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Raoul Pictet. — Quelle est la definition actuelle de la
temperature des gaz

L'auteur Signale les defauts qu'il conviendrait de corriger,
en ce qui concerne la definition de la temperature dans les

gaz, dans l'enseignement actuel de la physique.

Seance du 6 mai 1926.

G. Tiercy. — Remarque sur la fonction lineaire vectorielle.

1. — On sait qu on appelle ainsiune fonction yp, oü 9 n'est

pas considere comme un signe fonctionnel, mais comme un
facteur transformant un vecteur en un vecteur, et jouissant de

la propriete fondamentale:

?(Pl + Pj) + TP2 "

Ce produit <pp d'Hamilton ne contient d'ailleurs pas de terme
constant.

En presentant ledit produit, certains traites indiquent que sa

forme la plus generale est:

p 2 ^a p'' >

d'autres qu'il contient des termes des formes suivantes:

/ 1° Yapb, oü a et b sont des quaternions constants;
J 2° <jSa'pb', oü a' et b' sont des quaternions constants,
] et <7 un vecteur constant;

3° mp, oü m est un scalar;

c'est-ä-dire qu'on a:

®p -p 2'"? '

2. — Rappeions d'abord que tous les termes appartenant aux
trois formes indiquees ci-dessus peuvent se ramener ä une
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somme de termes du type XSXip, oü A et Äi sont des vecteurs
constants. Voici une demonstration:

Termes de forme mp. — On connait la relation fondamentale:

p — (aSa'p + ßSß'p -f- "fSy'p) — (a'Sap + ß'Sßp -f- y'Svp)

(1)

oil a, ß, y sont trois vecteurs constants quelconques non copla"
naires, et oü ß', y' constituent le Systeme reciproque du
Systeme cx, ß, y:

a' - _ Hl e> _ _ Vt- _ Vaß
Saßf' ' Saßy' S a ß -f

La proposition est done etablie en ce qui concerne les termes
de forme mp.

Termes de forme aSa'p b'. — En decomposant a' et b' en leurs

parties scalaires et veetorielles, on a:

a' — % + a[
< (a et b parties scalaires) ;

(* *;+>\.

u S a'p b' nS(a'Q + a^)p(^ + '>[)

oSa^p iq + aS^p b0 + bt ;

öSa'pb' a aSob. •+- b aSao -|- öS«,oli, ;i o ' i o ik 1 i»A

et, avec a^a — a1 et frjer o-,:

aS a'ob' a So b + a Sa o -4- aSpVi a, ; (2)
k 1 k 1 1 2 1 k 1 • 11 ^ '

ce qui demontre la proposition pour les termes de la 2me forme.

II est ä remarquer que les trois vecteurs du second membre sont

portes par l'axe de <s.

Termes de forme Yapb. — En decomposant les quaternions a

et b en leurs parties scalaires et veetorielles, on obtient:

Vapfc V (a0 + a,)p(fc, + 6,)

aoho? + + *.V«,P + yai?hi
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Or, si au p et bt sont trois vecteurs, on a toujours:

VöjpAj a1Spbl — pSalb1 + b1Sa1p

ce qui donne:

Xapb =: (a(tba — Sa1b1)p + a1Spbl -f- b1 Sa, p -)- a0Xpb1 -)- />0Va,p

(3)

Le premier terme du second membre est de la forme mp; les

deux termes suivants sont directement du type 7Sltp-, il reste
done ä etudier les deux derniers termes:

ö0VP''l + A0VfllP (4)

Pour cela, on connait la formule generale:

V.V?-/)V= tS?T|S — ^S?r)T ;

faisons-y:

V?ri p ;

il vient:

V.pV£T TSp£ — £Spt ; (5)

comme dans les termes (4), les vecteurs bx et at sont constants,
on peut toujours les remplacer, et cela d'une infinite de manieres,

par:
:= V£t et «j Vso

OÜ £, r, g, cp sont des vecteurs constants. On a done de (5):

Vpfcj tSp; — ?SPT ^
Y«jp — (®Sps — £Sp<p) ;

et la proposition se trouve etablie pour les termes de la forme

Yapb.
Conclusion. — On a ainsi la relation tres importante:

TP 2XSX1? '

et 1'on sait que cette forme (7), en definitive, ne dependra que
de trois termes, c'est-ä-dire de six vecteurs constants.
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3. — Mais remarquons qu'il est inutile de signaler speciale-
ment les termes des deux premieres formes.

Termes de la forme mp. — Iis sont compris dans l'expression
2Yapb. En effet, pour que le deuxieme membre de (3) se re-
duise ä son premier terme, il suffit de choisir:

a b a0 + ar ;

d'oü:

Vapa £ajj + T* aJ p + 2a1Sa1p ;

puis de prendre a, 0; a et b se reduisent alors ä des constantes
sealaires; et il vient:

Va0 pa0 a\p ; (8)

forme mp.
Termes de forme vSa'p //. — Un tel terme peut-il se reduire ä

la forme Yap b

On a vu que:

V« p b — — m(aS a'p -{- ß S ß'p + Y S y'p) -|- a, S p bl + A, Sa, p

+ a0tSp£ — a0 £ S p t — b0<pSpe + batSpo ; (9)

oü:

m (a0 b0 — Sa, A,)

|
a, Vse A, Y£- ;

et oü a0, b0, «, ß, y, £, r, g, <p sont ä disposition.
11 s'agit d'identifier le second membre de (9) avec le second

membre de:

aSa'pb' — aj^SpA, + AoSa,p + SpVA,aJ (2)

oü a't, b'0, a[, b't et <r sont donnes.
Comme on dispose au total de deux scalars et de sept vec-

teurs, on peut realiser la passage d'une infinite de manieres.

II est par consequent inutile de signaler les termes du type
eSa'pb'-, ils sont compris dans la somme 2Yapb.

11 suflit done bien de donner, comme forme generale de yp, la

forme:

9p 2v®p6 • (10>
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