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130 SEANCE DU 3 NOVEMBRE 1927

rement ces affirmations. Pour faire cette preuve, considérons
une molécule gazeuse arivant en vitesse contre la paroi de sa
prison. Dés que les sphéres d’action de I’éther, qui ’enveloppent
sont en contact avec celles des parois solides, les déformations
de ces masses d’éther commencent et le potentiel de I’éther est
mis en jeu: La vitesse d’arrivée de la molécule gazeuse diminue
et cela jusqu’au repos complet. A ce moment la totalité de
I’énergie de la molécule arrivante est transformée en potentiel
de I’éther protecteur des deux masses de matiéres: molécules
solides, molécules gazeuses. Un temps d’arrét, le potentiel agit.
et la molécule repart, avec une vitesse presque égale, mais en
sens inverse. Elle recommence son allure rythmée au travers
de la prison.

Or le phénomeéne de I’arrét de la molégule, se calcule. C'est la
vitesse d’'une molécule gazeuse ¢, vitesse moyenne du gaz &
zéro a l'arrét. Le second temps c’est sous des forces presque
identiques le départ de 0 = v de cette méme molécule. On
estime ce second temps par la méme durée que le premier. Donc
pendant un temps précis, somme du temps de ’arrét, plus le
temps du départ, nous avons transformé de I’énergie de la
molécule gazeuse en potentiel de 1’éther. Nous savons que
’énergie du potentiel disparait totalement, de toute estimation
de la force-vive actuelle d’un milieu. Donec ¢e potentiel est une
perte dans le bilan de la force vive actuelle des masses gazeuses.
enfermées.

Séance du 3 novembre 1927.

Rolin Wavre. — Sur la masse fluide hétérogéne en rotation et
la géodésie.

On démontre en mécanique céleste * un théoréme trés remar-
quable dit a Stokes: Le potentiel newtonien U d’'une masse
fluide hétérogéne en équilibre relatif est entiérement déterminé
a extérieur par la surface libre S, la vitesse angulaire o et la

masse totale M:
Uext = F(5, w = ¢, M) .

! Poincarg: Figure d’équilibre, page 96.
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Cette importante proposition est relative au cas ou la vitesse
angulaire est une constante w = ¢. Je vais montrer qu’elle
s’étend & tous les cas ou la vitesse angulaire est fonction de la
distance a I'axe, c’est-a-dire & toute planéte dont les couches
d’égale densité sont en chaque point horizontales .

Le détail des démonstrations qui relévent de la théorie des
fonctions harmoniques ne sera pas donné dans cette note.

Soit (") Pexpression de la vitesse angulaire d’une molécule
située a la distance I de 'axe de rotation et soit

12
Q :fw?(i‘z).idl? (1)
0

le potentiel des accélérations. Soit encore U le potentiel new-
tonien et @ le potentiel du champ de la pesanteur qui est ici
fonction de la densité o: ®(p).

Comme on le sait, les équations de I’hydrodynamique,
qui régissent le mouvement, se résument en 1’équation suivante

19|

d=U4+Q—K, (2)

ou K est une constante. Considérons 1’équation plus générale
ou h représente une fonction harmonique & lintérieur de la
masse

®=U+Q—K+# (3)
et 'équation équivalente:

AP = AU 4+ AQ (4)
qui donne, en vertu de I’équation de Poisson

Ad = — 4zep 4+ AQ . (9)

Pour qu’une solution de (5) en p(z, y, z) et ®(z) soit solution
de (2), il suffira que ® soit nulle sur la surface extérieure qui a
une densité constante; on pourra toujours supposer qu’il en est

LG R. Soé. phys. Geneve, 2 déc. 1926.
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ainsi; et d’autre part, que la surface extérieure soit en équilibre
relatif, condition qui est d’ailleurs nécessaire. On devra done
avoir sur S

=0 (6) et U+Q—K=020; (7)

alors la fonction harmonique % sera nulle sur S et par conséquent
dans toute la masse. De I'équation (5) on peut tirer p

brep — AQ — AD

et 'on peut formellement calculer le potentiel U

ot = [ [ [Laeis = [ [ Lavas.

La fonetion ¢ étant nulle sur S on déduit d’une formule
fondamentale de Green 'identité:

Lf s [ s

dd
la seconde intégrale est étendue & la surface S et _—

la dérivée normale intérieure de ®. La formule (9) est valable a
I'extérieur de S et sur S, tandis que la formule (8) est vraie
partout. Le potentiel U, & 'extérieur et sur la surface libre peut

donc s’écrire
:fff_i_AQd- ffii”d_j?ds (10)

Mais le potentiel sur la surface S est également donné par

Iéquation (7). On tire de (7) et (10) la relation valable sur S et
a son intérieur:

ffli—:l:ds_1rh—4zQ—fff—3_—AQdT' (11)

La dérivée normale de ¢ est donc une charge répartie sur la
surface et donnant a 'intérieur et sur S un potentiel déterminé

a la constante & prés. Or la masse totale M donne lieu & la rela-
tion

aneM = bne [ [ fodz = [ faQdz— [ [ [add: (12)

d931gne
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d’ou par Green:

f['zﬁds - 1rsM—fffAQd: (13)

qui détermine la constante K.
La théorie des fonctions harmoniques permet d’affirmer
Iexistence d’une solution et d’une seule des équations (11) et

(13) et I'on pourrait expliciter Li—i)

En portant cette derniére valeur dans l'expression (10) du
potentiel on pourra calculer ce dernier & partir des éléments M,
S et o*(]).

Nous pouvons donc énoncer les propositions suivantes:

I. Dans le mouvement d'une planéte sur elle-méme, que la
vitesse angulaire soit constante ou fonction de la distance [ a
P'axe de rotation, le potentiel U,y & 'extérieur n’est fonction
que de la surface libre S, de la masse totale M et de la vitesse
angulaire o(l):

Ut = F[S, M. w ()] .

Si la vitesse angulaire est constante o = ¢ on retrouve comme
cas particulier le théoréme de Stokes.

II. Le potentiel a I'extérieur est donné par la formule:

) 4x U :_fff—i—AQd- ffl‘iqids

ol Q représente le potentiel des accélérations et ® le potentie
du champ de la pesanteur.

ITI. La dérivée normale

dd
‘) Frieak

n’est autre que le coefficient g de la pesanteur variable d’un
point a 'autre de la surface libre. La formule a) donne done le
potentiel dans tout l'espace a partir des éléments directement
observables par la géodésie.

Uae = F[S, o(l), g] -
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IV. La dérivée normale de ® est déterminée d’autre part au
moyen des deux équations

¢) f["f{—:ll’ dS = 42K — 47Q u_._/"fff__h\er
d) ff%%d.%: amM_fff_\er.

V. La relation (d) donnerait la masse totale M a partir des
éléments purement géodésiques S, w(l), et g

M= F[S, u(l), g] .

Remargue. — Dans le cas particulier ou la masse tourne d’un
bloc, la formule d devient celle de Poincaré

. d P , a0 o
) fandS — 4zKM — 202V

ou V représente le volume de la planete.

Faison enfin un rapprochement entre la distribution de la
densité & lintérieur et un probléme de Neumann-Dirichlet gé-
néralisé.

Pour simplifier envisageons les cas de 1’équilibre relatif.
Le potentiel & étant fonction de p seul, p est fonction de @ seul.
L’équation (5) devient

Ad = —hdzep (D) + 202 (3%)

La surface extérieure S étant donnée par la géodésie, il s’agira
de résoudre I’équation (5’), c’est-a-dire de déterminer les fone-
tions p (®) et @ (=, ¥, z) en imposant & la fonction ®, d’étre nulle

g g dod .y
sur S et d’y admettre une dérivée normale —— donnée a Pavance

(par les équations (¢) et (d) ou par la géodésie). En d’autres
termes, il s’agit de résoudre a l'intérieur d’une surface S une

équation de la forme
AD = /(D)

en déterminant les fonctions f et ® de telle sorte que 'on ait

sur S
b =0 condition de Dirichlet
dd

I — fonction donnée » » Neumann .
n
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On sait I'importance des problémes de Dirichlet et de
Neumann dans la physique mathématique. Tout renseignement
sur le probléme de Neumann-Dirichlet ainsi généralisé sera
instructif pour le probléme des figures d’équilibre des planétes
et réciproquemment.

W.-H. Schopfer. — Recherches physico-chimiques sur quelques
parasites de poissons marins et d’ean douce.

Les résultats relatifs a la concentration moléculaire que nous
avons obtenus avec les parasites de mammiféres, nous ont
incité & continuer nos recherches sur les parasites de poissons.
La question devient encore plus intéressante avec ces derniers.
En effet, chez les poissons d’eau douce nous avons un miliea
intérieur indépendant du milieu extérieur et plus concentré que
~ ce dernier; chez les poissons marins nous pouvens avoir ou un
milieu intérieur isotonique avec de Peau de mer et soumis aux
variations A de cette derniére, ou un milieu inférieur comme
concentration & 'eau de mer.

Nos recherches ont porté sur Eubothrium crassum (Bloch)
parasite de Salmo lacustris L. ainsi que sur un Bothriocéphale et
un Nématode parasite de Scyllum canicula Cuv.

Les petites dimensions de ces parasites, compensées cepen-
dant par leur grand nombre, nous ont obligé & employer la
méthode de I'extrait, imparfaite et donnant des résultats glo-
baux mais pourtant susceptibles d’indiquer un ordre de grandeur
d’une précision suffisante.

1. — Eubothrium crassum (Bloch) (Salmo lacusiris L.).
a) 26 individus provenant des appendices pyloriques d'une
truite de 6 kgs.
A = — 0,933° (moyenne de 6 mesures de — 0°,90 4 — 0°,96)
b) 20 individus provenant d’une autre truite

A = — 1°02

I1. — Bothriocephalus spec. (Scyllum canicula Cuv.).
Quelques individus trouvés dans la région de la valvule
spiralée.
A= —2°—2°10
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