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SUR

LA VARIATION DE L’IONISATION
DANS UNE CEPHEIDE A COURTE PERIODE

PAR

Georges TIERCY
(Avec 2 fig.)

(suite et fin)

II. DE L’IONISATION DU SECOND ORDRE.

6. — Eguation.

Une question se pose tout naturellement, en ce qui concerne
les éléments dont la courbe d’ionisation du premier ordre est
presque une droite paralléle a 'axe du temps et d’ordonnée
égale & 'unité. L’ionisation du premier ordre étant achevée, ou
presque achevée, celle du deuxiéme ordre a-t-elle commencé ?

Pour pouvoir répondre a cette question, il est nécessaire
d’établir tout d’abord I'équation fondamentale relative a I'ioni-
sation du deuxiéme ordre.

Le calcul est semblable a celui qui a conduit a 'équation de
I'ionisation du premier ordre 1; mais les coefficients ne sont plus
les mémes, et la constante d’entropie est différente.

Considérons n atomes primitifs de gaz neutre; et supposons
Pionisation premiére achevée; on a n atomes ionisés et n

1 Archives, (5), 9, p. 87 (1927).



6 SUR LA VARIATION DE L’IONISATION

électrons. Supposons qu’ensuite l'ionisation du second ordre
commence; désignons par n, le nombre des atomes simplement
ionisés restants, par n; le nombre des atomes doublement
ionisés, et par n,, le nombre des électrons libérés par I'ionisation
du deuxiéme ordre. N désignant comme précédemment ! le
nombre total des éléments des divers types, on aura:

N=mn+4n;+4+ (n, + n),
ou n est constant.

A une certaine température T le nombre des atomes perdant
un second électron est, par seconde, proportionnel a n;; dési-
gnons-le par «#;; les « recombinaisons » d’atomes doublement
ionisés avec des électrons, et donnant des atomes simplement
ionisés, sont, par seconde, en nombre proportionnel & la pro-
babilité d’une rencontre ; désignoas ce nombre par a'n;; (n,, + n),
les coeflicients « et o’ sont fonctions de la température seule.

Lorsque I'équilibre dynamique est établi, on a:

—_ ! @
an;, = a'n,(n,, + n:
nl,'r.' (n’ee + n)

n;

= K (fonction de T) . (2)

D’autre part, on a, comme précédemment:

" n n P
p;v; = RI p; = ¢P % = N Pi =T
Puvu =RT) Jpy = c;P ny ny; P
C;: — o= R
PeeVee = RT Pee = Ceep " N Pu N
v = RT — ¢cP Ree + n Ree + n
P P Cce+c:_T_ pee+P:M'ﬂ—u'
puis:
hp, = n;RT
hp.. = n.. RT
Pis " ou h =vn, =v,n, =v,n, =vn = VYN = const.
hPGC = nee R’[‘ e e
hp = nRT

v Archives, (5), 9, p. 88 (1927)

3)



DANS UNE CEPHEIDE A COURTE PFRIODE 7
D’ou:
(Pi + Pii + Pee + p)NV = RT ("i + n;; + e + ") ’
et en posant NV == ¢P:
RT
= _F’_(n"+ n,+ n,, -+ n) . (4)

Des relations (3) on tire alors:

Pii (pee ¥ P) R ("u il n)

h = .RT ;

Pi L

et sil’on pose:
i(Pee + P)
K. == . iZ\[Nee o
‘ £ P:
on peut écrire:
K‘!J = KRT ; (9]

K, est donc aussi fonction de la température seule. Soit alors
xle degré d’ionisation du deuxiéme ordre; on a les égalités sui--
vantes, la pression totale relative aux indices i, ii et ee étant
P—p: '

Pa= s ®P—P i Pe=oe(®—p)i pi= s (P —p);
Put P =gz P-p+p="T"TF, (6)
d’ou:
, xn P
Kpﬂk.:fi%”i_i;g—”_);h.x—z;—_t;lf, puisque_p_—_%’;

Nous pouvons dés maintenant négliger DPécriture de la
constante h; K interviendra en effet dans I’équation finale (16)
par son logarithme; et comme cette équation se termine par
une constante d’intégration A, cette derniére contiendra log 4.
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D’autre part, on a:

n .
= ou n = const. ;

n
NT )
N n, 4+ n,; +n, +n

n..
puls & == # , puisque le nombre maximum d’atomes simplement

ionisés est n; par conséquent:

ng,=nr=mn, ; n,=n—nr=n(l —ax;

et finalement:

g r + 2 B x4+ 2 a(x + 1)
N P RN (T I I e ey
2+ x
KP:P2—:):—'—3,' 7)

Et, comme pour l'ionisation premiére, tout revient dés lors
a trouver le nombre K, ; son expression en fonction de x est.
différente, voila tout.

Si U désigne I'énergie du systéme, < son volume, T sa tem-
pérature absolue (constante) et S son entropie, on doit encore
avoir, lorsque I'équilibre dynamique est réalisé et que seuls.
les nombres 7, peuvent changer:

3(8—8,) =0 ;

? 3F =0, on |~':s—cu—+py.

S S 8‘1L+Tp.a¢)9

I

En faisant intervenir les petits éléments (atomes simplement
et doublement ionisés, et électrons), on a:

\ WU = nu; + nyuy + (r, + n)u,

? S = nm;s; —{-‘Er‘zii‘sii + (n, +n)s, + C
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ou bien, en convenant que n, désigne (n,, + n):

U = Xn,u, ,
A= 1,1l,e; 9)
S:_;n?\ +C

la formule de Gibbs donne la valeur de la constante C (au
facteur 2 prés, comme nous le verrons plus loin):

C = —R|[n;Logc,+ n;Logec, + (n,, + n) Log (¢,, +¢)] :  (10)

et Uon sait que les coefficients n, de cette formule de Gibbs
doivent, dans le probléme de la decomposfmon chimique d'un
gaz en deux gaz, étre réduits a leurs valeurs relatives minima.
Et puisque: :
2n,RT = PP, (form. 4) ,
on écrira:

+m

F = E]n1 (s, ) , (r =1,1i,¢),

¢, désignant (c,, + ¢);

ou bien:
.+ RT
= Xn, (f, —RLoge) . ou f T (11
Lorsque les n, varient seuls, on a pour JF:
Z(f, — RLoge)dn =0, (12)

puisque Zny R.dLoge, = 0;
et 'on sait que les dn, sont proportionnels aux nombres »,:

i ce 5 (v = 0 puisque n est const.) .

L’équation (12) devient alors:

hIFA v,
]__A,‘ = v; Log ¢; + v; Loge,; + v, Log (c,, + ) ; (13)

Or, le second membre vaut:

Cii(cee + C) K

— Logc¢ -+ Loge; + Log (c,, + ¢) = Log = Log-ﬁ ;

i
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On a donc la relation:

Cit (cee + C)

L

s ' K = N.

LogK = LogN 4 v;; Loge¢; 4 v, Log (¢,, + ¢} + v; Logec;
(14)

Ensuite, pour savoir comment varie la valeur de K si la
K

d Log (N«)

température T change, il faut étudier la dérivée e———

Le calcul est ici identique & celui qui a été fait pour le cas de
I'ionisation. du premier ordre !; il aboutit & équation (15):

d Log Kp AUP
dT ~ R1I?

(15)

ou AU, est I'énergie & fournir pour dissocier un atome déja
ionisé au premier degré, et en séparer un second électron.
Que peut-on maintenant tirer de I’égalité (15) comme formule
pratique ?
En appelant U, I'énergie nécessaire pour arracher le deuxiéme
électron de 'atome, y;, v,, et y; les chaleurs spécifiques respec-
tives des éléments de décomposition, on aura:

AUP = Uo -+ (Yii + Tee — Yi) T
et, en intégrant 1'équation (15):

G, Yie + Yee — Vi
bog Ky = —gr+ =&

Log T + const. ; (16)

oL a encore:

YiiETee=Ti=_2";
de sorte que 1'égalité (16) s’écrit:

2% + x U, 5 - i
Log(m:ﬁ")):_ﬁ“'ﬁl“’gl"'%‘

L Archives, (5), 9, p. 92 (1927).
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et comme:

1 5

Q = charge de 1 électron = (1,591) . 107 v.e.m. ;
1 volt = 169 u.e.m. ;

nombre d’Avogadro = (60,7) . 1022 ;

R == 1,99 calorie ;

1 calorie = (4,18) . 107 ergs :

on obtient finalement:

2 + x 116096V, 5 -
LOg . (-é—'"—-:‘—'x“——_ x2 e p) = '"“'”"“;']:;““‘“""Q + -2— LOg‘ 1 + AO H
ou bien, avec les logarithmes vulgaires:
x: + x N 5041,9V, 5 e .

L’essentiel est maintenant de déterminer la constante A.

7. — Constante A.
La relation entre les entropies des divers éléments est:

S; + (85,,+5,) 4+ 5,— S = % = somme des constantes
d’entropie des consti-
tuants ;

elle est équivalente, au fond, a I’équation (16); la formule (9)
donne, d’autre part, pour la constante C de Gibbs:
C=8—2Zns =85—(5,4+5,+S,+85):

on a done:
A= —C

A =+ REn.A Loge, ;

A = R[ni Loge; + ny; Loge,; + (n,, + n) Log (€ + c)] . (17)
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Toute la question revient a choisir les coeflicients n;, n;; et
(n,, + n); seront-ils exactement ceux de la formule de Gibbs,
ou faudra-t-il, comme pour I'ionisation du premier ordre, faire
intervenir un facteur de proportionnalité ?

Le raisonnement est le méme que dans le cas de I'ionisation
du premier degré.

Considérons N atomes de gaz primitif, N étant ici le nombre
d’Avogadro; autrement dit, nous considérons un atome-gramme
de ce gaz. Aprés l'ionisation du premier ordre, on a:

Natomes simplement ionisés 4 N électrons .

Supposons ensuite que !'énergie recue de Dextérieur soit
suffisante pour provoquer l'ionisation compléte du deuxiéme
ordre; on obtient & la fin:

N atomes doublement ionisés 4 2N électrons .

Les concentrations sont donc:

et les nombres respectifs d’atomes (iz) et d’électrons sont entre
eux comme 1 est a 2. '

Considérons maintenant la dissociation chimique compléte
d’une molécule-gramme d’un certain gaz, dissociation donnant
N atomes d’un gaz A et 2N atomes d’un gaz B. Les concentra-
tions sont:

et les nombres respectifs d’atomes A et d’atomes B sont entre
eux comme 1 est a 2. La constante d’entropie valable dans ce
cas de décomposition chimique est donnée par la formule de
Gibbs et vaut:

=1 = R[Log% s 2Log§] . (18)

Or, les conditions numériques (concentrations et rapport des
nombres respectifs d’éléments de décomposition) sont les mémes
que dans le probléme de l'ionisation seconde; cette valeur (18)
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couvient-elle donc aussi dans le cas de I'ionisation ? Nous allons
montrer qu’il faut la doubler.

Dans la dissociation chimique, les 3N éléments finaux sont
des atomes; dans le cas de l'ionisation, sur les 3N éléments
finaux, N seulement sont des atomes (d’ailleurs incomplets),
les 2N autres n’étant que des électrons; les deux problémes sont
donc quantitativement différents. :

Dans le cas de dissociation chimique, le nombre (18) corres-
pond a une molécule-gramme de gaz primitif; et c’est pour ce
cas que la formule de Gibbs a été établie.

S’il s’agit au contraire de l'ionisation seconde, la valeur
numérique (18) obtenue au moyen des mémes coefficients
correspond a N atomes de gaz primitif, ¢’est-a-dire & un atome-
gramme de ce gaz.

Si done on veut que la constante d’entropie du probléme
d’ionisation soit rapportée & une molécule-gramme de gaz
primitif, il faudra doubler le nombre (18); car, d’aprés le théo-
réme fondamental sur lequel s’appuie Gibbs, la constante
d’entropie d’un mélange est égale & la somme des constantes
d’entropie des constituants; et puisqu’on double la quantité de
gaz, il faut doubler aussi la constante. On a par cbnséquent
pour A:

1 2
A = QR[LogT + 2L0g.—] : (19)

2R [] 5 ] 2(1,99) (0.82930)
A = a3 g.s+ 89 ] = 0.43429

A = — 7,6000 .

Il faut ajouter que I'introduction de ce facteur de duplication
dans la formule de Gibbs (sur laquelle est basé tout le calcul du
nY 6) ne trouble nullement les égalités qui ont conduit a 1'équa-
tion (16); car, si les coefficients de la formule (10) sont doublés,
il en est de méme des coefficients des relations (9), puisqu’on a
doublé la quantité de gaz primitif; et 1'égalité (13) n’est pas
modifiée.

Nous proposons donc ’équation finale que voici:

x? 4+ x 5041,9V 5
1 ORS00, PR Bk T — — 7,6000 .
og (2 e —--.’L‘“) + 5 log log P ,6

3 T
(20)
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8. — Applications.

Nous pouvons appliquer cette équation a l'un des corps
suivants, dont on connait les potentiels d’ionisation du premier
ordre, ainsi que les potentiels supplémentaires nécessaires pour
atteindre l'ionisation du second ordre.

. . Potentiel
Poids jer Potentiel

Elément Gr : : du gme
ouge moléc. potentiel suppl. c?rdre

He 1 4 24 47 54,18 78,65
G 1 12 (10,—) 24,28 ? 34,28
N 1 14 10,80 24— ? 34,80
(@) 1 16 13,56 32,— 45,56
Mg 2 24 7,61 14,97 22,58
Al 2 27 5,96 18,18 24 14
Si 2 28 8,50 16,27 24,77
S 2 32 10,31 20,00 30,31
Ca 3 40 6,08 11,86 17,94
Sc 3 INA 5,90 12,50 18,40
Ti 3 48 6,50 12,50 19,00
Fe 3 56 7,40 13,00 20,40
n 3 65 9,35 18,20 27,55
Sr 4 88 5,67 10,98 16,65
Cd 4 112 8,95 17,30 26,25

Pour savoir si les éléments, signalés dans SU Cassiopeiae
comme ayant achevé ou presque achevé leur ionisation du
premier ordre, ont déja commencé celle du second ordre, il
suffit d’appliquer I'équation (20) & un corps dont le potentiel
total de deuxiéme ordre soit faible (Sr, par exemple); on fait
le calcul pour la phase du maximum de premiére ionisation,
soit celle de E 69.

Si l'ionisation du second ordre est encore insensible pour le
Sr, & plus forte raison le sera-t-elle pour les corps dont le poten-
tiel total est supérieur a 16,65 volts.
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On trouve:

24 x (3041,9)(16,65) 5 )
| A AT it el 204 LAr
og e e . + 5 log 820% log 0,00%41%5

— 7,6 ;
log 5 =% _ _ 10,2325 + 9,78508 + 2,38248 — 7,6000 ;
g 2
2 —x—=x
x? + x . rerar = ey
log‘) — T;Tl“-) E 6649% — ,33006 ’
2 "
ST 0,000002163
2 —x+4=x

x = 0,0000043 ou 0.00043 9, .

L’ionisation du second ordre n’est donc pas sensible, quoique
le potentiel soit faible; x sera encore plus petit pourle Ca™ ™, et
plus encore pour les autres éléments du tableau ci-dessus.

Examinons le cas du silicium. On obtient:

x? 4 x (5041,9) (24,77) _ L
l —— D — = < s bHYA = ;
R — o + 9,78508 + 2,38248 6000
4 x _
I TE e, . T @ik
- ——— 15,22280 + 12,16756 — 7,6 = 11,34475 ;
x4+ x

T = 0,00000000002212

x = 0,00000000004% ou 0,0000000044 % .

L’ionisation du second ordre est complétement insensible.
Et cela est bien d’accord avec 'observation; les raies de Lockyer
du Sit* (1 4553, A 4568, 4 4575) sont absentes de nos spectres.

9. — Renseignements complémentaires.

Suivons un peu le cas du silicium, et augmentons la valeur
de T; nous sortons ainst du probléeme de SU Cassiopeiae. En
supposant que la pression moyenne reste égale a 0,004145 atm.,
on trouve les résultats suivants:
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T x Ion. du 2™e ordre en %
10000° 4.10-8 (4.10-6) 9
15000° 0,0016 0,16 9
18000° 0,055 5,5 9,
20000° 0,260 26,0 9,
24000° 0,797 79,7 %
30000° 0,989 98,9 9%
32000° 0,996 99,6 9,

L’observation confirme les données de ce tableau en ce qui
concerne le début de I'ionisation seconde du silicium. Les raies
de Lockyer du Si** commencent & étre sensibles dans les spectres
du type Bg, c’est-a-dire pour une température moyenne de
12000° a 13000°, d’aprés Iéchelle des températures que nous
avons indiquée ici-méme 1.

Il ne faut d’ailleurs pas perdre de vue que ce calcul a été fait
en prenant toute la couche renversante de I’étoile, et en adoptant
pour cette couche une température T moyenne et une pression P
moyenne. En réalité, la partie profonde de la couche renver-
sante est beaucoup plus chaude que la partie extérieure; et,
simultanément, la pression qui régne dans la partie extérieure
est plus faible que celle des couches sous-jacentes; I'ionisation
du second ordre est donc certainement plus avancée, dans les
parties profonde et extérieure, que ne l'indique le tableau
ci-dessus; tandis qu’elle est moins avancée dans les couches
moyennes, ou elle présente une valeur minimum. Le phénoméne
de I'ionisation da second ordre suit donc une marche analogae
a celle suivie par I'ionisation du premier ordre, a laquelle le
Prof. A. Pannekcek a consacré un remarquable mémoire 2.

11 s’ensuit que, normalement, I'intensité des raies de Sit+ doit
commencer & étre sensible, dans un spectre stellaire, un peu plus
tot que ne I'indique le tableau. C’est bien ce qui arrive; I'inten-
sité des raies du Si** est mesurable dans les étoiles By (12000°
environ), alors que, d’aprés le calcul appliqué a la couche

t Archives, (5), 9, p. 107, (1927).
2 A. PANNEK@K Bulletin of the Astron. Institutes of the Netherlands
19 (1922).
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renversante entiére, cette intensité devrait encore étre insensible
a cette température pour ne devenir mesurable qu’a partir de
15000° environ.

Le mieux sera donc de reprendre tout le calcul en répartissant
la couche renversante de I’étoile en plusieurs couches concen-
triques, comme on le fait pour I'atmosphére solaire; il est
évident que certaines raies du spectre correspondent aux couches
profondes de la chromosphére stellaire, tandis que d’autres
sont produites par les couches intermédiaires ou supérieures.

Cette nécessité deviendra urgente si 'on veut étudier les
phases ultérieures de cette ionisation Sit+. Le calcul par
Iéquation (20), appliqué a la couche entiére, indique que I'ioni-
sation sera achevée a partir de 30000° de température moyenne;
il semblerait donec qu’on dit observer le maximum d’intensité
des raies du Si* ¥ pour les étoiles de température moyenne égale
& 30000° (types 0).

Or, il n’en est rien. L'observation indique que le maximum
d’intensité des raies Sit™ a lieu pour les étoiles B,, ¢’est-a-dire
pour des étoiles dont la température effective moyenne est de
17000° environ.

Et simaltanément, on observe, dés les étoiles de type By, la
présence des raies du silicium triplement ionisé Sit** (raies de
Lockyer 14089, 14097, 4 4116). Cela signifie que, dans les
parties profondes de la couche renversante, la température
régnante étant de beaucoup supérieure a la moyenne, I'ionisa-
tion du second ordre est achevée et celle du troisiéme ordre
commencée; il en est de méme pour la partie extérieure de la
couche renversante, ol la pression est trés faible. Le phénoméne
est de plus en plus sensible, au fur et & mesure qu’on parcourt la
série des spectres B, B,, By, B, etc.

Simultanément encore, on continue & signaler la présence des
raies du silicium simplement ionisé Sit (A 4128 par exemple)
jusqu’aux types spectraux B, et B,; alors que le calcul effectué
pour la couche renversante « en bloc» donne une ionisation du
premier ordre achevée a partir de 10000°.

Tout cela indique bien clairement qu’il faut traiter séparé-
ment les diverses couches de la chromosphére stellaire; pour
une étoile B, par exemple, les couches inférieure et supérieure

ArcHives, Vol. 10. — Janvier-Février 1928, 2
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donneront des raies du SiT* et SiTTT; dansla couche moyenne
on obtiendra des raies du SiT" et du Si™.

Si maintenant on considére des températures moyennes supé-
rieures a 17000° (types 0), 'ionisation du troisiéme ordre aug-
mente de plus en plus; la température moyenne peut atteindre
25000° et plus, ce qui exige, a la base de la couche renversante,
une température réelle beaucoup plus forte. L’intensité des raies
du Si** diminue donc dés le type spectral B,, alors que celle
des raies du SiT*T augmente de plus en plus, pour atteindre
son maximum avec les types O.

On voit par la que le probléme des intensités des lignes du
spectre est trés complexe; et il n’est guére possible de relier
directement et simplement I'intensité d’une ligne avec le degré
d’ionisation de 1'élément, obtenu en appliquant 1’équation (20)
a la couche renversante « en bloc »; la considération de couches
concentriques s’impose.
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