nous designerons par J, S, E, l'in-
terieur de l'astre, la surface libre et l'exterieur et nous ferons

preceder une formule de l'une ou l'autre de ces lettres pour
indiquer que la relation exprimee est valable dans la region
correspondante.

On a done:

lusp AQ — A<1> (17)

et le potentiel U est defini par 1'equation:

:ffff7^dx- (18)J, S, E 47TU

La fonction etant nulle sur S, satisfait ä la relation deduite
d'une identite de Green:

s-E !-'**• (19)

la derivee normale etant prise vers 1'interieur. Le potentiel peut
s'ecrire:

S.E W-fffUw+ffL!**. (20)

Mais, sur la surface S, il doit satisfaire ä la relation (15), il faut
done que Ton ait:

J's /f^lKds --'*& + *)-/f/7AQ*. P<>

A la constante K pres, le second membre de cette derniere

equation ne depend que de S et m (I), e'est, d'autre part, un
potentiel V cree par une simple couche de densite:

dn



ET LA GEODESIE 33

L'equation (21) doit avoir lieu sur la surface S; le A des deux
membres etant nul, eile est vraie aussi dans S. Le second membre
fournit done le potentiel \3 ä l'interieur de la masse; le potentiel
ä l'exterieur VK cree par cette simple couche peut etre deflni

par le principe de Dirichlet, et l'on sait que la charge est donnee

par l'equation:

A chaque valeur de K correspondrait une charge et une seule;

or, on deduit de l'equation (16) par application de la formule de

Green la relation:

Je dis que les relations (21) et (22) determinent entierement
la derivee normale de $ ä partir des elements S, oo(l), M. En
effet, il suffit de s'assurer que la constante K est bien deter-
minee par ces elements. Pour cela, supposons que K puisse

prendre deux valeurs, K et K', et soient V et V', $ et <]>' les

fonetions V et <I> correspondantes; en soustrayant de l'equation
(21) celle que l'on obtiendrait pour la seconde valeur de K, on
trouve:

S, J Vj — v!, — 4js(K — K')

Le potentiel V" V — V' serait constant dans J, la charge
d<t>" d<b d<b' ^ t „~dn dn — ~dn "evrait etre Part°ut positive ou nulle, ou

partout negative ou nulle en vertu du lemme du paragraphe
precedent. Mais elle serait constamment nulle, car on doit
avoir, en soustrayant les deux equations (22) prises avec $ et <E>':

Le potentiel V" est done identiquement nul et l'on aR K'.
Les equations (21) et (22) determinent entierement la derivee

dn

(22)

normale

dn S

Archives, Vol« 10. — Jauvier-Fövrier 1928. 3
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qui n'est autre que le coefficient de la pesanteur g ä partir des

elements S, w (l), M.
Les equations (20), (21), (22) s'ecrivent sous la forme equi-

valente:
^ ^-gdS (20')

JJ ^gdS - 4*(Q + K) -JJ i AQdS (21')

-fffs +ffgdS (22')

De ces considerations rapidement retracees on deduit:
I. Les equations (21') et (22') determinent entierement la

pesanteur g sur la surface fibre ä partir des elements S, <o(l), M:

g F | S, «o (l), M |

II. Le potentiel ä l'exterieur est donne par la formule (20') ä

partir des elements observables sur la surface fibre S, w(Z), g:

U», F | S, <o (l), g |

III. La masse totale est donnee ä partir des elements S, w(Z),

g par la formule (22'):

M F | S <o(t), g|

IV. Le potentiel ä l'exterieur est entierement defini par les

elements S, w(Z), M:

U«, F | S, (l), M |

Si la planete est en equilibre relatif cette derniere proposition
exprime le theoreme de Stokes-Poincare:

U„t F | S a. c, M |

et la formule (22') se reduit ä la relation de Poincare:

gdS 4keM — 2m2T
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oü T est le volume de l'astre. En effet, on a:

35

(2M!

et dans le cas de l'equilibre relatif w c, on a AQ 2«2. Le
coefficient de la pesanteur g etant positif ou nul, Poincare a
deduit de sa relation l'inegalite:

On remarquera la ressemblance des formules (20') et (22'),
d'autant plus frappante que le facteur t pourrait etre explicite

Enfin la formule (20') donne le potentiel newtonien ä partir
des elements S, <a(l) et g d'une maniere fort simple et inde-
pendante de la repartition des matieres ä l'interieur de l'astre.

§6. Sur une formule utile pour la geodesie et sa generalisation.

Le potentiel $ du champ de la pesanteur n'est fonction que
de p dans tous les cas oü il existe. Les surfaces ä $ constant
sont les surfaces d'egale densite. Comme ce sont ces surfaces et

en particulier la surface libre qui nous interessent speciale-

ment, nous allons transformer le laplacien de $ pour faire

apparaitre des elements intrinseques des surfaces d'egale
densite.

Pour toute fonction V et toute surface 2 reguliere, le AV
s'exprime en un point de 2 au moyen du parametre du second

ordre A2V de Beltrami, du double c de la courbure moyenne de

2 au point considere et des derivees premieres et secondes de V
prises suivant la normale ä 2; les rayons de courbure Rx et R2

principaux doivent etre comptes positivement dans le meme sens

que la normale:

de U.
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En prenant les surfaces d'egale densite $ a pour surface 2
et <f> pour fonction V, le parametre A2$ s'evanouit et ilreste:

d2<I> di>
dn2 Cdn '

L'equation (15') s'ecrit sous la forme interessante:

d2<b d<1>
r io<t\

~dd ~ Cdn _ + (23)

puis, en remplacant la derivee normale de $ par la pesanteur g,

on a en tout point de la surface d'egale densite p:

dn — eg — <tr.zp + AQ (24)

Jest la formale rigoureuse de Vaccroissement de g avec la profon-
deur.

Sur la surface exterieure S, c est mesurable ainsi que p de

sorte que cette relation donne 1'accroissement de g quand on
s'enfonce dans la masse, et inversement, si cet accroissement est

connu, on en deduit la courbure moyenne.
Ainsi une mesure de Vaccroissement du poids avec la profondeur

equivaut ä une mesure de la courbure moyenne des surfaces d'egale
densite.

§ 7. Stratification, charge et pesanteur.

Les surfaces d'egale densite seront supposees de revolution.
La stratification sera la repartition des surfaces d'egale densite

au point de vue strictement geometrique, et la charge ou loi
des densites sera la loi suivant laquelle varie la densite quand on

passe d'une surface ä une autre. Nous admettons en plus pour
une raison de stabilite que la densite croit avec la profondeur et

que la surface de densite maximum se reduit ä un seul point
appele centre. Nous nous donnerons separement ces deux
elements au moyen d'un parametre t. Soient St la stratification
et p (t) la loi des densites. Le potentiel du champ de la pesanteur
d>, n'etant fonction que de p dans tous les cas ou il existe, sera
fonction de t uniquement: O(i).
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Pour l'etude du champ de la pesanteur ä l'interieur de la
planete, supposons construites les lignes de forces de ce champ,
lignes ä tangentes verticales en chaque point. Les surfaces S,
et les lignes de forces donnent un Systeme de trajectoires
orthogonales. La planete etant supposee de revolution, il suffit
de considerer un plan meridien, et dans celui-ci les lignes de

forces coupent ä angle droit les meridiennes des surfaces St.

Soient 0 une coordonnee servant ä reperer les lignes de forces
dans ce plan, t et 0 forment un Systeme de coordonnees curvi-
lignes orthogonales. On peut donner ä t et 0 des significations
speciales, c'est ce que nous ferons, mais cela n'est pas necessaire.

Pour fixer les idees, t sera le rayon polaire de la surface S( et 0 le

complement de la latitude geographique du point P oü la ligne
de force 0 perce la surface exterieure; c'est done Tangle de la
normale en P et de Taxe de rotation. S sera donne par t e.

Le coefficient g de la pesanteur devient fonetion de t et de
0 ainsi que le deplacement normal dn rapporte ä l'accroissement
de t, tandis que 0 reste fonetion de t seul.

Posons:

cette expression est egale ä un sur Taxe polaire N (t, o) 1;
et Ton a:

d<l> d® dt d<i>

S=d^=irtTn ou Tt 8{t'e)N(t-9) s(t'0) •

On deduit de cette derniere relation:

dn
_ g(t, o)

dt g{t, 0)

Sur une surface d'egale densite le coefficient de la pesanteur
varie en raison inverse de la distance de cette surface aux surfaces

infiniment voisines.

Cette propriete bien connue pour l'equilibre relatif subsiste

sans modification pour tout mouvement de genre un, eile
decoule de l'existence du potentiel <£>.
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§ 8. Sur deux conditions traduites par des equations integrales.

Representons le second membre de l'equation (24) par f(s, 0),

eile s'ecrit:

& - " - <2'i

avec la variable t eile prend la forme suivante:

d£ cgN + /Tf (28)

Elle est lineaire en g, sa solution formelle est:

g(t, 0) n(«, t', 6) £*(«', 0) -f |x(t', s, 0) N (s, 9) f(s, 0)dsj

(29)

t' est une valeur arbitraire du parametre t\ represente la
fonction:

t'
Jc (5, 6) N (s, 6\ds

ij.(t, t', 0) el (30)

cette derniere satisfait ä la relation:

d[x (t, t', 0) ddat
— c(t, 0) da:

H-(l. t', 0) ' da,

On sait, en effet, que c dn est le quotient de l'accroissement
d'une aire dat de la surface S( rapportee ä cette aire. En integrant
l'equation precedente de t' ä t on trouve:

jt(t, t', 0) _ T
dat

t', 0) dit,

en definitive, on trouve, si l'on tient compte de ce que
/*(«', t', 0) 1:

da„
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La fonction fi(t, t', 0) est done egale au rapport des aires de

deux sections d'un tube de force elementaire par les surfaces St

et St„ Ces tubes de forces ayant leur sommet au centre de la
planete, il est clair que l'on a:

lim jjl(i, t', 8) 0 lim t', 9) 4" 00 >

t'-*o t-t- o

|j.(t, t', 0) jj. s, 0) (t, s. 0)

relations que l'on peut verifier sur l'expression primitive (30)
de (i en tenant compte de ce que la courbure c devient infinie

1
comme - lorsque t tend vers zero.

L'equation (29) peut done s'ecrire:

t

S(t< 6) V-(t, t', 6)g(t' 0) — y* (!.(«, s, 9)N(s, ®)f(s)ds
t'

et en faisant tendre t' vers zero on trouve:

t

g(t, 0) — y[X(t, s, 0)N(s, 6)f{s, 0)ds
o

ou encore plus simplement:

««• »>. CO
0

1

On pourrait, bien entendu, etablir ces valeurs de g plus
rapidement en appliquant la formule de Green du flux et de la
divergence ä l'expression et ä un tube de force elementaire.

Mais les formules de passage precedentes sont interessantes.
Si les elements de Stokes generalises S, w (I), M sont connus, g
est connu sur S de sorte que l'on doit avoir:

e

g(e 0) — j' n (e s 0) N (s 0) f(s 0) ds (32)

o

Les fonctions /t et N ne dependent que de la stratification.
Si cette derniere etait connue, (32) serait une equation integrale
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de Fredholm de premiere espece qui determine la charge par
l'intermediaire de /(s, S).

Dans le cas de l'equilibre relatif, / ne depend que de s:

f(s) — 4 r. e p (s) + 2 w2

En multipliant g(t, 0) par N (f, 0), on doit obtenir g(t, o)

de sorte que l'on peut ecrire:

t

g[t, o) — Jn(t, 6)N(s> es, e)/>, e>ds

0

Soustrayons de cette equation celle que l'on obtiendrait

pour une autre valeur 6' et l'on trouvera, en posant:

c It * a <\'\ —
(—

— —\
ds datJ9 \dt ds datJbf'

t

JG(t, s, 9, 0')f[s)ds 0 (33)

o

dans le cas de l'equilibre relatif. La relation (33) est une equation
integrale de Volterra de premiere espece donnant la charge par
l'intermediaire de / si la stratification est supposee connue.

De la relation de Poincare w2 •< 2 7r X densite moyenne, on
deduit que la fonction / est negative au voisinage du centre,
car la densite croit avcc la profondeur. Soit f la valeur de t

correspondant ä la densite moyenne, on aura de 0 a f
l'inegalite / < 0.

En vertu de l'equation (33), la fonction G(t, s, 6, 0') doit
changer de signe, au moins une fois, lorsque s varie de o ä t,

pour toute valeur de t comprise entre o et tx et quelles que soient
les lignes de forces 0 et 0'. Cette derniere condition imposee ä la
fonction G ne porte que sur la stratification.

L'etude precedente a mis en evidence la courbure moyenne
des surfaces d'egale densite. Elle est egale ä l'expression:

C{t' 6)
Rj(f, 6)

+ R,(t, 6)
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R1(i, 0) est la portion de normale allant du point Z, Säl'axe de

rotation et R2(Z, 0) est le rayon de courbure du meridien de la
surface S( au point 0.

La courbure moyenne devient infinie au voisinage du centre
de la planete et l'equation de Volterra (33) est singuliere. En
admettant le droit ä deriver sous le signe somme, on en tire
l'equation singuliere:

G (t, t, 8)f(t) + f*G{tuS' 9)
f{s) ds 0 (34)

o

pour l'equilibre relatif; la derivee de G contient en facteur
1

la courbure moyenne c qui tend vers l'infini au moins comme -,
lorsque Z tend vers 0.

On voit combien il importe de savoir ce qu'est la stratification
au voisinage du centre, puisque c'est au voisinage de ce point
que se presente la singularite. Nous avons dejä montre que les

surfaces d'egale densite tendent en forme vers un ellipsoide
quand on se rapproche du centre. La demonstration donnee

dans Particle precedent ne supposait pas l'existence des deri-
vees partielles premieres de la fonction p (x, y, z) au centre

meme de la planete. Sous des conditions plus restrictives, on

peut etablir la meme conclusion tres simplement, c'est ce que
nous ferons au dernier paragraphe de cet article.

§ 9. Charge et stratification, cas des mouvements de genre un.

Le theoreme de Stokes montre que le potentiel ä l'exterieur,
quoique eree par la masse entiere, ne depend, en fait, que des

elements S, oj (Z), M. S'il pouvait theoriquement exister deux

repartitions differentes de la matiere ä l'interieur de l'astre,
correspondant aux memes elements de Stokes generalises, on ne

pourrait les distinguer par des mesures faites sur le champ de

l'attraction ä l'exterieur.
Dans cet ordre d'idee, la formule de passage du § 8, que l'on

peut ecrire:
t

g(t, 9) jj. (i, e, 8)g(e, 0) —J [/.(£, s, 8)N(s, ü)f(s, 8)ds

e
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est interessante. En effet, si la stratification et la charge sont
les meines de e k t, la pesanteur sera determinee, par les elements
de Stokes generalises, d'une maniere unique sur la surface St,

quelle que soit la distribution de la matiere ä l'interieur de cette
derniere surface, au cas oü il y aurait plusieurs distributions
possibles. Montrons que, la stratification, la vitesse angulaire
to (1) et la masse totale etant donnees, les densites ne pourraient
bifurquer qvCa partir d'une surface, parallele aux surfaces infini-
ment voisines, sur laquelle la pesanteur serait constante.

II en serait ainsi, en particulier, de la surface exterieure si

sur cette derniere deux densites differentes pouvaient convenir
ä la meme stratification.

En effet, appelons x la surface ä partir de laquelle la bifur-
quation pourrait se presenter et soient p' et p", H', H", /', /" les

fonctions p, H g (t, o) et / correspondant ä deux distributions
differentes pour t *< x.

On a H' (t) H" (t) pour t x puisque la pesanteur est

encore la meme sur cette surface. Posons:

H*(t) H'(() - H"(t) fx(t) f - f" - 4 ns (p' - p")

On deduit de la formule (28) la relation:

t

H*(f) N {t. b) J" (cH^ + lSfx)tds

Derivons les deux membres de cette equation et identifions
les resultats pour t r. On trouve:

N»(T. Ö)f(:)

Si fx{x) est different de 0, N (r, 6) ne saurait dependre de 0

et la conclusion s'impose, on aurait avec notre choix du para-
metre t, N2(t, 0) 1, puis g{x, 0) g(r, o). Si jF(r) est nul,
derivons encore une fois ce qui donne:
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et la meme conclusion se degage si la derivee de fx n'est pas
nulle; sans quoi on poursuivra jusqu'ä rencontrer une relation:

ja 4'X jn+1 ua?
N»(T, 0)^- - —

dz" dz"+1

qui permette de conclure. La fonction fx n'etant pas identique-
ment nulle pour t O, il faudrait, pour echapper aux conclusions,

qu'elle ne füt p,as representable par sa serie de Taylor au voisi-

nage de la valeur r.

§ 10. Sur les principes du repos et la soustraction des mouvements.

\
Si la stratification est entierement constituee par des spheres

concentriques, la masse fluide ne peut etre qu'au repos absolu.
La reciproque est-elle vraie

Une masse fluide heterogene au repos n'admet-elle que la
stratification en spheres concentriques Cette reciprocity
permettrait d'eviter bien des detours; eile peut avoir plusieurs
degres de generality suivant les hypotheses faites sur la repartition

des densites. Distinguons alors les quatre principes sui-

vants.
Une masse fluide heterogene au repos dont les particules

s'attirent suivant la loi de Newton ne peut admettre que des

surfaces d'egale densite spheriques et concentriques :

1° si la densite est partout positive et croit de la surface

libre au centre,
2° si la densite est partout positive et varie d'une maniere

quelconque,
3° si la densite croit de la surface libre oü eile est negative

au centre oü eile est positive,
4° si la densite est absolument quelconque.
II est clair que, des particules de signes contraires se repous-

sant suivant la loi de Newton, il faudrait le cas echeant faire
intervenir une pression constante sur la surface libre qui
empecherait la masse d'eclater normalement, mais cela n'est

pas essentiel. Envisageons maintenant deux mouvements de

genre un repondant ä la meme stratification et ä la meme
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repartition des vitesses <o(l). Soient p' et p" deux lois de densite,
<!>', 0", U', U", K', K" les elements de l'equation fondamentale

correspondants et posons:

f(t) p'(t) - p"(t) ; <t>x(t) <b'(t) - $"(*) ;

Vx U' — U" Kx K' — K"

Les equations relatives ä chacune des deux repartitions:

4>' U' + Q + K' <b" U" + Q + K"

donnent par soustraction un etat de repos absolu, car le terme
Q qui contenait m disparait:

$»(() U* + Kx d'oü Ux(j)

Le fluide qui aurait en chaque point la densite px creerait un
champ de Newton normal aux surfaces d'egale densite. II serait
done en equilibre absolu. La densite px aurait dans le cas general

un signe quelconque et le quatrieme principe du repos permet-
trait de conclure que, s'il y a bifurquation des densites, la
stratification est necessairement spherique dans sa totalite.

Un autre auteur a donne une demonstration du principe
sous la forme 1°, mais nous avons remarque qu'elle n'etait pas
ä l'abri de toute critique.

M. Liapounoff a demontre que la sphere etait la seule figure
d'equilibre stable pour une masse homogene au repos et
M. Lichtenstein a pu s'affranchir dans le cas de l'homogeneite
de la condition de stabilite.

§11. Charge et stratification, cas de V equilibre relatif.

Nous appelerons, dans le cas de l'equilibre relatif, densite

transform.ee, 1'expression:

f — 4jtep+ 2to2

et stratification en un point P, la repartition, au point de vue
strictement geometrique, des surfaces d'egale densite au voisi-

nage de P, e'est-a-dire dans une sphere centree en P est de

rayon arbitrairement petit.
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Soient alors, comme precedemment, t les surfaces d'egale
densite et 0 les lignes de forces du champ de la pesanteur.
L'existence du potentiel dont derive ce dernier champ permet
d'ecrire l'equation vraie, quelles que soient les valeurs 0' et 0"

du parametre 0:

Derivons par rapport ä t les deux membres et tenons compte
de la relation, vraie le long de chaque ligne de force 6:

Apres un calcul simple on trouve l'identite en 0, 0', 0":

f - f* \dt ]%'
1 \dt /#" _ / dn d / dn d dn\

(dn\ dt dt Ii' \ dt dt dt /«''
g»{dfh

et cela pour tout mouvement de genre un. L designe ici le

logarithme neperien. Si la planete est en equilibre relatif, la
fonction / ne depend plus de 0 et peut-etre mise en facteur, ce

qui donne:

Le premier membre de cette equation ne depend que de t,
le second ne depend que de la stratification; plus que cela,
ce dernier ne depend que de la stratification en un point P,
d'ailleurs quelconque, de la surface t,, puisque l'on peut prendre
deux valeurs 0' et 0" aussi voisines que l'on veut. Soit Y(t) la
valeur commune des deux membres de l'equation (37). Le

rapport de / ä g s'en degage et ne depend que de la stratification
au point considere:

dg dn
dt {cg+f)dt-

f (37)
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Marquons ce stade intermediate de nos calculs en formulant
cette proposition:

Le rapport, en un point P, de la densite transform.ee et de la

pesanteur ne depend que de la stratification en P.
Pour simplifier par la suite nos formules, particularisons ä

nouveau les parametres 0 et t de telle sorte que la ligne 0 0

soit l'axe polaire et t la distance du pöle nord de la surface libre
au pöle nord de la surface t. On obtient sur cet axe polaire:

^ (c + W)dt

rapport qui ne depend, lui aussi, que de la stratification; puis en

integrant:
g{t, o) g(o, o)S(f, o) (38)

avec:
t

/ (c+<P)d(

S(J, 0) e (39)

Enfin, les relations, plus simples dans ce Systeme particulier
de coordonnees:

g[t, o) g{t, 0)(^)e. m g(t, o)V[t)

donnent, en tout point P, la pesanteur et la densite transformee,
ä partir de la stratification et de la pesanteur ou attraction au

pöle de la surface libre g(0, 0). On obtient en effet

g(t, 0) g(o, o)(^2(t, O) (40)

f(t) g(o, 0)V(t)E((. o) (41)

Nous tirerons les conclusions qui se degagent de ces formules

au paragraphe suivant apres avoir defini un cas particulier ou
elles deviennent illusoires et nous reviendrons ici sur la definition
de la fonction Y fournissant le rapport / ä g.

Le Symbole d representera toujours une differentielle relative
ä un passage dt d'une surface t & une surface voisine, ce passage
se faisant suivant une normale, c'est-ä-dire ä 6 constant.
§ representera, au contraire, une differentielle relative ä une
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variation äs ä t constant, c'est-ä-dire que ö se rapportera ä un
changement de position sur une meme surface d'egale densite.
Toutefois nous ne voyons pas d'inconvenient, pour ne pas

multiplier les notations, ä representer par de une aire elementaire
d'une surface t qui deviendra par transport parallele dt une aire
de + dde, sur la surface t + dt. Nous 'aurions pu representer
l'aire elementaire de par une autre notation, De par exemple,
mais je ne pense pas que des confusions soient possibles. On a

comme on sait:

c dn — d L d i

En revenant ä l'equation (37) oü 6' et 0" seront considerees

comme les deux valeurs 0' 6 et 6" 0 + $6, on pourra ecrire:

/dn\
1 \dt /t

W(t)

dn d T dn
8 c— + — I. —

dt dt dt

id£
puis:

Sdh<^
1 dn 1 \ da _

d2n\
dn J

g 2 8 dn 2 tdn

et enfin, si dt represente ä nouveau un deplacement sur l'axe
polaire, on pourra definir la fonction XF par la stratification au

voisinage de cet axe :

f(,i IW 2 8 dn

II est bon de remarquer qu'on ne peut pas intervertir au
numerateur les symboles <J et d; en effet, l'expression dDff n'a

pas de signification precise puisque les aires (Dff)0 et (Dff)t+S>
sont sans rapport 1'une avec 1'autre; au contraire l'expression:

a une signification parfaitement claire puisque S agit cette fois

sur une fonction de t et de 0 bien definie.
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§ 12. Le cas exceptionnel des spheres concentriques.

Les formules donnant / et g ä partir de la stratification
deviendraient illusoires si la stratification cessait de definir
d'une maniere univoque la fonction Y. Or.cette derniere est le

quotient de la densite transformee, fonction continue de t

comme la densite elle-meme, par la pesanteur qui ne s'annule

qu'au centre, et cette pesanteur est aussi continue. La fonction
W(t) ne peut etre que continue sur l'intervalle i: 0 ^ t <C a

qui va du pole nord compris: 0, au centre: a exclu. Si le second

membre de l'equation (37) definissait la fonction sur un
ensemble de points partout dense sur i, la fonction W serait
definie sur i tout entier et le cas exceptionnel ne se presenterait

pas. Pour que ce cas se presente, il faut done qu'il existe un
Intervalle /: < t < t2 sur lequel le second membre de l'equation

(37) ne fournisse aucune valeur de Y. Or ce rapport ne peut
donner lieu ä une indetermination que s'il se presente sous la

forme ^. Avec le choix particulier du parametre t, on devrait

avoir, quels que soient t sur /, et quels que soient 6, 0' et 0":

(sr).= 1, d'oü L(sr)r0' d'oü c«' c»"

Les surfaces d'egale densite devraient etre ä courbure moyenne
constante; or, parmis les corps de revolutions, il n'y a que les

spheres qui repondent ä ces conditions. Ges spheres devraient
etre paralleles aussi, done concentriques. Le cas exceptionnel
est specialement simple on le voit. II pouvait etre prevu a

priori puisque le repos complet w — 0 est un cas particulier et

que des spheres concentriques peuvent etre chargees d'une
infinite de manieres qui assurent toutes l'equilibre absolu de la

masse fluide. En resume, la fonction ne cesserait d'etre definie

d'une maniere univoque par la stratification que s'il existait une
couche d'epaisseur finie < t2 de spheres concentriques. De

ces deux derniers paragraphes se degage la consequence suivante:
A part le cas banal des spheres concentriques, la densite et la

pesanteur sont en tout point entierement determinees par la

stratification et Vattraction au pole de la surface libre.
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§ 13. Sur la condition necessaire et süffisante imposee ä la
stratification seule.

Notre etude a montre (§ 5) que l'on doit avoir dans toute la
masse:

A3> — 4tcsp + 2to2 (42)

et sur la surface libre:

$ U + Q + K (43)

ces conditions necessaires sont aussi süffisantes. Nous en avons
deduit les conditions äquivalentes:

dJ-=cg + f, (44) ?s F | S, w, M | ; (45)

la premiere doit etre satisfaite dans l'astre entier et la seconde

exprime que sur la surface libre la pesanteur gs doit avoir ces

valeurs stokiennes.
Ces dernieres determinent sur S la derivee normale:

/dn\ gjo^
\dt /« g(o. 6)

1 1

et si la fonction W(t) existe, definie qu'elle est par le second

membre de l'equation (37), la valeur (40) de g:

t

a Ig o) f^+W^Odt
«(' •> ~ 7if' <">

)t
resout l'equation (44).

Or, la fonction W(t) existe si l'on a, quels que soient 0, 0', 0"

et t:
V6- — Vi *V — xo

Vit" y<t x%" x(\
(48)

equation d'une droite en x, y oü ces variables ont la signification

suivante:

I dn d T dn\ /dn\3
y* \cw + dt^df)* et

Archives, Vol. 10. — Janvier-Fevrier 1928, 4
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Les conditions (46) et (48) sont done necessaires et süffisantes

pour que Von ait un equilibre relatif. II est remarquable que la
condition (48) ne porte que sur la stratification et soit indepen-
dante de g, de p, de M et meme de w. Quant ä la condition ä la
limite (46), eile exprime la valeur de la derivee premiere:

depend que des elements de Stokes.

§ 14. iSur un probleme generalise de Neumann et de Dirichlet.

Le probleme de Dirichlet consiste comme on sait a resoudre

l'equation A<P 0 ä l'interieur d'un volume T de teile sorte

que, sur la surface S qui limite le volume, la fonetion <p prenne
une succession / de valeurs donnees ä l'avance.

Le probleme de Neumann consiste ä resoudre la meme

equation dans T en se donnant au contraire la derivee normale

— sur S.
an

Si l'equation ä resoudre est de la forme A<P <jp oü A$ ^d>,

q> etant une fonetion donnee dans T et X une constante, on a des

problemes de Dirichlet et de Neumann transformes.

L'equation:
A4> — 4res(<I>) + 2«2

qu'il s'agit de resoudre en $ et p($) dans le cas des figures

d'equilibre, ä l'interieur de la planete, avec, sur la surface libre,

cp 0 et ^ gs fonetion donnee est plus generale ; eile

conduit ä poser le probleme analytique suivant:
Etant donne un volume T limite par une surface fermee S,

trouver en F(<p) et $(«, y, z) les solutions de l'equation:

ä, partir des elements de Stokes.

On montrerait encore facilement que la derivee ne

A<k F (<I>)
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telles que $ et sa derivee normale ^ prennent sur la surface S

une succession de valeurs dünnees ä l'avance: f1 d'une part,
/2 de l'autre:

II ya done deux conditions ä remplir, celle .de Dirichlet et celle
de Neumann, mais on dispose de deux fonetions inconnues F
et $.

Nous appelerons ce probleme: probleme de Neumann-
Dirichlet generalise.

Dans le cas des figures d'equilibre, la fonetion f1 etait iden-

tiquement nulle et la fonetion /2 coincidait avec le g sur la
surface libre donne par le theoreme de Stokes. Dans ce cas,

comme nous l'avons vu, l'intervention des surfaces ä $ constant
etait utile puisque e'est l'equation entre rapports harmoniques
(48) qu'il sufFisait de resoudre avec la condition de Neumann (44).

Dans le cas particulier oü le fluide satisfait ä une equation
caracteristique p f{p) connue, les fonetions p(<I>) et F(4>)

doivent etre considerees comme donnees.

Enlin, dans le cas tres special oü l'equation caracteristique
serait:

V- — C» a (f2 — pl) '

a etant une constante, l'equation ä resoudre s'ecrirait:

Ad> X<P + 2co2

La theorie de Fredholm permet d'affirmer qu'il ne peut y
avoir qu'une seule solution <I>, c'est-ä-dire une seule repartition
de la matiere possible ä l'interieur de l'astre, ä moins que la
surface S ne puisse assurer en meme temps le repos absolu.

§ 15. Etude de la stratification au voisinage du centre.

Nous avons vu le role essentiel que joue la courbure moyenne

^ des surfaces d'egale densite dans 1'etude precedente. Or,

lorsque l'on tend vers le centre, cette courbure augmente
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indefmiment; il s'agit de savoir de quelle maniere eile tend vers
rinfini, si c'est uniformement, c'est-ä-dire quel que soit le

parametre 0, ou non; ä ce propos, les propositions suivantes
sont essentielles:

a) Les surfaces iL egale densite tendent vers un ellipsolde infi-
niment petit quelle que soit la rotation permanente envisagee si les

derivees partielles premieres et seconde de la densite p (x, y, z) sont
continues au voisinage du centre.

b) Dans le cas de Vequilibre relatif, il sufßt que la densite p ait
des derivees premieres continues ä partir d'une certaine profondeur

pour que le meme phenomene se produise.
En effet, soit x, z un plan meridien et partout en cote la

densite p du point x, z. Cela donne dans l'espace x, z, p une
surface p p(x, z) qui est convexe au point x 0, z 0 de

densite maximum. L'indicatrice d'Euler existe et c'est une

ellipse. D'autre part, on sait que cette ellipse est la forme limite
des intersections de la surface par les plans ä p constant. On

peut done conclure que les meridiens des surfaces d'egale
densite, identiques aux courbes precedentes, tendent vers la
forme ellipsoidale quand on se rapproche du centre.

Pour la validite du raisonnement precedent il faut que
l'indicatrice d'Euler existe, et eile existait puisque les derivees

premieres et secondes de p existaient et etaient supposees
continues au voisinage du centre. Maintenant supposons que les

derivees premieres existent seules, mais que to soit constant.
Alors la theorie du potentiel nous apprend que U admet des

derivees partielles premieres et secondes continues et il en est

de meme de la fonetion <I> qui ne depend que de p et qui est

maximum au centre. Le raisonnement precedent peut s'appli-
quer ä la fonetion $ et la meme conclusion s'impose car les

intersections ä $ constant sont ä p constant.
Dans l'article precedent, nous pouvions conclure relativement

ä tout mouvement de genre un, sans faire des hypotheses aussi

restrictives, mais la demonstrations etait plus longue.

16 fevrier 1928.
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