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SEANCE DU 6 mA1 1926 F i3

Raoul PictET. — Quelle est la définition dactuclle de la tem-~
pérature des gaz ?

L’auteur signale les défauts qu’il conviendrait de corriger,
en ce qui concerne la définition de la température dans les
gaz, dans 'enseignement actuel de la physique.

Séance du 6 mai 1926.

G. Tiercy. — Remarque sur la fonction linéaire vectorielle.

I. — On sait qu on appelle ainsi une fonction pp, out ¢ n’est
pas considéré comme un signe fonctionnel, mais comme un
facteur transformant un vecteur en un vecteur, et jouissant de
la propriété fondamentale:

?(py + go) = @y + Fpp -

Ce produit gp d’Hamilton ne contient d’ailleurs pas de terme
constant.

En présentant ledit produit, certains traités indiquent que sa
forme la plus générale est:

e 2 Vagh ,
d’autres qu’il contient des termes des formes suivantes:

[ 10 Vapb, ou a et b sont des quaternions constants;
S 20 gSa’eb’, ot a’ et b’ sont des quaternions constants,
et ¢ un vecteur constant;
3° mp, o m est un scalar;

¢’est-a-dire qu’on a:
p = EVapb -+ EaSa’pb’ + Em,p .

2. — Rappelons d’abord que tous les termes appartenant aux
trois formes indiquées ci-dessus peuvent se ramener A une
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somme de termes du type AS2,p, ol A et A, sont des vecteurs
constants. Voici une démonstration:
Termes de forme mp. — On connait la relation fondamentale:

¢=—(aSa’p + 3SFs + ySy’p) = — ('Sap + §'SEe + ¥'Sys) ,
(1)
ou a, f3, v sont trois vecteurs constants quelconques non copla”

naires, et ol &', §’, y' constituent le systéme réciproque du sys-
téme a, 3, 53

’ VBY Br__.__VYa'. [g—
— Safy’ YT SaBy’ ! Safy ’

La proposition est donc établie en ce qui concerne les termes
de forme mp.

Termes de forme ¢ Sa’p b’. — En décomposant a’ et b’ en leurs
parties scalaires et vectorielles, on a:

a’ — a; + a; ! ’ r
’ , (e, et b, parties scalaires) ;
[ ge—
b = b+ b,
r r ’ ’
eSa'pb’ = sS(a, + a)p(b, + b))
r r ’ ’ ’ ’
= oSapb + sSapby + sSab ;
5Sa’sl = a sSgbh, + b sSa, Sa,pb, ;
s3a'pb’ = a sSpb + boSap 4 aSa b, ;
’ bl .
et, avec a6 = g, et O,¢ = qg,:

! ' qror
cSa'pl” = o, Spb + ,5ap + eSpVba, ; (2)

ce qui démontre la proposition pour les termes de la 2€ forme.
II est & remarquer que les trois vecteurs du second membre sont
portés par I'axe de .

Termes de forme Vapb. — En décomposant les quaternions a
et b en leurs parties scalaires et vectorielles, on obtient:

Yagb = V(a, 4+ a,)e(by + b,)
= ayb,¢ + a,Veb, + bVNa,p + Va b, .
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Or, si a,, p et b, sont trois vecteurs, on a toujours:

Va,pb, = a,Spb, — gSa, b, + b, Sa,p ,

¢e qui donne:

Vaph = (a,b, — Sa, b))c + a,Spb, + b,Sa, 0 + a,Vob, + bVa,p

(3)
Le premier terme du second membre est de la forme mp; les
deux termes suivants sont directement du type 252, p; il reste

done a étudier les deux derniers termes:

a,Nob, + bVa,o .

Pour cela, on connait la formule générale:

V.VEn Vit = tSEn{ — {SEqT ;
faisons-y:

VEq = ;

1l vient:

V.pVi{t == t8p0 — {Sprt ; (5)
comme dans les termes (4), les vecteurs b, et a, sont constants,

on peut toujours les remplacer, et cela d’une infinité de maniéres,
par:

b, = V(% et

a, = Veo ,
oug, z, €, ¢ sont des vecteurs constants. On a done de (5)

Vob, = =Sp{ — {Sp=x,

(5)
Vap = — (9Spe — e5p9) 3

et la proposition se trouve établie pour les termes de la forme
Vap b.

Conclusion. — On a ainsi la relation trés importante:

pp = DASkop . (7)

et 'on sait que cette forme (7), en définitive, ne dépendra que
de trois termes, c’est-a-dire de six vecteurs constants.
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3. — Mais remarquons qu’il est inutile de signaler spéciale-
ment les termes des deux premiéres formes.

Termes de la forme mp. — lls sont compris dans 'expression
EVapb. En effet, pour que le deuxiéme membre de (3) se ré-
duise & son premier terme, il suffit de choisir:

a=0>0=a,+ a
d’ou:

Vaga = [a: + Tza‘]p + 24a,Sa,0 ;

puis de prendre a, = 0; a et b se réduisent alors a des constantes
scalaires; et il vient:

Vaspa, = arp ; (8)
forme mp.

Termes de forme ¢ 5a’p b’. — Un tel terme peut-il se réduire a
la forme Vapb ?
On a vu que:

Vapgh = — m(aSa's + ESE + vSY'p) + «,Seby + 4, Sa;¢
+ a,tSpl — a,{Spt — by9Spe 4+ bysSco ; (9)
ou:
m = (a,by — Sa, b)) ,

a, = Veg , b = Vig 1

et out ay, by, &, B, ¥, &, 7, €, @ sont & disposition.
I} s’agit d’identifier le second membre de (9) avec le second
membre de:

GS“IP b.’ — G[a;SPb; + ,l;sa;.? + SPV”);G/:] ’ (2)

ou a,, b,, a,, b, et ¢ sont donnés.

Comme on dispose au total de deux scalars et de sept vec-
teurs, on peut réaliser la passage d’une infinité de maniéres.

Il est par conséquent inutile de signaler les termes du type
g3a2'p b’; ils sont compris dans la somme EVagb.

11 suffit donec bien de donner, comme forme générale de ¢z, la
forme:

= SVagb . (10)
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