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1926 Vol. 8 Juillet-Aout.

'ellipsoide fluide hétérogéne en rotation

ET
LA THEORIE DES DERIVES CONTINENTALES

PAR

I"ierre DIVE

Jusqu’ici les études sur Dellipsoide fluide hétérogéne en
rotation avaient pour but essentiel la détermination de la
forme d’équilibre des corps célestes et spécialement de celle de la
Terre.

La théorie des translations continentales de M. Wegener
vient de leur donner un nouvel intérét. Et ¢’est dans 'intention
d’apporter une modeste contribution a cette théorie que nous
avons repris ces recherches.

I. L’ATTRACTION DES MASSES
ET LES SURFACES DE NIVEAU DU FLUIDE,

Nous admettons que le fluide considéré est formé d’une infinité
de couches ellipsoidales minces, homogénes, dont la densité
croit quand on s’approche du centre.

Les mesures géodésiques ayant prouvé que la Terre est trés
sensiblement un ellipsoide de révolution, nous poserons en
hypothése fondamentale que les couches envisagées ont cette
forme. D’ailleurs, les corps de révolution semblent, en pre-
miére approximation an moins, étre seuls réalisés dans le sys.
téme planétaire.

ARcHIVEs. Vol. 8, — Juillet-Aont 1926. 12
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Le probléme que nous nous proposons de résoudre est alors le
suivant:

Chercher sous quelles conditions la rotation imprimée aux
molécules du fluide peut conserver aux couches leur forme
ellipsoidale.

Pour cela, nous exprimerons que chacune d’elles est une
surface d2 niveau, ¢’est-a-dire une surface dont tous les points
sont 4 la méme pression’; et cela revient a écrire, d’aprés I’équa-
tion fondamentale de I’hydrodynamique:

1dp = Xdx + Ydy 4+ Zdz ,

¢
que la résultante X, Y, Z de ’attraction des masses et de la
force centrifuge agissant sur une molécule est normale a la
couche sur laquelle on considére cette molécule *.

§ 1. Les composantes de Uattraction des masses en un point.

Cette attraction est la résultante des actions de toutes les
couches minces sur le point matériel considéré. Nous calculerons
donc laction différentielle d’une couche ellipsoidale mince
homogene en un point; puis nous « sommerons » les actions de
toutes les couches en ce point.

A cet effet, nous chercherons d’abord les composantes de
Iattraction produite en un point par une couche d’épaisseur
finie, homogeéne, de densité p, comprise entre deux ellipsoides.
(E,) et (E,;) concentriques et semblablement orientés.

1 Nous étendons éventuellement la définition du terme surface de
niveau au cas général d’un fluide animé de mouvements intérieurs.

? En suivant notre méthode, que nous avons tenu a pousser aussi
loin que possible, nous avons retrouvé quelques résultats déja
~obtenus par M. VEroNNET, dans sa thése : Rotation de Pellipsoide
hétérogéne et figure exacte de la Terre, Gauthier-Villars, Paris, 1912.
Cependant, nous devons signaler que la formule 14 de cette thése
se trouve étre en contradiction avec certains points de notre dis-
cussion sur la variation de la vitesse angulaire du fluide en fonction
de la latitude et de la profondeur, dans les différents cas possibles
d’aplatissement des couches; discussion qui est nouvelle 4 notre
connaissance. (Cf. notre note a la Société de physique et d’histoire
naturelle de Genéve, Archives (5), 8, suppl. No 2, avril-juillet 1926.)
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1. Les formules donnant les composantes de Iattraction
d’un ellipsoide homogéne en un point (z, z) intérieur a cet
ellipsoide sont *:

1+ k
X :—anf_———-i_—s—— arctg A — —— )& ,
i k 1 4+ k
1+ i
7 = = ércpf,hj;;é——(/f—uarctgk)z ;
4

k désignant toujours le rapport % relatif a la méridienne de
Pellipsoide.

Si le point agi est extérieur, les composantes de Iattraction
sont données par les formules analogues aux précédentes:

X 2rof, T "'2( t o )x
N = —dnof, 35— arclg § — —— ’
. /1‘3 1+82

1 4 &
7z — — "zFf-—ﬁ—a(s_ ar(-.tgs): -
¢ 3

mais dans lesquelles s désigne le rapport% relatif a Dellipsoide

passant au point (z, z) et homofocal de 'ellipsoide massif;
s est donc une fonction de b, z et z°.
Nous poserons, pour abréger I’écriture:

2

A U
]——"ka—’
P :2xf(arctg/t—-—]r—2\ ,
)

W = 4nf(k — aretg k) ,

(I)(s) = Qxf'(arctgs — 7 _; 32) ;

W (s) = 4=f(s — arcigs) .

1 Le potentiel d’ott dérivent les forces d’attraction d’un ellipsoide
massif a été obtenu par Chasles en décomposant cet ellipsoide en
une infinité de couches minces (homoides) comprises entre des
ellipsoides concentriques et homothétiques infiniment voisins, et en
sommant les actions de ces couches sur un méme point matériel.

2 Plus loin. (n° 10), nous définirons implicitement cette fonction.
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2. Les composantes de [I'attraction de la couche
(AE) = (E,) — (E;) en un point intérieur sécriront alors
simplement:

AX = X, — X, = p(jy®, — j, &) = pA](j®)a .
[ 14 14

AZ =17, —Z, = p(j, ¥, — j, W)z = pA](j V)=,
1

i 2

Le symbole A désignant, selon la notation habituelle, un

accroissement fini.
Si le point agi est extérieur, on aura de méme:

AX =X, — X, = pAifj(IJ(s)}x ,

(e) € € €
AZ =2, —Z, = cAl[j¥(5)]= . (szﬁ>
e e 4
3. Pour passer au cas d'une couche infiniment mince, il
suffit de remplacer, dans les formules précédentes, A par le
symbole différentiel d; les composantes de ’attraction devien-

nent donc dans ce cas:

dX = pd(jd)x ,
14

I?Z = ed(j¥)z ,

A

("

en un point tntérieur, et:

g dX = pd[j‘b(s)];r',
(¢')

€

Il

| dZ = od[j¥(s)]= ,

\
\

en un point extérieur.

4. Ceci posé, pour obtenir les composantes de l'attraction
totale de l’ellipsoide hétérogéne en un point de sa masse, nous
remarquerons qu’en vertu de nos hypothéses physiques, une
seule couche passe en un point déterminé et que, par suite, 'en-
semble des méridiennes des différentes couches constitue une
famille de courbes dépendant d’un seul paramétre. Le choix
de ce paramétre est a priori indifférent. Par exemple, il peut
paraitre simple d’adopter le parameétre £ qui figure seul dans
les formules (¢"); nous ne le ferons pas, car nous ignorons si ce
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paramétre varie toujours dans le méme sens quand on passe
d’'une couche a la suivante en s’enfoncant a I'intérieur du
fluide, et parce que nous ne savons pas non plus si ce parameétre
a une limite quand on s’approche du centre. Nous éviterons
aussi de choisir le grand axe des ellipses méridiennes puisque,
dans ces mémes conditions, nous ne connaissons pas la limite
vers laquelle il tend (les ellipsoides étant aplatis, cette limite
peut étre nulle ou différente de zéro).

Le choix de I'axe polaire b, pour caractériser une ellipse
de la famille, ne présente aucune de ces difficultés; nous nous
y arréterons. Dés lors, le grand axe q, le rapport % et tous les
éléments de cette ellipse sont des fonctions de b:

a = a(b) , k= k(b) .

5. Considérons maintenant un point (z, z) situé a l'intérieur
du fluide sur une couche f. |

Les composantes de l'attraction totale en ce point s’obtien-
dront en faisant séparément, suivant chacun des axes ox et oz,
la somme des composantes des actions élémentaires de toutes
les couches de 'ellipsoide hétérogeéne. '

Par suite, les composantes de I'attraction du fluide au point
(x, 2) s’écriront, au moyen des formules (z') et (¢):

| @ ﬂ
X.S:;de(f‘p)+J1Pd{jq’(s)] x e
b1 3 )
\ / “
Zs = )fpd(m + [edljw(s) % 3)
\ b1 3

b, désignant ’axe polaire de la couche superficielle.

§ 2. Equation exprimant que les couches du fluide sont des
surfaces de niveau.

6. Conformément a ce que nous avons dit au début de cette
étude, nous obtiendrons cette équation en exprimant que le
travail élémentaire de la pesanteur (résultante de 1’attraction
et de la force centrifuge) agissant sur un point d’une quelconque
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() de ces couches est identiquement nul pour un déplacement
virtuel effectué sur elle.

Sans faire aucune hypothése sur la constance de la vitesse
angulaire de rotation w, a la surface de la couche (f), cette
condition s’écrit: ‘

8 0
ed (j®) + [ pd[jD(s)] + w; ¢ xda
Zl/‘ :fo J L) ﬁs

II. VITESSE ANGULAIRE D'UN POINT D'UNE COUCHE (.

§ 1. Expression de cette vitesse.

7. Soient « et 8 le demi-grand axe et le demi-petit axe
d’une ellipse de la famille des méridiennes de niveau. L’équa-
tion:

xdx zdz

=0, )

obtenue en différentiant I'équation générale des ellipses de
cette famille, doit étre satisfaite, en méme temps que I'équa-
tion (4), pour des valeurs non nulles de dx et dz. Pour cela il est
nécessaire et suffisant que le déterminant: ‘

B 0

2 1

Sed(io) + [ed[iE] 4wy
b1 3

B 0 1

Sedw) + [oalivis) a
b g

soit égal & zéro.
2
a e » -
En posant 7° = -; — 1, cette condition peut s’écrire:
‘J

i = feai(a= o))+ Sl [ - o0 o
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Le deuxiéme membre ne contient x et z que par I'intermé-
diaire de s; x et z étant d’ailleurs liés entre eux et a 3 par la
2
;
variables en fonction de 'autre. On voit ainsi que w, ne dépend
en définitive que de 3 et de I'une ou autre des variables z et z.

La formule (6) donne donc la vitesse angulaire , dont
doivent étre animés tous les points d’'un méme paralléle ou
zone mince de la surface (8) pour que ces points demeurent
sur cette surface.

. a* . . ,
relation — + 5 = 1 qui permet d’exprimer P'une de ces

§ 2. Nouvelle expression de la vitesse angulaire.

La distribution des vitesses des différentes molécules du
fluide étant supposée réalisée de maniere & conserver aux cou-
ches leur forme ellipsoidale, nous nous proposons maintenant
d’étudier les variations de la vitesse angulaire o d’un point
matériel en fonction de sa latitude et de sa profondeur.

8. Pour faire cette discussion, il est commode de transformer
la formule (6) de la fagon suivante.

Appliquons la formule d’intégration par parties aux deux
intégrales du second membre:

l(i

foll=n)]= -9,
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o]

est toujours nul. Pour s’en convaincre il suffit d’observer que
les produits pjW(s) et oj®(s) sont précisément égaux aux
composantes de I'attraction d’un ellipsoide homogéne de den-
sité p, au point de coordonnées x = —1, z=—1, et que,
par suite, ces prodaits doivent s’annuler lorsque, b tendant
vers zéro, le volume, la masse et partant I'action exercée par
cet ellipsoide tendent simultanément vers zéro'.

De plus, remarquons que la valeur de s pour b = 3 est

Le terme:

1 Analytiquement on peut donner la démonstration suivante:

Lorsque b tend vers zéro, nous distinguerons deux cas suivant
que ¢ tend ou ne tend pas vers zéro.

— Dans le premier cas, b’ ne s’annulant pas, on est sir, sans
rien préjuger de la loi de variation de I’aplatissement, que le rap-

port s = = a pour limite 0. On peut donc, pour trouver la limite

bl
des produits j . W (s) et j. ® (s), remplacer W' (s) et ®(s) par leur infini-
el
ment petit équivalent commun g nfsd = %zf% ; en tenant compte
2 2

des égalités j = ! _’;;ak == %,? on obtient ainsi ’expression :
4 a?b
3

qui, visiblement, s’annule pour & = 0.

— Lorsque ¢ ne tend pas vers zéro, il tend nécessairement vers
une limite déterminée. En effet, 1’égalité ¢? = a% — b2 montre que,
pour b = 0, a et ¢ se comportent de la méme fagon. Or a? étant
essentiellement > 0 et décroissant constamment en méme temps
que b (ceci en raison de la signification physique des grandeurs a

et b) a certamement une limite aj; c’est aussi la limite de ¢2, elle
est différente de 0, en vertu de I’hypothése faite. Il en résulte que

R = e

b
zéro. Quant aux fonctions croissantes W (s) et ®(s), elles sont bor-

augmente indéfiniment, tandis que le rapport j tend vers

nées, puisque s = 7)2’ reste fini; et cela suffit pour que les produits
jW (s) et jd(s) aient encore pour limite zéro.

La densité p(b) ne pouvant étre infinie, on peut donc affirmer
que le terme considéré est toujours nul quand & = 0.
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précisément égale au rapport t = l (72 = o' — B%), et que,

‘
-

par suite:

a0l = ol el

En posant:

o

9. Remarque. 11 est aisé de reconnaitre que le deuxiéme
membre de cette équation est essentiellement positif; en
effet, nous avons admis que o' était négatif; de plus, on s’assu-
rera facilement que Y(t) est une expression positive quel que
soit ¢.

§ 3. Vartation de la vitesse angulaire en fonction de la latitude.

10. Pour faire cette étude, nous choisirons comme variables
mdépendantes 3 et z.

Sur une couche déterminée (f3), la latitude d’un point est
alors uniquement fonction de sa cote z. Et le probléme revient
ainsi & étudier les variations de w en fonction de z.

Pour cela, prenons la dérivée:

K]

3 §
d . L0
=— 5 [eivea = [— i ed . @
0

0

D w?
032

1 Une variable affectée de D'indice 1 désigne la valeur de cette
variable pour b = b,.
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Puisque Y (s) ne dépend de z que par l'intermédiaire de s,
on a:
d

dz?

0Ss

dz2

T() = 2 Y(s).

0s .
Pour calculer 57z Dous chercherons une relation entre s,

B et z. s
On a d’abord les deux équations:

1-2 2-2
ata=1. (9)
xQ 52

ou a’ et b’ représentent les demi-axes de ellipse (") homofocale

de I'ellipse (b) et passant au point (z, z). En posant, comme
2 12
d’habitude, 1 4+ 7 = 1 4§ = ;f—,; et en remarquant

__Ez-’

c , . ;e
que b’ = 5 ¢es équations peuvent s’écrire:

st =f, (9
22 c? ,
1+32+22:;§. (10%)

Enfin, I’élimination de x entre (9°) et (10’) donne la relation:
F(B,z,s)'r"_: 2?5t — (P — P F H)sF— T =0; (11)
7 et a étant des fonctions de (3, nous avons ainsi défini s en
fonction implicite de f3 et z.

11. Dans I’hypothése actuelle (§ est constant, par suite:

oF
0s 032
0z2 —  oF
s

Or:
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Et, en tenant compte de la relation (11), on a:

oF 2
— e— 52 .4 2
ds ( + C)
D’ou
: 3 -2 .9
DS o & R (12)

4 Yifs) = & £2 s* 2 __ 53 (13

7 (s) = 17:fg.(1 32)2.(1' %) (13)
£ désignant bréviation, 1 R Y
g , par abreviation, le rapport T <t o

. . d 05
Si 'on porte alors les expressions de —1Y(s) et a% dans la

formule (8) il vient:

(z* — s?)2.db

(14)

— p’ étant positif, cette intégrale est certainement positive
ou nulle.

Par conséquent, sur une couche donnée, la vitesse angulaire de
rotation croit en général constamment de I'équateur au péle.

Elle ne peut étre invariable que si U'on a:

T=3S8

et ceci exige que les couches sotent réparties sur une famille d’ellip-
soides homofocaux.

§ 4. Variation de la vitesse angulaire en fonction de la
profondeur.

12. Pour que cette étude fat compléte, il faudrait discuter
la variation de la vitesse angulaire suivant un axe quelconque
rencontrant toutes les couche:. Cela nous conduirait & des
expressions compliquées. Afin d’obtenir des formules simples et
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commodes a interpréter, nous remarquerons que, la rotation
w, ne dépendant que de (3 (caractérisant la couche) et de I'une
ou l'autre des variables z et z, nous simplifierons notablement
cette discussion en nous bornant a suivre la variation de w, le
long d’un axe équatorial ox et le long de ’axe polaire oz.

Le probléme & résoudre revient done & celui de I'étude du
signe de la dérivée de m:, par rapport 3 (3, successivement
dans chacune des hypothéses suivantes:

-

0,
0.

I

x

Bien qu’il ne soit pas permis d’étendre les résultats ainsi
obtenus au cas ou 'on étudierait les variations de w, le long
d’un rayon vecteur quelconque, la comparaison de ces résultats
avec ceux de la discussion précédente nous permettra de nous
faire une idée assez précise du phénoméne étudié pour I'appli-
cation que nous en voulons faire & la théorie des translations
continentales.

13. Sans préciser au préalable celle des variables x ou z que
nous faisons égale a zéro, établissons I'expression générale de la
dérivée de m2 par rapport a .

On a:

8

wi — .'111((1)1 — +1 ‘52) ""fprf [(I’(S) - ﬁ‘%}] db
0

somime:

V3

dab

Ly

b1
O 0 . W@k de?
Helew -]l e
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En remarquant que:

? o' [q) e} = 1‘F_l_(312] %b;a: % o ld} (R = 1111"1):2—] !1,:@ ,

et en tenant compte des formules:

W(t) = 4=nf(t — arctg{) ,

t _F
1 4127 o’

G

c—%[@(s) — A 2]211‘(3) = 4nff e (T e (19)

£
B ; 74
A RET [ml(h — arctg k) — Ofp J(s — arctg s) db

- dz?
-——fp'j(/i—-—arctgk)db i
lJ
g
¢ .2 ds
—er i (xt s db . 15
‘fpf(1+s2)2'(r 3)0[3 4 ( )
0

Observons que:

b1

Pyl b -—arctgﬁ)-——fp] s — arctg s)dbh — fo](ﬁ—alctgk)a’b
8

B 0

= —4_1::7 S edl W] +fed[.iw’(s)]] == '4%?— .

b B

w

Si donc on pose:
Zy = — 4xfNs ,

la quantité entre crochets de la formule (15) est précisément
égale au coefficient N.
Finalement:

1 2oy >
P [3-54V——52fp[i+ .(r2-—-s2)£db. (16)
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N . . 0s
Il nous reste a calculer maintenant P’expression de — dans

o3

chacune des hypothéses précédemment distinguées.

§ D. Variation de la vitesse angulaire suivant un axe équatorial.

14. Nous avons déja établi la relation (11) définissant s en
fonction implicite de 3 et z:
225t — (PP f YT — 2= 0 . (11)
En faisant z = 0, elle devient:

sHa? —¢f) — 2 =0 ou s

2 étant fonction de 8, on a:

08 08 da
05 T oa dp
On tire de (17):
08 53
—_— = — .
da c?
Par suite:
ds s da
Rt ¢t T df

Portant cette expression dans (16), il vient:

(2 — s db |

(18)

Dans cette équation, N est positif; en effet, p” étant négatif
par hypothése, il est visible que la quantité entre crochets
de la formule (15) est positive. De plus, il résulte de la signifi-

. . . d s
cation concréte des variables 4 et 3 que Z% est positif (remarque

déja faite pour a et b (n° 4)).

15. Ceci posé, pour discuter le signe du deuxiéme membre
de (18), nous distinguerons les cinq cas suivants, comprenant
certainement le cas réel du fluide terrestre:
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16. PrEMIiER cas. L’aplatissement des couches croit du centre
a la surface.

On a done:

Les deux termes du second membre de (18) ont des signes

contraires; une premiere analyse ne permet pas de connaitre

0m2

. g
ign =
le signe de Y
La condition pour que la rotation demeure invariable le
long de I'axe équatorial oz s’exprimerait par Péquation fonc-

tionnelle en a = a(f8) et p" = o' (f):

&

dzs da J s8
AN el [ g e Rl
AR -“dp)f T s

( y

dans laquelle N dépend des fonctions a« et o’ et s désigne le

&

rapport ;2—3”; R
D’ailleurs, lorsque I’aplatissement de la couche superficielle
(b,) est assez faible (et par suite, a fortiori, celui des couches
intérieures) pour que I'on puisse négliger la quatriéme puis-
sance de la valeur &, de £, la variation de mj de I’équateur
au pole est négligeable aussi, quel que soit f5.
En effet, on reconnaitra aisément que la quantité sous le

signe somme de la formule (14) est inférieure a:

——p'.i.

c

s9.1t .

Or, cette expression peut s’écrire:

abh
F, ™ 4
-—g, — . 5
[)I:)

a

&

en tenant compte des relations j = acg et § = {—,

Si 'on observe alors qu’en vertu de I’hypothése actuelle

; ; 24
ky, > 1, et que, " ne s’annulant jamais, le rapport %{ admet
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certainement une limite supérieure M, on est sir que le
deuxiéme membre de (14) est inférieur a:

MA-‘;f— o db
0

et, par suite, inférieur a fortior: & la quantité:

4 .
10

Mg (0). &
p(0) étant nécessairement fini, ce résultat établit la propo-
sition énoncée.
L'état d’équiltbre approché défini par Clairaut coinciderait
donc avec Iétat actuellement envisagé.

17. DEUXIEME cAs. Les couches sont homothétiques.
On a alors:

d=?

45 — 0 el T > s %
Ow: ) .
b—f‘ est négatif.

La rotation décroit du centre & la surface.

18. TroistEME cas. L’aplatissement décroit du cenire a la
surface moins vite que st les couches étatent homofocales.
Cette fois:

d?

¢l
I

< 0 et T > S

2
Dm(&
03

La rotation décroit du centre & la surface.

est donc négatif.

19. QUATRIEME cas. Les couches sont homofocales.
On a encore:

dr? .
:{E < 0, mals T

fl

La rotation décroit du centre @ la surface.
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On sait, d’ailleurs (11) que, dans ce cas, chaque couche tourne
d'un seul bloc. '

20. CrNQuiEME cAs. L’aplatissement décroit du centre & la
surface plus vite que st les couches étaient homofocales.

Dans ce cas:

Les deux termes du second memhre de (18) ont des signes
~ contraires: une premiére analyse ne nous permet donc pas de

\m2

@

~ connaitre le signe de —°

§ 6. Vartation de la vitesse angulaire suivant I'axe polaire.

21, Siz = 0", les équations :

) .,1.2 ,
Tr=T =8 (97
x? ¢? .

2 = & 10’

1 —|—.52+-z s2 7 ( )
se réduisent a :
e BR
s _ €

t Ici, il convient de donner un mot d’explication.

Il peut paraitre surprenant de chercher & étudier la variation
de la vitesse angulaire le long de 1’axe polaire, puisque de tous les
points du fluide, ceux de I’axe de rotation sont les seuls qui restent
immobiles. On doit entendre par rotation d’un point de cet axe la
limite vers laquelle tend la rotation d’un point voisin, situé hors de
cet axe, et qui s’approche indéfiniment du premier. A cause de la
nature concréte et, par suite, de la continuité du phénomeéne étudié,
cette limite existe certainement, quelle que soit la couche sur laquelle
on considére le point.

A]outons enfin que, du point de vue physique, cette limite peut
étre envisagée comme étant la valeur de la rotation d’une molécule
située sur I’axe polaire,

ArcHivis. Vol, 8. — Juillet-Aont 1926, 13
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d’ou I’on tire:

§ o
=7
et:
os s8
2 = P
La formule (18) devient alors:
1 (wy) d =2 3
ﬁw=0___;4. _:L_ 2 '—o’i s s o2
e = RN 5. [ — oL e (e db
0
(19)
2
‘)2 D(mle)xz() 3 . d . bI b]_ :
2. — s’exprime don¢ par une expression semblable
‘ 2 (w3)— . ,
a celle de O—B"‘; mais s ne dépendant pas de b de la

méme maniére dans ces deux expressions, il faut bien se garder
de confondre les N et les intégrales définies qui y figurent; ces
quantités ne sont pas égales.

Nous leur avons donné la méme forme dans le seul but
de conserver la symétrie des calculs et afin de pouvoir appliquer,
immédiatement, & I’étude actuelle les résultats de la discussion
précédente.

La vitesse angulaire varie donc dans le méme sens le long
d'un axe égquatorial et le long de Uaxe polaire.

Sauf, peut-étre dans les deux cas extrémes mencionnés, elle
croit constamment de la surface au centre .

23. Nous pouvons donc consigner, dans le tableau récapi-
tulatif suivant, les résultats des deux discussions précédentes.

1 11 est clair qu’un tel résultat ne peut étre intelligible que dans le
cas ou les couches constituant le fluide sont réparties sur des surfaces
de révolution.
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v:il‘?:rdr:lf' a:g;;as de Sens de la variation de | Sens de la variation de
at Ad & T Paplatissement la vitesse angulaire
L’aplatissement ,
croit du centre 2 | On ne peut rien
g la surface (cas | dire dansune pre-
=0 comprenant ’état | miére analyse sur
df d’équilibre appro- | lesens dela varia-
ché défini par tion de mf.
Clairaut). '
d? Les couches sont | o, décroit du cen-
T > s — =10 - E
dp homothétiques tre & la surface.
L’aplatissement
) décroit du centre .
dz <0 & la surface moins | , décroit du cen-
dp cite que siles cou- | tre a la surface.
ches étaient ho-
mofocales.
_ d<? 0 Les couches sont w2 décroit du cen-
=0 L R < homofocales. tre & la surface.
L’aplatissement On ne peut rien
d<2 décroit du centre dire dans une pre-
t<s — < 0 a la surface plus miére analyse sur
é vite que si les le sens de la varia-
couches étaient tion de wz
homofocales. ‘

En résumé, on peut dire que la vitesse angulaire décroit cons-
tamment du centre o la surface et du pdle a Iéquateur, sauf
peui-étre dans deuz cas extrémes dont U'un comprend le cas parti-
culier de Clairaut.

DE LA VISCOSITE DU FLUIDE TERRESTRE.

Dans tous les calculs précédents, nous n’avons tenu aucun
compte de la viscosité du fluide en rotation.



194 LU ELLIPSOIDE FLUIDE HETEROGENE EN ROTATION

- Tant qu'il ne s’agit que de la recherche d’une forme d’équili-

bre- relatif, les équations de I'hydrostatique pour un fluide
parfait sont applicables au cas d’un fluide visqueux. On sait,
en effet, que cet équilibre ne peut &tre réalisé que lorsque tous.
les efforts intérieurs sont des pressions normales.

Mais les choses ne se passent plus aussi simplement dans le
cas d’un fluide hétérogéne. Les mouvements intérieurs, néces-
saires & maintenir sa forme ellipsoidale, provoquent I'interven-
tion de forces dues au frottement des molécules les unes sur les
autres '; et, de ce fait, la nature du probléme se trouve changée.

On doit done se demander dans quelle mesure il est encore pos-
sible d’appliquer, au cas réel de l’ellipsoide terrestre visqueux,
les résultats de I’étude sur 'ellipsoide parfaitement fluide.

En fait, il semble bien que 1’on soit en droit, sans trop s’écar-
ter de la réalité, d’assimiler — dans la durée relativement courte
d’une époque géologique — l'état des mouvements du fluide
terrestre & un état de régime permanent ou les forces de viscosité
se détruiraient deux & deux.

11 suffirait d’admettre — et cette idée n’est pas éloignée de
I'hypothése de Marcel Bertrand — que les couches de Sima
sont entrainées par frottement, de proche en proche, par la
rotation du noyau central trés dense et, par suite, doué d’une
grande inertie >. De la sorte, le phénomeéne de I’accroissement
de la vitesse de rotation avec la profondeur aurait une cause
physique. Et ’on pourrait concevoir pour les couches de Sima
un régime de mouvements voisin des régimes envisagés dans la
théorie ou, si I’on préfére, un régime « tangent » 4 'un de ceux-ci,
et dans lequel les forces de viscosité n’auraient plus qu’une

1 Rappelons que, d’aprés la théorie de la viscosité, ces forces sont
de la forme:

dw
= 1. .S,

g

n désignant le coefficient de viscosité du fluide et g—: le gradient de

vitesse dans la direction normale au mouvement des couches, et s
la surface de frottement.

? A ce propos, on consultera, avec intérét, ’article de M. Rolin
Wavre «Sur le mouvement (avec frottement) de deux sphéres
concentriques », Archives 7 (5), p. 133, 1925.
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influence qu’il serait possible de négliger devant les attractions
des masses . , _ )

Pour cette raison, nous pensons qu’il est permis de considérer
les conclusions de I’étude sur la rotation de 'ellipsoide hétéro-
géne, parfaitement fluide, comme qualitativement exactes dans
Papplication qu’on en peut faire & la théorie de M. Wegener.

Mais il était bon de rappeler la nécessité d’agir avee beaucoup
de circonspection en cette matiére et de montrer 'intérét qu’il y
aurait a reprendre ces calculs sur Pellipsoide hétérogéne en y
introduisant la notion de viscosité.

LES DERIVES CONTINENTALES.

Toutes réserves faites sur la possibilité d’étendre au globe
terrestre visqueux les propriétés de lellipsoide parfaitement
fluide, il nous reste a dire comment I’étude théorique précédente
apporte des éléments nouveaux pour la solution de certains
problémes que pose la théorie des translations continentales.

Certes, ces translations constituent un phénomeéne trés
complexe et, malgré la prédominance marquée de forces qui
tendent & rapprocher les continents de I’équateur et a les faire
dériver vers P'ouest, il subsiste encore dans leurs mouvements
trop d’irrégularités pour qu’il soit possible de les coordonner
tous, en les rattachant & un petit nombre de causes.

- La question de la nature de la force translatrice vers I'équateur
parait aujourd’hui complétement élucidée apreés les récents tra-
vaux de MM. Wavre® et Berner®. Toutefois, il serait intéressant
de reprendre le calcul de sa grandeur en utilisant nos derniéres
recherches. Il s’agirait notamment de voir si le fait de 1'aug-

1 Cf. LovkascuewrirscH, Sur le mécanisme de ['écorce terrestre et
Porigine des continents, St Pétersbourg, 1910.

* (Loc, cit.) _ .

3 R. BErNER, Thése de docterat. Sur la grandeur de la force qui
tendrait @ rapprocher un continent de I'équateur, Kundig, Genéve, 1925.
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mentation de Paplatissement des couches avec la profondeur
— état contraire a celui défini par Clairaut — ne permettrait
pas de donner & cette force une valeur plus élevée’.

L’'idée d’attribuer la translation vers I'ouest des grands
compartiments de la lithosphére & I'influence retardatrice
des attract'ons des corps célestes est assurément fort ingénieuse
en méme temps que trés naturelle. Et, en fait, en se basant sur
la théorie de la précession, M. Schweydar a réussi 4 montrer
'existence d’une force importante capable de provoquer cette
dérive.

Mais quel que soit le bien-fondé de cette hypothése, il est
certain qu’elle ne peut pas suffire & rendre compte de la diversité
des mouvements des socles continentaux.

Afin d’expliquer les anomalies de 'intensité de la pesanteur,
Helmert avait admis que le géoide terrestre était un ellipsoide
a trois axes. Partant de la, M. Schweydar a essayé de prouver
la possibilité de courants de Sima, en invoquant une différence
de niveau hydrostatique entre le fond de I'océan Atlantique
et celui de 'océan Indien:

« Un pareil état de chose ne peut subsister & la longue; le Sima
aura tendance a couler pour rétablir I’équilibre de l’ellipsoide de
rotation. Etant donnée la faible différence de densité, c’est a peine
si un courant peut se produire; mais il est possible que le tracé ellip-

tique de ’équateur et les variations locales de la densité du Sima, de
méme que le courant qui en résulte aient été jadis plus marqués ?».

Comme on le voit, cette explication ne satisfait pas complé-
tement M. Schweydar lui-méme.

La remarque suivante de M. Wegener parait, au contraire,
projeter une lumiére nouvelle sur les causes des dérives conti-
nentales:

« Il n’est pas nécessaire que ces renflements par lesquels la surface
du globe dépasse son niveau d’équilibre se limitent a 1’équateur:

1 Nous n’ignorons pas cependant que M. Jeffreys, auteur d’un
remarquable ouvrage «The earth, its origin, history and physical
constitution » (The University Press, Cambridge, 1924), cherche une
force translatrice dans une direction différente.

* SCHWEYDAR, Bemerkungen zu WEGENERS. Hypothese der Ver-
schiebung der Kontinente, Zeitschr. der Ges. fiir Erdkunde zu Berlin.
1921.



ET LA THEORIE DES DERIVES CONTINENTALES 197

ils peuvent apparaitre 4 n’importe quel endroit. Nous avons montré
plus haut & propos des relations entre les transgressions marines et
les déplacements du péle (Chap. VIII)1 qu’il faut nous attendre &
voir la surface terrestre occuper au-devant du pdle en marche un
niveau trop élevé et derriére lui un nivean trop bas, ces écarts semblent
confirmés par les faits géologiques. Ils s’élévent a des valeurs sem-
blables & celles qu’Helmert obtint pour la différence des axes de
Pellipse équatoriale ou peut-étre doubles. Lors des migrations po-
laires rapides, la surface terrestre parait en tout cas avoir dépassé
son niveau d’équilibre de quelques centaines de métres dans le sens
positif ou négatif suivant que la région considérée est devant ou
derriére le pole. Le plus grand écart de niveau (ordre de grandeur:
1 km par quadrant terrestre) s’observerait a I’équateur sur le méri-
_dien sur lequel le péle se déplace. Aux deux pdles il atteindrait une
valeur presque aussi élevée. De ce fait, des forces sont mises en jeu
qui entrainent les masses des régions trop hautes vers les régions
trop basses. »

Ce qu’il serait intéressant de connaitre, en particulier,
ce sont les forces qui présidérent a 'ouverture du bassin atlan-
tique.

Sans nous arréter a l’idée, aujourd’hui périmée, d’aprés
laquelle un effondrement aurait pu créer une telle fosse, nous
nous sommes demandé si I'on ne trouverait pas dans les conclu-
sions de notre étude sur l'ellipsoide hétérogéne la raison de
cette déchirure de I’écorce terrestre.

Ne doit-on pas, en effet, considérer 1’accroissement en
profondeur de la vitesse de rotation des couches de Pellipsoide
fluide comme une cause possible de la dislocation des grands
territoires de la lithosphére ? Car il est certain — puisque la
partie immergée d’un socle continental est égale & vingt-neuf
fois sa partie émergente — que la force d’entrainement, dirigée
vers l'est, de ces couches visqueuses sera d’autant plus grande
que le socle plongera plus profondément dans le Sima. Et c’est
pourquoi il faut penser que les continents chargés de hautes
montagnes doivent prendre, & la longue, une avance sensible
sur les plateformes & faible relief. L’action retardatrice des
influences lunisolaires pourra done, dans certains cas, paraitre
trés réduite; tout dépend du rapport qui existe entre la force
propulsive du Sima et ces actions antagonistes.

1 WEGENER, La Genése des continents et des Océans, p. 99. A.
Blaachard, Paris, 1924.
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Si I'on adopte ces vues, la séparation “de I’Europe et de
I’Amérique s’explique aisément; il suffit d’admettre que 'Eu-
rasie plonge dans le Sima des racines plus profondes que celles
des Amériques. — Et cette idée est bien vraisemblable, a
cause de la chaine alpine, des hauts plissements du Caucese et
de la gigantesque surrection himalayenne, surtout si I’on songe
que les montagnes les plus élevées des socles américains ne sont
dués qu’a la pression exercé: par le Sima sur leur bord avancant,
au cours de leur dérive vers I’ouest. | '

D’autres disjonctions de la crotte terrestre sont susceptibles
de la méme interprétation. Le long systéme de fractures de
I'Est-Africain comprenant les lacs Nyassa, Tanganyka, Albert,
en fournit un exemple qui retiendra I'attention. Sollicitée par
les attractions cosmiques, ’Afrique tend & se détacher de ses
compartiments orientaux supportant les lourds massifs du
Kilima-Ndjaro et du Kénia. Il s’agit donc l1a d’une amorce de
rupture de continent, signalée d’ailleurs par de nombreux
séismes témoignant de l'activité actuelle des forces de dlslo—
cation.

Quant au phenomene de la variation de la wtesse angulaire
des couches avec la latitude, ses effets sont, sans doute, meins
sensibles. Il se pourrait cependant que, durant une période
plus ou moins longue, cette variation ai:t' été assez importante.
pour rendre compte de I'allure de certaines formations.

Cest ainsi que noﬁs serions j;enté de voir dans la torsion
vers 'Est des extrémités des continents* — torsion particu-
liérement accusée déns_‘la Novaia Zemlia et dans la Terre de
feu — le fait de ’accroissement de la vitesse du Sima prés
des poles. |

Il appartient aux géologues d’entreprendre letude detalllee
qui permettrait de confirmer ou d’infirmer ces hypothéses.

1 Cf. par exemple, DE LAuNAY, La Terre, sa structure et son passé,
p. 42, Payot, Paris, 1925.
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