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SUR
LA ROTATION PERMANENTE DES PLANETES

ET LA GEODESIE

PAR

IR. WAVRE

§ 1. Introduction.

Dés que Newton eut découvert le principe de I'attraction
universelle, une question immensément vaste s’est posée, aussi
captivante par son intérét mathématique que fondamentale
pour l'étude de la formation et de I'évolution des astres a
partir d'une nébuleuse raréfiée.

Quelle sera I'évolution future d’une masse fluide dont chaque
particule est soumise a l'attraction de la masse entiére, vers
quelle constitution limite cette nébuleuse va-t-elle tendre a la
longue, & quel monde donnera-t-elle naissance ?

L’honneur d’avoir posé le probléme avec ce degré de généralité
revient certes & Kant et & Laplace, aprés Newton, plus qu’a
tout autre.

Les équations qui régissent le mouvement du fluide peuvent
étre écrites formellement, c’est un fait & remarquer, mais leur
résolution présente une difficulté, inhérente & la nature de la
question, que ’analyse mathématique est encore impuissante a
surmonter. En effet, la force attractive est déterminée par la
forme de la masse entiére, qui est précisément 'inconnue.

Toutefois, quelques-unes des caractéristiques qualitatives
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et quantitatives du mouvement peuvent étre dégagées et il est
facile dans certains cas, c’est-a-dire suivant la nature des
conditions initiales, état des vitesses, état de raréfaction, de
prévoir que le fluide se concentrera et donnera une étoile, qu’il
tendra au contraire vers la forme d’un anneau, ou encore qu’il
restera extrémement disséminé dans I’espace.

Dans le cas d’une concentration, les différentes particules du
fluide en contact les unes avec les autres exercent des pressions
réciproques et c’est la pression qui contrebalance l'effet de
I'attraction newtonienne et de la force de D’Alembert.

La viscosité, si faible soit-elle, tendra & supprimer, au cours
des temps, tout mouvement relatif, tout glissement des parties
I'une sur I'autre.

A Pétat limite, celui de la lune et des petites planétes déja
refroidies et sensiblement solidifiées, le fluide se trouvera en
équilibre relatif et tournera tout d’une piéee autour de l'axe
polaire; quitte & ce que cet axe soit entrainé par I’attraction des
autres corps; ce dernier mouvement reléve d’un autre chapitre
de la mécanique céleste; dans I'’étude actuelle nous ferons
abstraction des mouvements des axes de rotation.

Mais I’équilibre relatif n’est pas le seul dont les astres de
notre voisinage nous imposent I’étude. L’observation astrono-
mique montre, en effet, qu’il existe des fluides déja condensés
qui ne tournent pas tout d’une piéce sur eux-mémes. Le soleil,
Jupiter, Saturne présentent une particularité de ce genre fort
intéressante. Dans la rotation de ces corps, les zones paralléles
ne font pas un tour complet en un méme temps. L’équateur
solaire accomplit sa révolution en 25 jours, tandis que le voisi-
nage des poéles en exige 28. Aux latitudes intermédiaires, la
période serait différente encore.

La viscosité du fluide tendra & faire disparaitre ces glissements
des zones paralléles et le mouvement du soleil tel qu’il est
aujourd’hui n’est pas un mouvement stable. Cette rotation
variée est une étape dans I'évolution de I'astre, qui doit petit &
petit laisser place & I'équilibre relatif.

Une étude mathématique des rotations variées ou 'on ferait
abstraction de la viscosité n’aurait qu'un intérét théorique si
les effets des frottements internes étaient prompt & se faire
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sentir. C’est peut étre pour cette raison qu’elle n’a pas été 'objet
de travaux méthodiques comme ce fut le cas des figures d’équi-
libre. ’

Mais on posséde aujourd’hui de fortes raisons de penser que la
viscosité est trés faible au contraire et son effet trés lent & se
manifester.

Les études thermodynamiques de MM. Jeans et Eddington
et de leurs éléves sur le rayonnement stellaire sont en faveur
d’une extréme petitesse de la viscosité dans des astres comme le
soleil portés & une trés haute température.

On connait d’autre part, ce raisonnement d’Helmholtz d’aprés
lequel, & pression, densité et vitesses égales, 'effet des frottements
mettrait » fois plus de temps 4 se faire sentir dans un fluide » fois
plus étendu qu’un autre. Puis il faut aussi remarquer que le
frottement est proportionnel a la vitesse relative des matiéres
en contact dans le cas d’un liquide, de sorte qu’a vitesse petite
frottement petit et & vitesse infiniment petite frottement
infiniment petit, ce qui n’a pas lieu pour les solides ou il y a
un frottement au départ. Une étude antérieure sur le mouve-
ment avec frottement de deux sphéres concentriques nous a
déja montré que, si la force de frottement est proportionnelle &
une puissance supérieure ou égale a I'unité de la vitesse relative,
cette derniére ne disparaitrait qu’en un temps infini.

Il est clair d’autre part qu'un astre comme le soleil mettra
un temps énorme & tourner d’une seule piéce puisque les planétes
mille fois plus petites comme Saturne et Jupiter n’ont pas encore
aiteint cet état limite. Aussi étudierons-nous les rotations
variées dans le cas idéal ou il n’y aurait pas de viscosité; nous
appellerons ces mouvements des rotations permanentes.

Il y aurait, dans le cas du soleil, une autre correction a faire,
aussi importante peut-8tre que la correction due a la viscosité.
Ce serait de tenir compte de la courbure d’espace et d’appliquer
la statique d’Einstein en partant de la formule de Schwarzchild.
Le probléme posé dans le systéme d’Einstein ne serait pas
complétement insoluble, je veux dire qu’il serait possible de se
faire une idée de la correction relativiste a faire subir aux
résultats newtoniens. Il faudrait aussi tenir compte des données
thermodynamiques du probléme, en particulier de la pression
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de radiation; nous ne le ferons pas, imitant en cela les études
classiques de Clairaut, Laplace et Poincaré.

Une autre raison encore nous pousse & poursuivre cette étude
hydrodynamique du mouvement des astres sur eux-mémes d’un
point de vue plus général que celui de la rotation en bloc, c¢’est
la géophysique actuelle et les conceptions nouvelles sur la
fluidité relative de la terre et méme de I’écorce terrestre envisa-
gée dans son ensemble. On connait la théorie géologique de
M. Wegener, trés en vogue aujourd’hui, de la dérive des conti-
nents. Il est probable que le magma terrestre a la consistance
d’un liquide de moins en moins visqueux, quand on s’enfonce
en profondeur. I1 suffit qu’il se comporte comme un liquide a
coefficient de viscosité quelconque, fut-il trés grand, pour que
des forces intérieures, des tractions tangentielles par exemple,
puissent exercer leur effet & la longue en déplacant les corps, les
iles, les continents sur lesquels elles s’exercent, et nous avons
montré dans une étude trés développée que les continents
étaient soumis & une traction tangentielle dirigée vers I'équa-
teur.

Ce que I'on vient de rappeler & propos du soleil et des grosses
planétes doit pouvoir s’affirmer de la terre pourvu qu’on recule
dans I'histoire et qu'on augmente simplement I'importance des
effets de la viscosité. 11 est vraisemblable que la terre elle-méme,
durant les époques anciennes, ait aussi présenté, avant d’étre
sensiblement figée, un mouvement relatif appréciable des zones
paralléles et des différentes couches d’égale densité les unes sur
les autres.

Les conceptions géologiques récentes nous inclinent done
aussl & reprendre d’un point de vue plus général I'étude de la
rotation des astres sur eux-mémes.

Voici maintenant quelques renseignements sur la méthode
suivie dans cette recherche. Clairaut, Laplace, Poincaré, dans
1 urs mémorables travaux sur les figures d’équilibre d’une
masse hétérogéne, ont appliqué des procédés approximatifs & la
recherche de la répartition de la matiére a I'intérieur du corps,
du champ de la pesanteur, de 'accroissement de g, de la forme
de la surface extérieure. Clairaut, notamment, néglige les
termes de 'ordre de la quatriéme puissance de la vitesse angu-
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laire. D’autre part, Laplace et Poincaré, Legendre aussi, em-
ploient des développements en série de fonctions sphériques
dont pratiquement on ne conserve que les premiers termes.
En plus, ces auteurs n’ont pu étudier par cette méthode que
les stratifications voisines des spheéres. Ils sont parvenus ainsi
a des résultats pratiques fort intéressants, ils ont fait une
ample moisson de résultats utiles. Mais on peut se demander
s1 les approximations faites dés le début ne vont pas, dans le
cas des aplatissements notables, rendre impossible la décou-
verte de certaines relations rigoureuses. J’en al une preuve
en ceci, c’est que ni les auteurs précédents, ni Tisserand dans
son traité de mécanique céleste, ni Helmert dans son traité de
géodésie supérieure, ouvrages encyclopédiques, ne donnent la
formule rigoureuse de I'accroissement du coefficient g de la
pesanteur avec la profondeur, tandis que la discipline que nous
nous imposons permet d’exprimer trés simplement la valeur
exacte de cet accroissement.

Nous renoncerons & l’emploi des fonctions sphériques qui
paraissait étre la voie royale, depuis que Laplace, Legendre et
Poincaré s’y étaient engagés. Car si pratiquement cette méthode
est peut étre la bonne, on doit désespérer, ne conservant que les
deux premiers termes du développement, de trouver les proprié-
tés rigoureuses de la fonction développée. Comment voulez-vous
que I'on étudie en toute rigueur une fonction quand on ne retient
que les premiers termes de son développement en série de
Fourier? Poincaré a obtenu des résultats remarquables et rigou-
reux, qu’on songe au théoréme dit de Stokes, mais justement ce
n’est pas au moyen des fonctions sphériques. C’est dans cette
autre voie que je voudrais que 'on s’engagedt résolument,
ou, sans faire aucune approximation, on mettrait en évidence
les rapports différentiels entre la charge, la pesanteur, la stra-
tification. Et nous pouvons espérer que cet article permettra
peut-étre & un mathématicien habile de déterminer la forme
exacte des surfaces d’égale densité dans 'astre tout entier
en fonction des éléments observables 4 la surface libre.

L’équilibre relatif, objet des études classiques n’est qu'un cas
particulier des rotations permanentes que nous étudions ici
et en cours de route nous obtiendrons certains résultats dont
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gquelques-uns sont nouveaux, croyons-nous, méme dans le cas
spécial des anciennes recherches.
Les principaux sont les suivants:

1. L’extension du théoréme de Stokes-Poincaré.

2. La formule (20) donnant le potentiel newtonien & I'ex-
térieur d’un astre au moyen des seuls éléments superficiels:
la surface libre, la vitesse angulaire et la pesanteur sur la sur-
face. La mesure géodésique de ces éléments permettrait d’ob-
tenir pour la théorie de la lune une expression plus exacte de
Pattraction terrestre que celle dont on fait usage en général.

3. La formule (24) rigoureuse de I’'accroissement de la
pesanteur avec la profondeur, formule qui montre qu’une
mesure de cet accroissement peut remplacer une mesure géo-
désique de la courbure moyenne de la surface libre.

4. Les formules (40) et (41) donnant la densité et la pesan-
teur en tout point au moyen de la répartition géométrique des
surfaces d’égale densité et de I'attraction en I'un des poles.

5. L’équation (48) exprimant un fait purement géométrique
et qui traduit la condition nécessaire et suffisante pour qu’il y
ait équilibre relatif.

§ 2. La rotation permanente et le champ de la pesanteur.

Par «rotation permanente » nous entendons que chaque par-
ticule tourne autour de ’axe polaire avec une vitesse constante
au cours du mouvement, mais la vitesse angulaire, la méme pour
tous les points d’un méme cercle paralléle, pourra fort bien -
varier quand on passera d’un paralléle & un autre.

La simplicité de la mise en équation du probléme des figures
d’équilibre relatif provient du fait que la vitesse angulaire est
au contraire constante et indépendante des particules considé-
rées. Dans ce cas spécial il existe un potentiel du champ de la
pesanteur; mais nous allons le voir, la pesanteur se définit trés
simplement dans toute rotation permanente et il existe un cas
plus étendu que l'équilibre relatif ou elle dérive encore d’un
potentiel.
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Soit, en effet, P une particule de masse unité. Son accélération
provient de sa rotation uniforme; elle est dirigée vers le centre du
cercle trajectoire, ’accélération renversée sera la force centrifuge
et la pesanteur en P sera la résultante de la force centrifuge et de
Pattraction de la masse entiére telle qu’elle se manifeste sur la
particule P. Cette résultante, qui est done rapportée & 'unité de
masse, posséde en chaque point P une direction qui définit
la verticale en P et une intensité qui n’est autre que la valeur
du coefficient g bien connu en géodésie. Toute direction normale
a la verticale en P sera horizontale en P.

La pesanteur est donc représentée par un vecteur attaché a
chaque point du fluide; le champ vectoriel peut dériver d’un
potentiel ou n’en point dépendre. Nous appelerons mouvement
de genre un, les rotations permanentes pour lesquels il existe un
potentiel du champ de la pesanteur et mouvement de genre deuz,
les rotations permanentes pour lesquelles ce potentiel n’existe
plus.

Représentons par @ le potentiel du champ de la pesanteur,
pour abréger, dans le petit tableau suivant qui donne la
généalogie des rotations permanentes.

Rotations permanentes

|

Mouvemenits de genre un Mouvements de genre deux
d | existe ® | n’existe pas
Mouv. de 1re espece Mouv. de 2¢ espéce Mouvement de M. Dive
ou ou
équilibre relatif de 3¢ espece

On sait que M. Dive a démontré dans ses articles aux
« Archives » ’existence des mouvements de genre deux ou le
chamyp de la pesanteur ne dérive pas d’un potentiel et ou les
couches d’égale densité ne coincident pas avec les couches
d’égale pression et ne sont pas horizontales en chacun de leurs
points. ,

Ce sont au contraire les rotations permanentes du premier
genre qui sont I'objet des paragraphes suivants.
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§ 3. Caractéristiques des mouvements de genre un.

Partons des équations de I’hydrodynamique régissant le
mouvement d’un fluide parfait dans un champ newtonien
dépendant du potentiel U:

1vg ol oz
pox  dx di? '’
1op U d% (1)
pdy oy  dif’
Lop _oU_as
p 0z 0% de® '

o est la densité, p la pression, ¢ le temps. Ces équations convien-
nent & tout mouvement d’un fluide parfait soumis a I’attraction
universelle. Il faudrait leur ajouter 'équation caractéristique
du fluide et I'équation de continuité, mais nous n’avons pas a
nous en occuper ici, puisqu’il s’agit d’une masse hétérogene et
d’une rotation permanente. :

Soit @(z, y, z) la vitesse angulaire de la particule z, Y, 2
dans sa rotation autour de 'axe polaire que I'on peut prendre
pour ligne des z. L’accélération s’exprime au moyen de w, elle
ne contient plus le temps:

2 2 2
La force centrifuge agissant sur I'unité de masse admettra

les composantes:

wr , w?y 0,

et le vecteur pesanteur, poids de I'unité de masse qui résulte de
I’attraction et de la force centrifuge, aura les projections:

oU i oU § oU
gxza—{—mx, gy:sg—}-wy, gzzb—z.

Les équations fondamentales (1) s’écrivent:
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Elles montrent qu’en chaque point le vecteur pesanteur est
normal & la surface & pression constante passant par ce point.
Les surfaces d’égale pression sont donc horizontales. Multiplions
les équations (3) respectivement par les composantes dz, dy, dz
d’un déplacement arbitraire, de maniére & former la différentielle
totale de p:

1
?dp = gdx + g, dy + g.dz | (4)

De cette derniére relation on déduit les propriétés caractéris-
tiques des mouvements de genre un:

10 Les couches d’égale densité sont horizontales.

20 La vitesse angulaire ne dépend que de la distance & ’axe.

30 1l existe un potentiel A des accélérations.

40 T1 existe un potentiel Q de la force centrifuge.

50 1l existe un potentiel ® du champ de la pesanteur.

Chacune de ces propositions implique chacune de sautres et
caractérise un mouvement de genre un. En effet, si les sur-
faces d’égale densité sont horizontales, elles coincident avec
les surfaces d’égale pression; p est constant & p constant
et 'on a par conséquent une relation entre p et p indépen-
dante de z,y, z: o = f(p). Le premier membre de I'équation (4)
coincide avec la différentielle totale de expression:

(p:fip_ (5)

et 'on a, quelles que soient les différentielles dx, dy, dz:
db = g, dx + g, dy + g,dz ,
ce qui exige que 'on ait aussi en tout point z, y, z:

od o 2P
= — =—, &= (6)

T 8 T Oy : T 3z

8x

le champ de la pesanteur dérive donc du potentiel ®. Inversé-
ment, si le potentiel ® existe, les couches d’égale densité sont
horizontales. Car I'équation (4) §’écrit sous la forme:

d
d

=

|

%dp = dd (7) ou p = ) (8)

=
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et, pour un déplacement & @ constant, p est constant, p n’est
fonction que de ® et @ de p et I'équation (8) montre que p ne
dépend que de @, c’est-a-dire que de p; les surfaces d’égale
densité coincident avec les surfaces d’égale pression, elles sont
horizontales comme ces derniéres. Les propositions 1° et 5° sont -
donc équivalentes, elles s’'impliquent mutuellement.

S’il existe un potentiel du champ de la pesanteur, il existera un
potentiel de la force centrifuge; les équations (2) s’écrivent, en
effet:
wlz _de—1U) . wly ::Eggji_gl, )} ZZQLQQZLEQ_ (9)

ox oy 0z

La force centrifuge dérive donc du potentiel Q = & — U.
Ce potentiel Q ne saurait dépendre de z comme le montre la
derniére équation (9), @ non plus en vertu des deux premiéres.
La vitesse angulaire ne dépend que de la distance [ de la particule
a I’axe de rotation. Le potentiel  s’écrit, on le vérifie aisément:

12

Q= [ %dl”. (10)

0

Inversément, s’il existe un potentiel Q, il ne peut dépendre
que de la distance a4 I’axe, ® aussi, et les équations (2) montrent
que le vecteur g dérive du potentiel ® = U + Q. Enfin, ¢’il
existe un potentiel Q de la force centrifuge, il existe un potentiel
A = — Q des accélérations.

Les propositions 20, 39, 4° sont équivalentes entre elles et
équivalent a 5° et par conséquent a 1°.

Les mouvements de genre un sont analytiquement caratérisés
par I’équation:

p = f(p) . (11)

qui exprime qu’il existe une relation directe et indépendante
des coordonnées z, y, z, entre la densité et la pression quoique
le fluide ne soit pas supposé a priori posséder une équation
caractéristique de ce genre. On peut aussi les caractériser par
Iéquation:

Qo

—:0 ll’
03 f ( )
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qui exprime que la vitesse angulaire ne dépend que de la dis-
tance 4 I'axe de rotation.

Pour tout mouvement de genre un, les équations fondamen-
tales (1) s’écrivent:

22U 0Q a0 _aU_2Q 2k _aU L 2Q

2z oz ' ox oy oy oy ' oz oz ' oz’

® et Q ont les valeurs (5) et (10). Elles se résument en la relation
unique, ou K est une constante:

®=U+Q+K. (12)

Le potentiel de la pesanteur est la somme du potentiel
newtonien et du potentiel de la force centrifuge, & une constante
prés que l'on pourrait incorporer a ®. L’équation (12), vraie
pour tout mouvement de genre un, sera le point de départ de
Pétude qui va suivre.

§ 4. Sur une propriété des charges électriques en équiltbre.

Dans le paragraphe suivant nous aurons besoin d’une pro-
priété du potehtiel créé par une charge répartie sur une surface
fermée.

Désignons par S la surface envisagée, et soit u la densité de la
couche et r la distance du point potentié au point potentiant.

Définissons le potentiel de simple couche:

\Y =ffﬁds ,
r
S

et soit V, sa valeur a I'intérieur de S, V sa valeur & I'extérieur.
On sait que la densité est donnée en chaque point de S par la

relation:
1 dv: dVE.
= —z:z(d—nJ * dng )

"E
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Si le potentiel est constant & 'intérieur, on aura simplement:

ayv

1 E
U. e -~
! b dn

E

V, est alors constant sur S, il est nul & I'infini. Supposons
que V soit positif sur S, la densité w devra étre positive ou nulle,
car si p était négatif la dérivée normale de V serait positive,
V,, serait croissant vers extérieur sur une normale au moins &
la surface S et V_ devrait avoir un maximum & I'extérieur de S,
ce qui est impossible puisque dans cette région ce potentiel est
harmonique. Si V était négatif sur S, w serait négatif ou nul.

En d’autres termes, si une simple couche répartie sur une
surface fermée crée un potentiel constant & I'intérieur de cette
surface, la densité et le potentiel ne peuvent avoir un signe
contraire en quelque point de la surface. Dans le langage de
I’électricité, cette proposition devient presque immédiate:

Une charge en équilibre a la surface d’un conducteur ne peut pas
changer de signe.

§ 5. Extension du théoréme de Stokes-Poincaré.

Stokes et Poincaré ont démontré un théoréme fondamental au
sujet de I'équilibre relatif d’une planéte. '

Le potentiel newtonien est entiérement défini a I'extérieur
de l'astre par la surface libre S, la vitesse angulaire w = ¢, -
et la masse totale M.

Suivant Helmert, Stokes avait omis la masse totale et c’est
Poincaré qui a donné la démonstration rigoureuse et I’énoncé
exact du théoréme.

Dans ses « Figures d’équilibre d’une masse fluide », Poincaré
part de la relation:

%4
U+Q-+K =0 avec Q =%(xz—{—y2),
qui exprime que la surface S est une surface de niveau. Cette
équation donne U sur la surface S, et U peut étre défini partout a

Iextérieur de S par le principe de Dirichlet. La constante K est
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déterminée par la masse totale, comme le montre Poincaré qui
indique a ce propos la théorie des charges électriques en équilibre
a la surface d’un conducteur.

Pour I’extension aux mouvements de genre un, nous suivrons
une route différente qui conduira en méme temps & un autre
résultat.

Soit A I'opération de Laplace; I’équation fondamentale (12):

d=U+Q+K (12)

implique la relation suivante (13), mais n’est pas impliquée par
celle-ci:
AD = AU + AQ . (13)

L’équation (13) exprime, en effet, que les fonctions @ et U 4 Q
qui ont le méme laplacien ne peuvent différer que par une fone-
tion H dont le laplacien est nul, AH =0, c’est & dire par une
fonction harmonique. L’équation (13) est done équivalente a la
relation plus générale que (12):

= UL Q1L KLH, (14)

ou H représente une fonction harmonique & I'extérieur de I'astre.

Mais voici le fait essentiel dont le théoreme de Stokes exprime
un des aspects: si la relation (13) est satisfaite dans la planéte et
la relation (12) sur une surface fermée X quelconque, située elle
aussi dans la planéte ou coincidant en partie ou au total avec la
surface S, I'équation (12) sera satisfaite partout. En effet, la
fonction harmonique H, continue dans ’astre et sur sa frontiére,
devrait étre nulle sur la surface fermée X; elle serait nulle dans
I'astre tout entier. Dans le but que nous poursuivons, on choisira
pour surface Z la surface libre S et sur celle-ci on devra avoir:

U+Q+K=0, (15)

le potentiel @ étant nul sur S qui est une surface & densité
constante,
Or la relation (13) donne, en vertu de I’équation de Poisson:

Ad = — 4xmep + AQ (16)

¢ est la constante de la gravitation universelle.
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De cette derniére relation tirons p, et calculons formellement
le potentiel newtonien U. L’élément de volume sera dz, r sera
la distance du point potentié au point potentiant, les intégrales
triples s’étendent a la masse entiére, les intégrales doubles a la
surface extérieure S. Enfin, nous désignerons par J, S, E, I'in-
térieur de I’astre, la surface libre et I’extérieur et nous ferons
précéder une formule de I'une ou l'autre de ces lettres pour

indiquer que la relation exprimée est valable dans la région
correspondante.
On a done:

brep = AQ — AD , (17)

et le potentiel U est défini par I’équation:

3,8, E 41:U=f[‘f%Ath—fff%A(Ddr. (18)

La fonction @, étant nulle sur S, satisfait a la relation déduite
d’une identité de Green:

S,E f[f Abds = __.ffi?@ds (19)

la dérivée normale étant prise vers 'intérieur. Le potentiel peut
s’écrire:

S, E 47U fff AQd< + ff—l—ﬁds (20)

Mais, sur la surface S, il doit satisfaire a la relation (15), il faut
- donc que 'on ait:

1.8 /fid_?ds _4n(Q+K)—fff%Aer. (21)

A la constante K prés, le second membre de cette derniére
équation ne dépend que de S et w (l), c’est, d’autre part, un
potentiel V créé par une simple couche de densité:

d_(l)
dn °*
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L’équation (21) doit avoir lieu sur la surface S; le A des deux
membres étant nul, elle est vraie aussi dans S. Le second membre
fournit donc le potentiel V, & I'intérieur de la masse; le potentiel
& lextérieur V_ créé par cette simple couche peut étre défini
par le principe de Dirichlet, et I'on sait que la charge est donnée

par I'équation: -
a0 _ _ 1 [dV,  dY,
dn ~— 4xm|dng ' dng |’

A chaque valeur de K correspondrait une charge et une seule;

or, on déduit de I’équation (16) par application de la formule de
Green la relation:

/fj—g’d5=4mm-fffAer. (22)

Je dis que les relations (21) et (22) déterminent entiérement
la dérivée normale de ® a partir des éléments S, (l), M. En
effet, il suffit de s’assurer que la constante K est bien déter-
minée par ces éléments. Pour cela, supposons que K puisse
prendre deux valeurs, K et K’, et soient V et V', ® et ®’ les
fonctions V et & correspondantes; en soustrayant de ’équation

(21) celle que I'on obtiendrait pour la seconde valeur de K, on
trouve:

S, J V,— V. = —4z(K —K’) .

Le potentiel V' = V — V' serait constant dans J, la charge
o g¢_ g% devrait étre partout positive ou nulle, ou
dn dn dn
partout négative ou nulle en vertu du lemme du paragraphe
précédent. Mais elle serait constamment nulle, car on doit

avoir, en soustrayant les deux équations (22) prises avec ® et @':

dq)"
e

Le potentiel V" est donc identiquement nul et 'on a K =K",
Les équations (21) et (22) déterminent entiérement la dérivée
normale:

ArcHives, Vol, 10, — Jauvier-Février 1928. 3
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qui n’est autre que le coefficient de la pesanteur g & partir des
éléments S, w (1), M. 7
Les équations (20), (21), (22) s’écrivent sous la forme équi-

valente:
42U = 1a.Qd— s 1eas (20')
- r - rg ]
ff%gdS:——&n(Q—kK)—ff%AQdS, (21)
bneM =fffAer —}—ffgds F (22%)

De ces considérations rapidement retracées on déduit:
I. Les équations (21’) et (22') déterminent entiérement la
pesanteur g sur la surface libre & partir des éléments S, w (1), M:

g =F|S, w(), M| .

I1. Le potentiel a I'extérieur est donné par la formule (20°) a
partir des éléments observables sur la surface libre S, w (), g:

Uext = FIS, w(l), gl .

I1I. La masse totale est donnée a partir des éléments S, w(l),
g par la formule (22'):

M = F[S, w (1), gl .

IV. Le potentiel a Pextérieur est entiérement défini par les
éléments S, w(l), M:

Uext = FIS, w(l) , M| i

Si la planéte est en équilibre relatif cette derniére proposition
exprime le théoréme de Stokes-Poincaré:

Uaxt = FIS,(D=C, MI:

et la formule (22’) se réduit & la relation de Poincaré:

ffgds = 47eM — 22T ,
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ou T est le volume de I’astre. En effet, on a:

dw?
AQ = 2())2 '-I—‘ 2l2“d_l7 [

et dans le cas de I’équilibre relatif @ = ¢, on a AQ = 2w?2 Le
coefficient de la pesanteur g étant positif ou nul, Poincaré a
déduit de sa relation l'inégalité:

" M

w é27:er-l-‘-'.

On remarquera la ressemblance des formules (20°) et (22°),
d’autant plus frappante que le facteur ¢ pourrait étre explicité
de U.

Enfin la formule (20’) donne le potentiel newtonien a partir
des éléments S, w(l) et g d’'une maniére fort simple et indé-
pendante de la répartition des matiéres a I'intérieur de I'astre.

§ 6. Sur une formule utile pour la géodésie et sa généralisation.

Le potentiel ® du champ de la pesanteur n’est fonction que
de p dans tous les cas ou il existe. Les surfaces & ® constant
sont les surfaces d’égale densité. Comme ce sont ces surfaces et
en particulier la surface libre qui nous intéressent spéciale-
ment, nous allons transformer le laplacien de @ pour faire
apparaitre des éléments intrinséques des surfaces d’égale
densité.

Pour toute fonction V et toute surface X réguliere, le AV
s’exprime en un point de 2 au moyen du paramétre du second
ordre A,V de Beltrami, du double ¢ de la courbure moyenne de
2 au point considéré et des dérivées premiéres et secondes de V
prises suivant la normale & X; les rayons de courbure R, et R,
principaux doivent étre comptés positivement dans le méme sens
que la normale:

dzv 1 1\dV
AV=A2V+E£§_—(E+E;>%,
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En prenant les surfaces d’égale densité ® = a pour surface 2
et @ pour fonction V, le paramétre A,® s’évanouit et il reste:
d*d dod

Bl = o ==t

L’équation (15") s’écrit sous la forme intéressante:

P dd
W—Cd—n-":—!iﬁé‘o—f—ﬁq/ (23)
puis, en remplacant la dérivée normale de @ par la pesanteur g,

on a en tout point de la surface d’égale densité p:

Z—i—-- cg = —h=mep 4+ AQ , (24)
c'est la formule rigoureuse de ' accroissement de g avec la profon-
deur. .

Sur la surface extérieure S, ¢ est mesurable ainsi que p de
sorte que cette relation donne l'accroissement de g quand on
s’enfonce dans la masse, et inversément, si cet accroissement est
connu, on en déduit la courbure moyenne. '

Ainsi une mesure de I’ accroissement du poids avec la profondeur
équivaut a une mesure de la courbure moyenne des surfaces d’égale
densité.

§ 7. Stratification, charge et pesanteur.

Les surfaces d’égale densité seront supposées de révolution.
La stratification sera la répartition des surfaces d’égale densité
au point de vue strictement géométrique, et la charge ou loi
des densités sera la loi suivant laguelle varie la densité quand on
passe d’une surface 4 une autre. Nous admettons en plus pour
une raison de stabilité que la densité croit avec la profondeur et
que la surface de densité maximum se réduit & un seul point
appelé centre. Nous nous donnerons séparément ces deux
éléments au moyen d’un parameétre ¢. Soient S, la stratification
et p(¢) la loi des densités. Le potentiel du champ de la pesanteur
®, n’étant fonction que de p dans tous les cas ou il existe, sera
fonction de ¢ uniquement: ® ().
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Pour I'étude du champ de la pesanteur & lintérieur de la
planete supposons construites les lignes de forces de ce champ,
hgnes a tangentes verticales en chaque point. Les surfaces S,
et . les lignes de forces donnent un systéme de tra]ectmres
orthogonales. La planéte étant supposée de révolution, il suffit
de considérer un plan méridien, et dans celui-ci les lignes de
forces coupent & angle droit les méridiennes des surfaces S;.
Soient § une coordonnée servant i repérer les lignes de forces
dans ce plan, ¢ et § forment un syStéme de coordonnées curvi-
lignes orthogonales. On peut donner a t et § des significations
spéciéles, ¢’est ce que nous ferons, mais cela n’est pas nécessaire.
Pour fixer les idées, ¢ sera le rayon polaire de la surface S, et 0 le
complément de la latitude géographique du point P ou la ligne
de force 6 perce la surface extérieure; ¢’est donc P'angle de la
normale en P et de I'axe de rotation. S sera donné par t = e.

Le coefficient g de la pesanteur devient fonction de ¢ et de
6 ainsi que le déplacement normal dr rapporté & I'accroissement
de ¢, tandis que @ reste fonction de ¢ seul.

‘Posons:

dn
& =Ne o,

cette expression est égale & un sur I'axe polaire N (¢, 0) = 1;
et 'on a:

Sur une surface d'égale densité le coefficient de la pesanteur
varie en raison moerse de la distance de cette surface auz surfaces
infiniment voisines.

Cette propriété bien connue pour I’équilibre relatif subsiste
sans modification pour tout mouvement de genre un, elle
découle de I'existence du potentiel .
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§ 8. Sur deux conditions traduites par des équations intégrales,

Représentons le second membre de I’équation (24) par f(s, 6),
elle s’écrit:

E—eg = (27)
avec la variable ¢ elle prend la forme suivante:

ag
5= cgN + fN . (28)

Elle est linéaire en g, sa solution formelle est:

t
g(t. 6) = w(t, ¢/, 0) [g(t’, ) ___/'H(z', s, )N (s, 0)f(s, B)ds] :
.
(29)

t’ est une valeur arbitraire du paramétre ¢; w représente la
fonction:
o
fc(s, BN (s, b]ds
wit, ¢, 0) = ¢ ’ (30)

cette derniére satisfait a la relation:

du(t, v/, 0) __ dds,
6 70 —c(t, 0)dz = s, °

On sait, en effet, que ¢ dn est le quotient de I'accroissement
d’une aire do, de la surface S, rapportée 4 cette aire. En intégrant
Iéquation précédente de ¢’ & ¢t on trouve:

L, 00 9o
w(e, ', 0) ds, ’

en définitive, on trouve, si 'on tient compte de ce que
p(t'y e, 0) = 1:
da,

u.(t, t, 9) = CF i
1
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La fonction (¢, ¢, 6) est donc égale au rapport des aires de
deux sections d’un tube de force élémentaire par les surfaces S,
et 5;,. Ces tubes de forces ayant leur sommet au centre de la
planéte, il est clair que I'on a:

lim P-(t, t’, B) = O ) lill’l P-(t, t’; e) — + «© ,

t'=> 0 t=>0

w(t, ¢/, Ou(t’, s, 0) = (¢, s. 0),

relations que I'on peut vérifier sur I'expression primitive (30)
de u en tenant compte de ce que la courbure ¢ devient infinie

1 ¢
comme - lorsque ¢ tend vers zéro.

L’équation (29) peut donc s’écrire:

g(t, ) = w(t, ¢, 0)g fp.,s,G)Ns,)(S) :

et en faisant tendre ¢’ vers zéro on trouve:

t

g(t, ) = _fu(z, s, B)N{(s, 6)f(s, 0)ds ,

0

ou encore plus simplement:
s dx
=527 31
f a5, ds! (34)

On pourrait, bien entendu, établir ces valeurs de g plus
rapidement en appliquant la formule de Green du flux et de la
divergence a I'expression A® et & un tube de force élémentaire.

Mais les formules de passage précédentes sont intéressantes.
Si les éléments de Stokes généralisés S, w ([), M sont connus, g
est connu sur S de sorte que I'on doit avoir:

4

gle, 0) = —fp.(e. s, ON(s, 0)f(s, O)ds .  (32)

0

Les fonctions u et N ne dépendent que de la stratification.
Si cette derniére était connue, (32) serait une équation intégrale
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de Fredholm de premiére espéce qui détermine la charge par
Tintermédiaire de f(s, §).
Dans le cas de 1'équilibre relatif, f ne dépend que de s: .

fls) = — 47:sp(s).+ 20? .

En multipliant g(¢, 6) par N(z, §), on doit obtenir g(t, o)
de sorte que I'on peut écrire:

t

g(t, o) = ——fN(t, )N (s, 6)u(t, s, 6)f(s. O)ds .
0

Soustrayons de cette équation celle que l'on obtiendrait
pour une autre valeur §’ et 'on trouvera, en posant:

G, s, 8, 0)) — de do 4%\ (do dz 45
€5 9" =& &), \a &),

t

fG(t, s, 0, 0)fls)ds = 0, (33)

0

dans le cas de I’équilibre relatif. La relation (33) est une équation
intégrale de Volterra de premiére espéce donnant la charge par
I'intermédiaire de f si la stratification est supposée connue.

De la relation de Poincaré w?<2x X densité moyenne, on
déduit que la fonction f est négative au voisinage du centre,
car la densité croit avec la profondeur. Soit #* la valeur de ¢
correspondant & la densité moyenne, on aura de t = 0 & ¢*
Pinégalité j << 0. |

En vertu de Péquation (33), la fonction G (¢, s, §, ') doit
changer de signe, au moins une fois, lorsque s varie de o a ¢,
pour toute valeur de t comprise entre o et i* et quelles que soient
les lignes de forces 6 et 6. Cette derniére condition imposée a la
fonction G ne porte que sur la stratification.

L’étude précédente a mis en évidence la courbure moyenne
des surfaces d’égale densité. Elle est égale a I'expression:

1 |

‘N TR T RE
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R, (¢, ) est la portion de normale allant du point ¢, 54 ’axe de
rotation et R,(¢, 6) est le rayon de courbure du méridien de la
surface S, au point 6.

La courbure moyenne devient infinie au voisinage du centre
de la planéte et I'équation de Volterra (33) est singuliére. En
admettant le droit & dériver sous le signe somme, on en tire
I'équation singuliére: '
3G (¢, s, )

ot

¢
Gt Of@) + fls)ds =0 (34)
0 ;

pour Péquilibre relatif; la dérivée de G contient en facteur
. . i ; 1
la courbure moyenne ¢ qui tend vers I'infini au moins comme o

lorsque ¢ tend vers 0.

On voit combien il importe de savoir ce qu’est la stratification
au voisinage du centre, puisque c’est au voisinage de ce point
que se présente la singularité. Nous avons déja montré que les
surfaces d’égale densité tendent en forme vers un ellipsoide
quand on se rapproche du centre. La démonstration donnée
dans I'article précédent ne supposait pas I'existence des déri-
vées partielles premiéres de la fonction p(z, y, z) au centre
meéme de la planéte. Sous des conditions plus restrictives, on
peut établir la méme conclusion trés simplement, c’est ce que
nous ferons au dernier paragraphe de cet article.

§ 9. Charge et stratification, cas des mouvements de genre un.

Le théoréme de Stokes montre que le potentiel & I'extérieur,
quoique créé par la masse entiére, ne dépend, en fait, que des
élements S, w(l), M. §’il pouvait théoriquement exister deux
répartitions différentes de la matiére & I'intérieur de Pastre,
correspondant aux mémes éléments de Stokes généralisés, on ne
pourrait les distinguer par des mesures faites sur le champ de
Pattraction a I'extérieur. 7 ,

Dans cet ordre d’idée, la formule de passage du § 8, que 'on

peut écrire:
14

glt. 0) = v, e, 0gle. ) — [ultes, ON(s, O)f(s, 0)ds ,

€
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est intéressante. En effet, si la stratification et la charge sont
les mémes de e & ¢, la pesanteur sera déterminée, par les éléments
de Stokes généralisés, d’une maniére unique sur la surface S,,
quelle que soit la distribution de la matiére a 'intérieur de cette
derniére surface, au cas ou il y aurait plusieurs distributions
possibles. Montrons que, la stratification, la vitesse angulaire
w(l) et la masse totale étant données, les densités ne pourraient
bifurquer qu’a partir d’une surface, paralléle aux surfaces infini-
ment voisines, sur laquelle la pesanteur serait constante.

Il en serait ainsi, en particulier, de la surface extérieure si
sur cette derniére deux densités différentes pouvaient convenir
4 la méme stratification.

En effet, appelons 7 la surface & partir de laquelle la bifur-
quation pourrait se présenter et soient p'et p”, H', H", ', " les
fonctions p, H = g (¢, 0) et f correspondant a deux distributions
différentes pour ¢ < =.

On a H' () = H”" (¢) pour ¢ = 7 puisque la pesanteur est
encore la méme sur cette surface. Posons:

H%() = H'()) — H"() .  f*(0) = " — 1" = —b=e(p’ — ") .

On déduit de la formule (28) la relation:

t

H? () = N{t, e)f(cﬂx+ Nf%),ds .

T

Dérivons les deux membres de cette équation et identifions
les résultats pour ¢ = z. On trouve:

au*
2 Ty
Nz, 0)f% () = S .

Si f*(z) est différent de 0, N (7, §) ne saurait dépendre de 0
et la conclusion s’impose, on aurait avec notre choix du para-
métre ¢, N2(z, §) = 1, puis g(z, §) = g(z, 0). Si f*(r) est nul,
dérivons encore une fois ce qui donne:

df*  d2H®

N O =
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et la méme conclusion se dégage si la dérivée de f* n’est pas
nulle; sans quoi on poursuivra jusqu’a rencontrer une relation:

dn f:z: dn-g—l H*

N2(T’ e) d+" d_rn—i—l

qui permette de conclure. La fonction f* n’étant pas identique-
ment nulle pour ¢ <7, il faudrait, pour échapper aux conclusions,

qu’elle ne fut pas représentable par sa série de Taylor au voisi-
nage de la valeur z.

§ 10. Sur les principes du repos et la soustraction des mouvements.

Si la stratification est entiérement constituée par des sphéres
concentriques, la masse fluide ne peut étre qu’au repos absolu.
La réciproque est-elle vraie ?

Une masse fluide hétérogéne au repos n’admet-elle que la
stratification en spheres concentriques ? Cette réciprocité
permettrait d’éviter bien des détours; elle peut avoir plusieurs
degrés de généralité suivant les hypothéses faites sur la répar-
tition des densités. Distinguons alors les quatre principes sui-
vants. |

Une masse fluide hétérogéne au repos dont les particules
s’attirent suivant la loi de Newton ne peut admettre que des
surfaces d’égale densité sphériques et concentriques :

10 si la densité est partout positive et croit de la surface
libre au centre,

20 si la densité est partout positive et varie d’une maniére
quelconque,

3° si la densité croit de la surface libre ou elle est négative
au centre ou elle est positive,

40 si1 la densité est absolument quelconque.

Il est clair que, des particules de signes contraires se repous-
sant suivant la loi de Newton, il faudrait le cas échéant faire
intervenir une pression constante sur la surface libre qui
empécherait la masse d’éclater normalement, mais cela n’est
pas essentiel. Envisageons maintenant deux mouvements de
genre un répondant & la méme stratification et 4 la méme
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répartition des vitesses o (I). Soient p’ et o” deux lois de densité,
o', ", U’, U”, K’, K” les éléments de I'équation fondamentale
correspondants et posons:

E0) = B0 — ') OT() = () — D)
Ux=U’_UH’ K*¥ — K’ — K" .

Les équations relatives & chacune des deux répartitions:
¥ =U+Q+ K, d"=10"+Q+ K",

donnent par soustraction un état de repos absolu, car le terme
Q qui contenait w disparait :

d*() = U¥ + K*, dou U = U*() .

Le fluide qui aurait en chaque point la densité o™ créerait un
champ de Newton normal aux surfaces d’égale densité. Il serait
donc en équilibre absolu. La densité ¢* aurait dans le cas général
un signe quelconque et le quatriéme principe du repos permet-
trait de conclure que, il y a bifurquation des densités, la
stratification est nécessairement sphérique dans sa totalité.

"~ Un autre auteur a donné une démonstration du principe
sous la forme 1°, mais nous avons remarqué qu’elle n’était pas
a I'abri de toute critique. ‘

M. Liapounoff a démontré que la sphére était la seule figure
d’équilibre stable pour une masse homogéne au repos et
M. Lichtenstein a pu s’affranchir dans le cas de ’homogénéité
de la condition de stabilité.

§ 11. Charge et stratification, cas de I équilibre relatif.

Nous appelerons, dans le cas de Péquilibre relatif, densité
transformée, 1'expression:

f= —brep + 2 0y? ,'

et stratification en un point P, la répartition, au point de vue
strictement géométrique, des surfaces d’égale densité au voisi-
nage de P, c’est-d-dire dans une sphére centrée en P est de
rayon arbitrairement petit.
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Soient alors, comme précédemment, ¢ les surfaces d’égale
densité et 6 les lignes de forces du champ de la pesanteur.
L’existence du potentiel dont dérive ce dernier champ permet
d’écrire ’équation vraie, quelles que soient les valeurs 6’ et §”

du paramétre 6:
dn\ _ [ dn
(*"_’d; v \%dt )y

Dérivons par rapport a ¢ les deux membres et tenons compte
de la relation, vraie le long de chaque ligne de force §:

d dn
o = s+ 1o

Aprés un caleul simple on trouve 'identité en 6, 6°, 6":

ﬁ,() fe( )2_(dt+a: dn)__(dn den)’,

iy @ & @)
8\dt )i

7
et cela pour tout mouvement de genre un. L désigne ici le
logarithme népérien. Si la planéte est en équilibre relatif, la
fonction f ne dépend plus de 6 et peut-étre mise en facteur, ce
qui donne:

n n
(@5 g, (5T,
dn dn\? dn\¥

a(3), @)~ (@).

Le premier membre de cette équation ne dépend que de f,
le second ne dépend que de la stratification; plus que cela,
ce dernier ne dépend que de la stratification en un point P,
d’ailleurs quelconque, de la surface ¢, puisque I'on peut prendre
deux valeurs 6’ et §” aussi voisines que 'on veut. Soit W(¢) la

valeur commune des deux membres de I’équation (37). Le

rapport de f & g s’en dégage et ne dépend que de la stratification
au point considéré:

(37)

EW()M'
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Marquons ce stade intermédiaire de nos calculs en formulant
cette proposition:

Le rapport, en un point P, de la densité transformée et de la
pesanteur ne dépend que de la straiification en P.

Pour simplifier par la suite nos formules, particularisons &
nouveau les paramétres 0 et ¢ de telle sorte que la ligne 6§ = 0
soit I'axe polaire et ¢ la distance du pdle nord de la surface libre
au pdle nord de la surface . On obtient sur cet axe polaire:

a8 _ (¢ + W)de ,
g
rapport qui ne dépend, lui aussi, que de la stratification; puis en
intégrant:
g(t, o) = glo, 0)E(t, o) (38)
avec:

t
_ f(c+lr)dt
X, 0) = € . (39)

Enfin, les relations, plus simples dans ce systéme particulier
de coordonnées:

gt o) = g0 0(F), 10 = gl VO

donnent, en tout point P, la pesanteur et la densité transformée,
4 partir de la stratification et de la pesanteur ou attraction au
pole de la surface libre g(0, 0). On obtient en effet

gt 0 = glo, o (5) 20 o) . (40)
) = glo, THT(t. o) - (&)

Nous tirerons les conclusions qui se dégagent de ces formules
au paragraphe suivant aprés avoir défini un cas particulier ou
elles deviennent illusoires et nous reviendrons ici sur la définition
de la fonction ¥ fournissant le rapport f a g.

Le symbole d représentera toujours une différentielle relative
4 un passage d¢ d’une surface ¢ & une surface voisine, ce passage
se faisant suivant une normale, c’est-a-dire & 6 constant.
0 représentera, au contraire, une différentielle relative & une
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variation 06 & ¢ constant, c’est-a-dire que J se rapportera & un
changement de position sur une méme surface d’égale densité.
Toutefois nous ne voyons pas d’inconvénient, pour ne pas
multiplier les notations, 4 représenter par de une aire élémentaire
d’une surface ¢ qui deviendra par transport paralléle dz une aire
de + ddo, sur la surface ¢t 4 di. Nous "aurions pu représenter
I'aire élémentaire do par une autre notation, Do par exemple,
mais je ne pense pas que des confusions soient possibles. On a
comme on sait:

Cdn = —d]-JdG .

En revenant a I'équation (37) ou 6’ et 0” seront considérées
comme les deux valeurs 6’ = 6 et 6” = 6 -+ d6, on pourra écrire:

dn d . dn
F e o (e +7hT)
d_rf - () - . @)z ?
g"(dt )e (dt
puis:
do d?s d’n
ro1%a 15(3‘;—%)
g 2 ddn 2 ddn !

et enfin, si d¢ représente a4 nouveau un déplacement sur I'axe
polaire, on pourra définir la fonction W par la stratification au
voisinage de cet axe :

sdL &2
- 1 dn
T = 2 %dn

Il est bon de remarquer qu’on ne peut pas intervertir au
numeérateur les symboles 0 et d; en effet, 'expression dDo n’a
pas de signification précise puisque les aires (Do), et (Do), 5,
sont sans rapport I'une avec I'autre; au contraire 1’expression:

dDg

8 =
dL Do 8 Do

a une signification parfaitement claire puisque d agit cette fois
sur une fonction de ¢ et de 6 bien définie.
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§ 12. Le cas exceptionnel des sphéres concentrigues.

Les formules donnant f et g a partir de la stratification
deviendraient illusoires si la stratification cessait de définir
d’une maniére univoque la fonction W. Or cette derniere est le
quotient de la densité transformée, fonction continue de ¢
comme la densité elle-méme, par la pesanteur qui ne s’annule
qu’au centre, et cette pesanteur est aussi continue. La fonction
W (t) ne peut étre que continue sur I'intervalle i: 0 =< ¢t <Ta
qui va du pole nord compris: 0, au centre: a exclu. Si le second
membre de I'équation (37) définissait la fonction W sur un
ensemble de points partout dense sur i, la fonction W serait
définie sur i tout entier et le cas exceptionnel ne se présenterait
pas. Pour que ce cas se présente, il faut donc qu’il existe un
intervalle j: #; <t < t, sur lequel le second membre de I'équa-
tion (37) ne fournisse aucune valeur de W. Or ce rapport ne peut
donner lieu & une indétermination que s’il se présente sous la

forme %. Avec le choix particulier du paramétre ¢, on devrait

avoir, quels que soient ¢ sur j, et quels que soient 6, 6" et 6”:

dn - dn -
(a’?)e= 1 § dOll L(I)(,: 0 i dOU Cef = cop .

Les surfaces d’égale densité devraient étre & courbure moyenne
constante; or, parmis les corps de révolutions, il n'y a que les
sphéres qui répondent a ces conditions. Ces sphéres devraient
étre paralléles aussi, donc concentriques. Le cas exceptionnel
est spécialement simple on le voit. Il pouvait étre prévu a
priori puisque le repos complet @ = 0 est un cas particulier et
que des sphéres concentriques peuvent étre chargées d’une
infinité de maniéres qui assurent toutes I'équilibre absolu de la
masse fluide. En résumé, la fonction ¥ ne cesserait d’étre définie
d’une maniére univoque par la stratification que s’il existait une
couche d’épaisseur finie t; <C ¢, de sphéres concentriques. De
ces deux derniers paragraphes se dégage la conséquence suivante:

A part le cas banal des sphéres concentriques, la densité et la
pesanteur sont en tout point entiérement déterminées par la
stratification et Uattraction au péle de la surface libre.
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§ 13. Sur la condition nécessaire et suffisante imposée & la
stratification seule.

~ Notre étude a montré (§ 5) que 'on doit avoir dans toute la
masse:
ADd = — brep 4 202, (42)

et sur la surface libre:
®=U+Q+ K, (43)

ces conditions nécessaires sont aussi suffisantes. Nous en avons
déduit les conditions équivalentes:

E%:cngf, (44) gg = F[S, 0, M| ;  (49)
la premiére doit étre satisfaite dans 'astre entier et la seconde

exprime que sur la surface libre la pesanteur g, doit avoir ces
valeurs stokiennes.

Ces derniéres déterminent sur S la dérivée normale:

{dn\ _ glo, o)
° @)~ e o
et si la fonction W(¢) existe, définie qu’elle est par le second
membre de I'équation (37), la valeur (40) de g:

t
S le+win),_ at
g(t, 8) = 8020

(@)
dt /y
résout I'équation (44).
Or, la fonction W(¢) existe si 'on a, quels que soient 6, 8%, 6"
et ¢:

(47)

il Ly — X,
Yy Yy _ % o , (48)
yoll _— yo .’Borr — .’L‘e

équation d’une droite en z, y out ces variables ont la signifi-
cation suivante:

dn d _dn , dn\?
Yy = (czl—i- -+ EEch)o et z, = (ﬂ)e e

ARcCHIVES, Vol. 10. — Janvier-Février 1928, %
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Les conditions (46) et (48) sont donc nécessaires et suffisantes
pour que U'on ait un équilibre relatif. 11 est remarquable que la
condition (48) ne porte que sur la stratification et soit indépen-
dante de g, de p, de M et méme de w. Quant & la condition a la
limite (46), elle exprime la valeur de la dérivée premiére:

dn
S = F| &5 ) ’ M »
(dt )e | © |

a partir des éléments de Stokes.

: 3 ¢ & de
On montrerait encore facilement que la dérivée (cTt)t , ne

dépend que des éléments de Stokes.

§ 14. Sur un probléme généralisé de Neumann et de Dirichlet.

Le probléme de Dirichlet consiste comme on sait a résoudre
Iéquation A® = 0 a I'intérieur d’un volume T de telle sorte
que, sur la surface S qui limite le volume, la fonction @ prenne
une succession f de valeurs données a l'avance.

Le probléme de Neumann consiste & résoudre la méme

équation dans T en se donnant au contraire la dérivée normale

ad
T sur S.

Si Péquation & résoudre est de la forme AD = ¢ ou AD =210,
@ étant une fonction donnée dans T et A une constante, on a des
problémes de Dirichlet et de Neumann transformés.
L’équation:
AD = — brep (D) + 2w?,

quil s’agit de résoudre en @ et p(®) dans le cas des figures

d’équilibre, & Pintérieur de la planéte, avec, sur la surface libre,

O =0et Z—H(D = g, = fonction donnée est plus générale ; elle

conduit & poser le probléme analytique suivant:
Etant donné un volume T limité par une surface fermée S,
trouver en F(®) et @ (x, y, z) les solutions de I’équation:

AD = F (D) ,
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_—— dd :
telles que @ et sa dérivée normale T prennent sur la surface S
une succession de valeurs données & l'avance: f; d’une part,

fo de I'autre:
b = f et g-g) e

I1 ya donc deux conditions & remplir, celle de Dirichlet et celle
de Neumann, mais on dispose de deux fonctions inconnues F
et ®.

Nous appelerons ce probléme: probléme de Neumann-
Dirichlet généralisé.

Dans le cas des figures d’équilibre, la fonction f; était iden- -
tiquement nulle et la fonction f, coincidait avec le g sur la
surface libre donné par le théoréme de Stokes. Dans ce cas,
comme nous 'avons vu, 'intervention des surfaces a ® constant
était utile puisque c’est 'équation entre rapports harmoniques
(48) qu’il suffisait de résoudre avec la condition de Neumann (44).

Dans le cas particulier ou le fluide satisfait & une équation
caractéristique p = f(p) connue, les fonctions p (D) et F(P)
doivent étre considérées comme données.

Enfin, dans le cas trés spécial ot I'équation caractéristique
serait:

2 2
= = (e’ — po)
a étant une constante, ’équation 4 résoudre s’écrirait:
AP = Xd 1+ 202 .

La théorie de Fredholm permet d’affirmer qu’il ne peut y
avoir qu'une seule solution @, c’est-a-dire une seule répartition
de la matiére possible & Pintérieur de l'astre, & moins que la
surface S ne puisse assurer en méme temps le repos absolu.

§ 15. Etude de la stratification au voisinage du centre.

Nous avons vu le rdle essentiel que joue la courbure moyenne
¢ : vtz : b §
3 des surfaces d’égale densité dans I'étude précédente. Or,

lorsque I'on tend vers le centre, cette courbure augmente
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indéfiniment; il s’agit de savoir de quelle maniére elle tend vers
I'infini, si c’est uniformément, c’est-a-dire quel que soit le
parameétre 0, ou non; & ce propos, les propositions suivantes
sont essentielles: :

a) Les surfaces d’égale densite tendent vers un ellipsoide infi-
niment petit quelle que soit la rotation permanente envisagée si les
dérivées partielles premiéres et seconde de la densité p (x, y, z) sont
continues au voisinage du centre.

b) Dans le cas de Uéquilibre relatif, il suffit que la densité p ait
des dérivées premiéres continues a partir d'une certaine profondeur
pour que le méme phénomeéne se produise.

En effet, soit z, z un plan méridien et partout en cote la
densité p du point z, z. Cela donne dans I'espace x, z, p une
surface g = p(x, 2) qui est convexe au point z = 0, z = 0 de
densité maximum. L’indicatrice d’Euler existe et c’est une
ellipse. D’autre part, on sait que cette ellipse est la forme limite
des intersections de la surface par les plans & p constant. On
peut donc conclure que les méridiens des surfaces d’égale
densité, identiques aux courbes précédentes, tendent vers la
forme ellipsoidale quand on se rapproche du centre.

Pour la validité du raisonnement précédent il faut que
I'indicatrice d’Euler existe, et elle existait puisque les dérivées
premiéres et secondes de p existaient et étaient supposées
continues au voisinage du centre. Maintenant supposons que les
dérivées premiéres existent seules, mais que w soit constant.
Alors la théorie du potentiel nous apprend que U admet des
dérivées partielles premiéres et secondes continues et il en est
de méme de la fonction ¢ qui ne dépend que de p et qui est
maximum au centre. Le raisonnement précédent peut s’appli-
quer & la fonction @ et la méme conclusion s’impose car les
intersections & ¢ constant sont & p constant.

Dans I'article précédent, nous pouvions conclure relativement
4 tout mouvement de genre un, sans faire des hypothéses aussi
restrictives, mais la démonstrations était plus longue.

16 février 1928.
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