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SUP [eS mouvements internes
et 1a stratification des corps célestes

PAR

Rolin WAVRE

On sait que le Soleil, Jupiter, Saturne ne tournent pas d’un
bloc autour de leur axe de rotation. L’équateur fait un tour en
moins de temps que le voisinage des poles.

C’est un résultat d’observation que la vitesse augulaire est
fonction de la latitude sur la surface libre.

Montrons qu’il est trés vraisemblable que toutes les particules
d’'une méme paralléle a U'axe tournent avec la méme vitesse.

Cette propriété si simple sur les mouvements internes ne semble
pas avoir été apercue par les auteurs qui apreés Clairaut, Poincaré
et M. Volterra se sont occupés des figures des planétes et du
mouvement d’une masse fluide hétérogéne sous l'influence de
Pattraction de ses particules.

M. Véronnet ne la mentionne pas dans le numéro du Mémo-
rial (fasc. XIII, 1926) ou il synthétise les résultats obtenus sur
ce sujet.

Envisageons donc un fluide parfait composé de couches de
densité p qui soient des surfaces de révolution autour de I'axe
des z. Chaque molécule décrira un paralléle avec une vitesse
angulaire @ (22 4+ w2 z). Soit p(z, y, z) la pression et
U (z, y, z) le potentiel de Newton.
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§ 1. Les mouvements inlernes.

Les équations de I’hydrodynamique qui régissent ce mouve-
ment s’éerivent:
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Elles donnent lieu a la relation:

sy Ol _op 0P 5 e o
dp_bxdx—iaydy—ﬁ—azdz_p. ;
H = dU + o?(xdx + ydy) ;

p Joue done le role d’un facteur intégrant, et il est facile de véri-
fier que l'expression H en admet un.

Avec les auteurs précédemment mentionnés imposons-nous
la condition trés naturelle : |

La pesanteur doit étre en chaque point normale & la surface
d’égale densité passant par ce point.

Alors la quantité H sera nulle ainsi que dp, il ne faut pas
Poublier, sur toute surface & p constant.

La pression p sera donc constante a densité constante; p est
fonction de p seulement.

Le facteur intégrant p (z, y, z) a donc sous la condition A)
une forme extrémement simple :

_ e = rI{p) -
Mais alors H est la différentielle totale de la fonection :
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et les équations du mouvement s’écrivent:

oP U 0 Q
_— — = w2x _— = (l)sz'
dx 0x ox
oP U \ 2Q .
T — T = wY ou — = wY
oy 0y oy
oP 2 U
L__.. —_—— 0 b—(2 == 0

03 A3z 0z



332 SUR LES MOUVEMENTS INTERNES

en posant :
P—-—U=4Q.

Mais Q ne dépend pas de z, gg_ non plus, de sorte que w ne

saurait en dépendre.
On a donc:

— =0 cest-a-dire o = f{x? + ¥?) .

Et il existe un potentiel des accélérations :
{
, 1
Q :fzu‘([)7d12 ,
]

obtenu en posant [2 = 22 4 y2

La vitesse angulaire ne dépend que de la distance a I axe.

(est une conséquence des équations de I’hydrodynamique
et de la eondition imposée par les auteurs précédents.

Ce résultat relatif & un fluide parfait obtenu, doit-onle transfor-
mer dans le concret pour les corps célestes?

10 La température. Si les surfaces, voisines de sphéres con-
centriques, d’égale pression et d’égale densité sont aussi
isothermes lorsque la profondeur est appréciable, ce qui est trés
eraisemblable, cette intervention de la température n’altére
pas nos conclusions. '

20 Le frottement. S'il y avait une viscosité dont il fallt tenir
compte, il y a longtemps que le Soleil, Saturne et Jupiter tour-
" neraient d’un seul bloc, le frottement aurait rendu imper-
ceptible le mouvement des zones les unes par rapport aux
autres. A-t-on jamais observé un ralentissement des mouve-
ments relatifs des zones paralléles ? La viscosité est donc tres
faible et il ne semble pas qu’il y ait lieu de la faire intervenir
en premiére approximation.

Notre proposition ne laisse donc subsister dans le concret,
pour le soleil et les grosses planétes, que de tres faibles doutes.
Et pour un fluide parfait nous I'avons démontrée.

Un fait & remarquer ¢’est que notre propriété est indépendante
de la stratification, c’est-a-dire de la répartilion des matiéres.
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§ 2. La stratification.

Le but de ce paragraphe est d’indiquer de nouvelles équations

fonctionnelles pour la détermination des figures d’ethbre des
planétes.

Distinguons quatre degrés de difficulté du probléme.

I. Masse liqguide homogéne incompressible au repos.

Soit V le volume liquide considéré, S la surface qui le limite;
a, b, ¢ un point de V, z, y, z un point de I'espace.
Le potentiel au point z, y, z sera:

Uy = of [ f 4

p étant la densité du liquide et » la distance des deux points
a, b,cetz,y, z
La variation du potentiel sera:
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mais la quantité entre crochets est une divergence; dv s’expri-
mera donc au moyen d’un flux au travers de la surface S:

dU:_Pf'fadw—{— B:ly—}—ydzd

a, 3, 7 sont les cosinus directeurs de la normale 7 & la surface S
au point a, b, ¢ de celle-ci.
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On peut donc écrire:
dU ::—pdsffwdc ,
8

d désignant la direction du déplacement ds du point potentié
Z, Yy 2. |

On sait que Gauss a obtenu pour le potentiel lui-méme
I’expression suivante :

1
U:—Epffcos(r, nds ;
)

notre expression en est la forme différentielle.

Pour que la masse fluide soit en équilibre, il faut et suffit que
la surface S soit équipotentielle; de sorte que, pour toute direc-
tion d tangente a S, on doit avoir :

ffcos (;:l n)do_ — 0. (1)
S :

c¢’est la premiére équation fonctionnelle que je me proposais de
donner.

Permet-elle de démontrer que la sphére seule est figure
d’équilibre, je n’ai pas entrepris cette recherche.

11. Equilibre relatif d’une masse ﬂuiafe homogéne et incompressible.

La masse tourne maintenant d’un mouvement d’ensemble
autour d'un axe oz avec une vitesse angulaire constante w. Il
suffira d’adjoindre & U le potentiel de la force centrifuge.

La condition d’équilibre s’exprimera sous la forme :

dx dy\ __ cos (d, n)
coz(xzsm ~]—‘yds>___g:l[;f—r-~—dc, (2)

équation a satisfaire quel que soit le déplacement ds sur S.

111. Equilibre relatif d’une masse fluide hétérogéne.

Distinguons la répartition S,(0 << 1) des surfaces &
densité constante et la densité p(¢) de la couche répartie sur
la surface S,.

En appliquant au calecul du potentiel de notre masse de
configuration quelconque un procédé indiqué par MM. Hamy
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et Véronnet pour des couches ellipsoidales, en considérant le
fluide hétérogéne comme une superposition de fluides homo-
genes remplissant les volumes V, limités aux surfaces S;, le
potentiel s’écrira, en affectant d’un indice ce qui est lié aux
variables d’intégration:

1
=
L’artifice de calcul indiqué sous la rubrique I s’applique ici

et donne :
1
—_— de(t') ,, cos(d, n') ,
v __h[ e ar [ f 22 d
Ry

) t'

Vyr

Exprimons que le potentiel total est constant sur chaque sur-
face S; et nous obtiendrons I’équation :

dx dy do () cos (d n')
2 - _dJ '
)(xds-i—yd_s) dt, df[ da'. (3)

Sy

Nous avons supposé la densité nulle sur la surface extérieure.
Si elle n’est pas nulle, il faut ajouter aux seconds membres des
trois équations précédentes un terme qu’on imagine facilement.
Soit:

a = alu, v, 1), b= b, v, V), ¢ el ¥, )

x=x(w, v, t) , y=qyu, v, 1), 3 = z(u. v, )

la représentation paramétrique des surfaces Sy et S,. 1l faudra
que 'équation (3) soit satisfaite quelles que soient la valeur de ¢
et les différentielles du et d¢, de sorte que cette équation (3)
donne lieu 4 deux équations de la forme:

F(t, u, v) fffl‘l w, v, ', u, vdt'du'dv' .
0 0

C’est 1a une équation fonctionnelle du type de Fredholm. En
supposant la répartition géométrique S, donnée, H qui repré-
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sente la dérivée de la densité sera seule fonction inconnue et
I’équation précédente est bien une équation de Fredholm de
premiére espéce. Si les surfaces S, sont de révolution, nous
n’aurons qu'une équation a satisfaire: celle quicorrespond a un
déplacement suivant un méridien. _

La théorie des équations intégrales laisse prévoir qu’il n’y a
que certaines répartitions géométriques qui seront susceptibles
de provoquer un mouvement d’ensemble quand encore on les
aura chargées convenablement.

L]
IV. Le cas général.

Il ne différe du précédent qu’en ceci: au lieu de supposer o
constant, on pourra se donner un @ variable, pourvu que cette
vitesse angulaire ne dépende que de la distance a I’axe comme
le veut notre propriété o = f(a® + y?).

On pourra se donner o (z2 4 y?), quantité connue, puis-
qu’elle est observable & la surface libre. Les surfaces d’égale
densité sont ici de révolution et unique équation de Fred-
holm (3) donne lieu aux mémes remarques que le cas précédent.

La stratification s’obtiendra en cherchant les noyaux:

(l) = f'“/.‘——-——uos (f’ ’1’) dc’ y

Sy

. . . ds(t
qui assurent I'existence d’une solution ‘dﬁ, ), (est sous cette

forme que se traduit pour nous la recherche du domaine d’inteé-
gration qui est précisément I'inconnue.

Pratiquement, quand il faudra rejoindre les mesures, on
tiendra compte des données suivantes:

10 la masse totale qui fournit-un invariant intégral connu,

20 la répartition des vitesses dans toute la masse,

3° la surface libre S, ou, ce qui revient au méme, les fonc-
tions:

xr = x(u, v, 0), y = ylu, v. 0), z = zla, v, 0) .

Peut-étre ces données permettent-elles de résoudre 1'équa-
tion (3) de proche en proche.
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