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LA DEGENERESCENCE DES GAZ

ET

LES PROPRIETES DES FLUIDES AUX BASSES

TEMPERATURES

PAR

A. SCHIDLOF

SOMMAIRE :

I. Loi de repartition de l'energie et expression de l'energie
totale d'un gaz parfait ä molecules monoatomiques. Expression

de l'entropie du gaz en fonction d'une seule variable
caracteristique.

II. L'equation d'etat d'un gaz degenere.
III. Equation d'etat generale des fluides degeneres et proprietes des

fluides aux basses temperatures.
IV. Application de la theorie aux proprietes thermodynamiques de

l'helium liquide.

Dans un memoire recent j'ai fait usage de la methode sta-

tistique de M. S.-N. Bose 1, imaginee par ce savant afin d'etablir,

par un raisonnement purement statistique base sur la notion
des quanta de lumiere, la loi du rayonnement de Planck.
Cette methode statistique permet de trouver les limites de

validite de la loi classique de repartition de l'energie, dans le

cas d'un gaz parfait monoatomique 2. En poursuivant ces consi-

1 S.-N.Bose. Zeitschr. f. Phys. Vol. 26, p. 178 (1924).
2 A. Schidlof. Les quanta du rayonnement et la theorie des gaz,

Archives, (V), 6, pp. 281 et 381 (1924).
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derations, j'ai ete amene ensuite k une theorie des proprietes
des fluides aux tres basses temperatures L

La premiere application de la statistique de Bose ä la theorie
des gaz est due ä M. A. Einstein2 qui a soumis ä un examen
approfondi la signification generale de cette methode. La question

de l'introduction de la loi des quanta dans la theorie des

gaz a ete de meme traitee recemment par M. M. Planck 8 ä

un point de vue plus general.
Dans mes considerations anterieures je me suis servi de l'ex-

pression de l'energie cinetique moleculaire en faisant abstraction

de l'energie d'une molecule k l'etat de repos. Or, il n'est

pas evident a priori que les coefficients des expressions ther-
modynamiques en soient independants. Pour cette raison

je reprendrai, dans les pages qui suivent, les calculs precedem-
ment publies, mais en tenant compte, cette fois, de la portion
de l'energie qui est independante de la vitesse des molecules.
Les resultats auxquels je suis parvenu dans mes notes anterieures

ne se trouvent d'ailleurs nullement affectes par cette modification,

ni par quelques autres changements de forme apportes
ä la theorie dans le present memoire.

I. Repartition de l'energie et expressions de l'energie et de l'entro-

pie d'un gaz parfait ä molecules monoatomiques.

J'ai etabli precedemment les expressions statistiques du

nombre n des molecules dont l'energie est comprise entre les

limites t et t + dt:

1 A. Schildof. Sur 1'equation d'etat d'un gaz degenere. Archives,
(V), 6, suppl. p. 17 (C. R. Soc. phys., Geneve, Vol. 42, N° 1, 5 fevrier
1925). — Sur les proprietes des gaz aux temperatures extremement
basses, ibid. p. 29 (seance du 19 fevrier 1925). — Sur 1'equation
d'etat d'un fluide degenere. Application ä l'helium, ibid. p. 32 (seance
du 5 mars 1925). — Dans la suite du present memoire les quatre
publications citees seront indiquees par le renvoi I.e. suivi du numero
I, II, III, IV. I.a numerotation se rapporte a l'ordre de publication.

2 A. Einstein. Ber. Berl. Akad. 1924, p. 261 et 1925, p. 3, 18.
3 M. Planck. Zur Präge der Quantelung einatomiger Gase.

Ber. Berl. Akad. 5 fevr. 1925, p. 49-57.

n (1)
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de l'energie totale E du gaz:

E 2«« (2)

et de l'entropie S deflnie, ä une constante additive pres, par:

S - *2Alog(l - e~(T + 0) + j + *NP (3)

Ces expressions renferment le coefficient A signifiant, selon

Bose, le nombre des cellules d'etat auxquelles correspond une

energie moleculaire comprise entre les limites f et f 4- de:

A A^_'v„2d„ (4)
a3 '

t est l'energie totale d'une molecule monoatomique de masse

m et de vitesse u, h la constante de Planck, et V le volume

occupe par N molecules monoatomiques supposees en equilibre
thermodynamique a la temperature absolue T. Quant aux
autres symboles contenus dans les formules (1), (2), (3), k

signifle la constante de Boltzmann qui est le rapport entre la
constante des gaz parfaits B et le nombre de Loschmidt-
Avogadro L:

ß et p sont deux fonetions de l'etat macroscopique du gaz, en

d'autres termes, des fonetions des variables thermodynamiques
V et T. Je designerai, de plus, par E0 la portion de l'energie
qui ne depend pas de l'etat thermodynamique, et par U la

portion variable de l'energie. Je poserai done:

U E — E0 (6)

On trouve la valeur de la fonction ß en calc.ulant la derivee
de l'entropie par rapport ä U, ou par rapport ä E, le volume
V etant suppose constant.

1 A. Schidlof, I. c., I.
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La differentielle de l'expression (3) est:

dS _42»<*(j + p)+ *«*(!)

+ ANdp — *2rfA-IoS

Grace ä la supposition:

V constante

il vient:
dA 0

Les termes qui restent peuvent etre simplifies, et on obtient
le resultat:

öS _ k

öü — J '

Or, thermodvnamiquement, la derivee partielle isochore
de l'entropie a la valeur:

öS_ _ 1_

öU — T

On trouve done par l'identification des deux expressions de

cette derivee partielle:
ß *T (7)

Designons maintenant par t0 l'energie contenue dans une
molecule ä l'etat de repos; l'energie totale d'une molecule

lorsqu'elle se meut avec une vitesse u est alors:

e -L- m" t»\
o H—«jr~ " ' '

Pour simplifler l'ecriture des formules, j'introduis une nou-
velle variable « par la substitution:

P + — log <* (9)
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qui permet de donner aux expressions (1), (2), (3) ]a forme
suivante:

m«2

» A* 6
- <l0>

1 — ae

mti%

"2£T

1 mU ,A*\i"~Y '

m«2\

S — i^AlogVl — ae_2"7 + y — *N1ogcc '• (12)

On obtient les deux dernieres formules en utilisant la
definition (6) et en posant:

N£O E0

Le nombre total des molecules du gaz remplissant le volume
V est:

WW 2

n 2« 2A • (13)

4 _ „ 2iT

II est indique de remplacer la fonction qui forme, dans les

termes de la somme (13), le facteur de A, par un developpement
suivant les puissances croissantes de la variable a.

On obtient de cette faijon l'expression:

mw2 2wt<2

N Ae~W + •

Si l'on introduit ensuite Ala place de A l'expression (4), en

remplagant en meme temps les sommes par des integrales
prises entre les limites 0 et co on trouve facilement la valeur
du second membre de l'equation (13). On obtient, en effet, la
formule:

/ 00 00 2""'2 \
N Vl«je 2kT u2du + a2/« «2d« + J (14)

\ 0 o /
1 A. SCHIDLOF, I. C. II.
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Or, on a:

W«2

fe *2*T u2du
^ 1,2,3...). (15)

o
4 (sm) "

II en resulte l'equation suivante:

N £^v(. + £ +

Pareillement, en r-emplapant le premier terme de l'expres-
sion (12) de l'entropie par:

/ w«2 2m«2 \
X.(a2Ae"^ + |22ArW+

et en traitant cette serie de la meme facon que la serie (14),
on obtient:

(2T.kmT) i" / a2 a3/ a2 a3 \
(« + $* + £* + -)h3

Dans la suite de ces considerations je designerai par:

(17)

/;(.) « + £ + £+... (18)

la fonction de « qui intervient dans la formule (16) et par:

/j(a) a + ~ + ~ + (19)

l'autre fonction qui constitue Tun des facteurs du terme (17) 1.

Selon l'equation (16) on a:

^,=(d^v- (2°)

La grandeur « est done une fonction transcendante des

variables thermodynamiques T et V,- ou, plus exactement,

1 Dans mes publications anterieures (II, III, IV) j'ai designe ia
fonction par le symbole 17, et !a fonction /2 par /(a).
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de l'argument VT8/2. Selon les formules (12) et (17), Pentropie S

uest exprimee, en fonction de et de a, par la formule:

S £ + AN§M - AN log a (21)
1 £(«)

Or, le terme -r-r, lui aussi, est une fonction de la seule

variable a, car on deduit de (10) et de (11) le developpement
suivant:

4 / oc cc 2""'2

U Viaj e u'r iddu + a2 f e 2*T iddu +
\ (» 0

En utilisant la formule:

oo mu%

fe~SnT iddu |7—) "
VtT (s 1, 2, 3 (22)

«/ O \ Sttl y
o x

•on trouve:

U _ 3 (2 t: A»ET)"/2 / a2 a3 \
2 k* ViT (« +5* + i*+-)•

d'oü l'on deduit, selon (19) et (20), l'expression:

u |28>

Grace ä cette derniere formule, l'entropie S est une fonction
de la seule variable a. II vient, en effet, selon (21) et (23):

S kWl — NA log a (24)
2 ft(a) H

oü a est une fonction transcendante de l'argument VT3/2.

II. Equation d'etat dun gaz degenere.

Des formules obtenues au premier chapitre on peut deduire
la theorie complete de l'etat d'un gaz monoatomique. Cette

theorie, reposant sur la statistique des quanta de Bose-Einstein,
comprend les phenomenes de degenerescence, pour autant que
ces phenomenes concernent Fenergie cinetique des molecules.
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En premiere approximation on supposera que la variable a

est infiniment petite. On tire alors de l'equation (18) la
consequence:

/i( a) — a

De lä et de l'equation (20) decoule alors toute la theorie clas-

sique de l'etat gazeux 1.

On obtient une seconde approximation, applicable aux gaz
faiblement degeneres, si Ton remplace la formule (18) par
l'equation du second degre:

as + 25/sa + 2!/s/; (a) 0 (25)

Si l'on tire de (25) la valeur de a, et si 1'on arrete le develop-
pement de la racine carree aux termes du second ordre, on
trouve:

« U ~ (26)

Avec la meme approximation on a, selon (19):

f2(«) (27)
4 V*

Puisque, d'autre part, selon l'equation (20):

öV ~ 2 T öV V (28)

et, selon (23) et (27):

öV +4V2"VöV
on trouve:

— - All Z—f\ (29)

Dans l'equation (24) on remplacera, selon (26), l'expression
log a par:

+'°e('

Zi. A. SCHIDLOF, I. C. I.
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soit encore par:
log« log/; — —^=/i • (30)

4 V2

L'entropie S peut alors etre exprimee, au meme degre d'ap-
proximation, selon (24) et (27), par:

s 4m- — m/; — m-iog/;2 8V2"
1 8,1

La differentielle de l'entropie est done:

iS -Ni(sw + f)'v"
On en deduit, a l'aide de la formule (28):

\ ^V2 /
is _ £_
öV ~ V

(31)

En vertu du second principe de la thermodynamique, on a:

öS p
öV ~ T '

ou p signifie la pression et T la temperature absolue d'un corps
homogene quelconque. L'equation (31) est done l'equation
d'etat du gaz. En remplacant fx par son expression explicite
(20) on obtient cette equation sous la forme suivante:

P — N*/i hS N\
T ~ _4V2-(2«*mT),/' V] (32)

Supposons que le recipient de volume V contienne 1

molecule-gramme du gaz monoatomique considere de masse mole-
culaire M. Designons par L le nombre d'Avogrado, par R la
constante des gaz parfaits et posons:

L3 A3

4 V2K (2itM),/a
(33)

L'equation d'etat (32), dans laquelle V signifie alors le volume
moleculaire, se presente sous la forme suivante:

/> ^-= ' (34)r V yayx
1 Cf. A. ScHIDLOF, I. C. II.
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On y reconnait l'equation classique des gaz parfaits completee

par un terme qui, en ce qui concerne le röle du volume V, est

analogue au terme de la pression de cohesion de Van der
Waals. Toutefois, dans le cas present, ce terme n'est pas en
relation avec les forces moleculaires. On pourrait appeler
cette pression qui se superpose, aux basses temperatures, ä

l'effet des forces capillaires, «pression de degenerescence».
Pour l'energie du gaz degenere on trouve, au meme degre

d'approximation, selon (23) et (27):

c ^(RT" vw)' w
L'energie d'un gaz degenere n'est done plus exclusivement

fonction de la temperature. II est necessaire d'en tenir compte

lorsqu'on calcule les derivees partielles et ^, l'energie U

etant prise comme seoonde variable independante.
La valeur numerique de la constante a, qui depend unique-

ment de la masse moleculaire du gaz et de constantes universelles,

est pour l'helium:

a 5,76. 10—3 litres2, atm. degres^

tandis que la constante de la « pression de cohesion » de Van
der Waals, calculee au moyen des donnees critiques du meme

gaz, est:
2,58 .10-2 litres2, atm.

Pour le neon, le coefficient a aurait une valeur 11 fois plus
petite, pour l'argon une valeur environ 31 fois plus petite que
pour l'helium. Le terme correctif de la formule (34) est prati-
quement negligeable en ce qui concerne la temperature indi-
quee par le thermometre ä helium ä volume constant, meme ä
1° K, ä cause de la faible densite du gaz. En effet, meme ä cette
temperature, qui est probablement une des plus basses qu'on
puisse atteindre, la correction aurait une importance de 0,35%
seulement.

La constante a est cependant assez grande, tout au moins

pour l'helium, pour qu'une verification de la theorie, par l'etude
des isothermes experimentales aux basses temperatures,
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ne semble pas absolument impossible. De plus, la ehaleur
specifi que des gaz monoatomiques suffisamment comprimes
fournirait, selon (35), un autre moyen de controle de la theorie.

L'etude approfondie des donnees experimentales qui se

rapportent ä l'helium presente done un interet extraordinaire.
Cette etude permettrait non seulement de savoir si les quanta
interviennent effectivement dans le mouvement de progression

des molecules du gaz, ce qui semble acquis, vu l'etat actuel
des recherches theoriques, mais eile projetterait une vive
jumiere sur la question, pour l'instant encore assez obscure,
des lois statistiques suivant lesquelles a lieu la repartition des

molecules sur les cellules d'etat.

III. Equation (Telat generale (Pun fluide degenere et proprietes
des fluides aux tres basses temperatures.

La discussion des formules generates etablies au premier
chapitre se complique si Ton cberche ;i s'affranchir des restrictions

imposees ä la variable a.

Dans le cas d'une faible degenerescence, traite precedemment,
on peut sans autres eliminer la variable T entre les deux equations

(34) et (35), et mettre 1'equation d'etat du gaz sous la
forme:

pY |u (36)

Or, M. Planck * a demontre, par un raisonnement base sur
les theoremes de la thermodynamique generale, la proposition
suivante: Si Penergie libre F d'un corps est une fonction du
volume V et de la temperature T, presentant la forme:

F T<t>(VT,/2)

ou <t> signifie une fonction quelconque de Vargument VT'I', il
exisle entre Penergie U el le produit pV la relation (36).

1 M. Planck, I. c.
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Selon les equations (23) et (24) du premier chapitre on a:

et, puisque a est une fonction de l'argument VT'/a, l'energie
libre a bien, dans la presente theorie, la forme exigee par le

theoreme de Planck.

L'equation (36) a done une signification generale et subsiste,
quel que soit le degre de degenerescence du gaz *. Les expressions

particulieres (34) et (3r-) de la pression p et de l'energie U,

par contre, ont ete etablies uniquement pour le cas oö les termes
de degenerescence sont des infiniment petits de premier ordre.
Si cette condition est remplie, nous appellerons le corps un
«gaz». Nous reserverons, d'autre part, la designation de

«fluides » ä des corps dont la degenerescence peut atteindre
un degre plus eleve. Les formules generales (23) et (24) doivent,
en effet, conserver leur signification mome pour l'etat liquide,
ä ceci pres qu'on ne peut plus considerer, dans le cas d'un liquide,
ces expressions comme completes, vu l'absence de termes se

rapportant ä l'energie potentielle des forces moleculaires.
De plus, s'il s'agit d'un liquide, il existe une incertitude quant
ä la signification de la variable V.

Pour verifier les formules generales de la theorie, je calculerai
directement la pression p correspondant ä une valeur finie
de «. En premier lieu, il faut, dans ce but, evaluer la derivee

partielle de la fonction /, exprimee par la formule generale
(28): en formant la differentielle de log U on obtient, selon (23):

d\j dT df^ dft
"u — T + TT - TT '

Si l'on pose dans cette formule:

dV 0

il vient:

(37)

1 Gf. A. SCHIDLOF, I. C. III.
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Tntroduisons la fonction:

a + w + W+ " ~fM ' (38)

On a:

d'oti Ton tire:

*£ k. et *Ü= fiel

a. a da. a

i>a da bft « ö/"j
öV rf/j öV f0 &V

et:
^2 — ^ La —fi_ M.
öV d a ö V /o bV '

Selon (37) et (40), on pent alors ecrire:

(39)

(49)

II -öV \fi fofjöV '

Cette valeur, portee dans la formule (2S), fournit 1'expression
cherchee:

*Jl - 1 2/ö A #4n
öV V><_5^

La derivee partielle de l'entropie S est, selon (24), (39) et (40):

öS _ /3 1

_
5 £\ a£

öV-^ ^2 /i 2 /'jy öV

Grace ä la formule (41), eette expression se simplifieet devient:

öS _ NX- £
aV - V f\

' 1 '

La pression d'un fluide degenere est done exprimee par la

formule generale:

r -7M- (43)

D'autre part, l'energie U d'un fluide degenere est, selon (23):

u

Au moyen de ces deux expressions on retrouve immediate-
ment l'equation (36), conformement au theoreme de M. Pl^nlk.

Archivbs. Vol. 8. — Janvier-F^vrier 1926. ^ D£ Sf0

L'UNIVERSiTE

NEUCHATEL
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La formule (43) aurait pu, naturellement, etre obtenue plus
commodement et sans calculs a l'aide de ce theoreme.

Vu la generalite des expressions (23) et (24), je ne crois pas
qu'il soit permis d'attribuer ä la fonction ft toutes Jes valeurs

correspondant ä l'expression (20) quand on fait decroitre
indefiniment T ou V. Selon cette formule, /, augmente inde-
finiment au fur et ä mesure que diminue 1'argument VT3'"2.

Or, la variable a, etablissant le lien entre les fonctions /, et f,2

et determinant uniformement l'entropie S, ne peut prendre
une valeur superieure ä 1. Pour cette valeur de a les series (18)
et (19) sont encore convergentes, mais la derivee:

df' a a2Jj- 1 _J _i _|_
da V'2 • V3

est divergente. Par consequent la presente theorie perd toute
signification pour des valeurs de la fonction /, superieures ä:

1 + ^ ^ + ••• '

A cette limite superieure de /, correspond une limite infe-
rieure de 1'argument VT3/2 qui, dans les conditions physique-
ment realisables, sera atteinte seulement pour des temperatures
voisines du zero absolu. La supposition de l'existence d'une
limite inferieure finie de 1'argument VT3'2 s'accorde done par-
faitement avec ce que nous savons sur les proprietes des corps
aux tres basses temperatures. Je crois, du reste, pouvoir appor-
ter au chapitre suivant la verification experimentale de cette
prevision.

En designant encore par /ä(l) la valeur que prend la fonction
/2 pour a 1, on peut exprimer la valeur limite de l'entropie
par:

lim S 4n*Sill \ (44)
2 A(l)

1 '

Cette valeur extreme de l'entropie est completement inde-
pendante des proprietes physiques particulieres du fluide
considere.

1 Cf. A. Schidlof, I. c. III.
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IV. Application de la thenrie ä Vhelium liquide.

On peut resoudre l'equation (19) par un developpement de la
variable a suivant les puissances croissantes de /,:

a a0 + a,/) + atf[ + a%f\ + (45)

Si, pour abreger l'ecriture, on pose:

ih _
on trouve:

dec - ?(a)

?(°) 1 •

et les coefficients du developpement peuvent etre exprimes
en fonction des derivees d'ordre croissant de la fonction a,
calculees pour la valeur /, =0. On a done:

_ c _ 1 _ 1 Y(°) _
1

00 ~ ' a> ~ ?(0) - ' - 1.2 f«(0) - 2 V2
'

_ 1 <p"(0) 1 ®'2(0) 1 /3 2 \
"3 ~ ~rx3 ^(oy + o ^(ö) ~ 6\ä vv '

Les coefficients consecutifs sont exprimes par des polynömes
dont le nombre de termes croit en meme temps que l'indice du
coefficient. La valeur numerique des coefficients, par contre,
diminue tres rapidement. J'ai calcule les huit premiers coefficients

qui ont des signes alternes. On trouvera ci-dessous les

resultats numeriques de ces calculs:

a0 — 0 «j 1 a2 — 0,3535534

a, 0,0575499 a4 — 0,0057648 ab 0,0004020 (46)

a6 — 0,0000210 a, 0,0000010

Le coefficient ag est negatif et de l'ordre de grandeur 10-8.

En posant dans ie developpement (45) /, 2,62, on trouve:
«= 1, avec une precision de 0,00005. La somme de la serie

convergente:

fAl) 1 + -
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doit done etre rapprochee de 2,62. Selon un theoreme de convergence

connu on a:

fx < 2 + V2"= 3,414
1 ~=z

Y 2

Pour revaluation de la plus basse temperature qu'on puisse
atteindre dans le cas de l'helium liquide, il suffira de supposer:

fxW <3 •

La masse moleculaire de l'helium etant M 4, on trouve pour
ce corps, si l'on utilise les unites c. g. s.:

^YT3/s 3,956.102 (47)

Selon M. Kamerlingh Onnes2, la temperature critique de

l'helium est: Tc 5,25° K. Le volume moleculaire critique
semble etre voisin de 40 cm3. On en deduit pour la fonction /,
la valeur critique:

fx K) °-8219 -

Au moyen du developpement (4o) on peut calculer la valeur
correspondante ac de la variable caracteristique a. On trouve
alors:

ac 0,6125

Cette valeur relativement grande de a indique un haut degre
de degenerescence. Lorsqu'on abaisse la temperature de l'helium
liquide quelque peu au-dessous de sa temperature critique, le
fluide se contracte considerablement, et, par consequent, la

fonction /, augmente tres rapidement. Or, nous avons admis

que la valeur de fi doit necessairement, rester inferieure k 3:
il en resulte que la temperature de l'helium liquide doit rester
superieure a :

1 Cf. .'.-A. Serret. Calcul differ, et integr., I, 5me edit., Paris,
Gauthier-ViMars, p. 141.

2 H. Kamerlingh Onnes. Communicat. Leiden, N° lt>4 b, decem-
bre 1911.
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Aux temperatures les plus basses que ses puissants moyens
de reirigeration lui ont permis d'atteindre, M. Kamerlingh
Onnes1 a observe la densite de l'helium liquide:

p 0,1465

densite a laquelle correspond le volume moleculaire de 27,30 cm3.

Pour cette valeur de Via formule (47) donne, eny posant: ji =3:
@ 2°,9 abs. 2.

Par consequent, selon la presente theorie, le produit VT3/2

doit atteindre ä cette temperature la plus petite valeur physique-
ment realisable, et on ne peut abaisser la temperature au-
dessous de 2°,9 qu'en provoquant une augmentation de volume.

Experimentalement, on a observe, entre 3° et 2° K, un maximum
de densite de Vhelium liquide qui, manifestement, ne peut etre
attribue ä un changement de la structure moleculaire du corps
et ne semble pas encore avoir regu une interpretation satis-
faisante. Selon la presente theorie ce phenomene doit necessaire-

ment se produire et precisement entre les limites de temperature

observees. La temperature ä laquelle se produit le maximum

de densite de l'helium liquide est, selon M. Kamerlingh
Onnes, 2°,4 K. Elle est done quelque peu inferieure ä la temperature

calculee.
De plus, M. Kamerlingh Onnes admet avoir refroidi l'helium

liquide jusqu'ä 1°,5 K avec une augmentation de volume rela-
tivement insignifiante, et qui certainement ne satisfait pas ä

la loi:
VT3/' constante

prevue par la theorie. Je ne crois pas que ce leger desaccord

infirme tant soit peu les considerations theoriques. II est
possible qu'une theorie plus complete permettrait d'abaisser

legerement le chiffre prevu pour le minimum de temperature.
Toutefois, en ce qui concerne la divergence principale entre

la theorie et les faits observes, eile s'explique aisement du point
de vue de la theorie meme.

1 H. Kamerlingh Onnes. Communicat. Leiden, N° 119, fevrier
1911.

2 Cf. A. SCHIDLOF, I. C. IV.
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On ne peut, en effet, interpreter correctement les pheno-
menes observes sans tenir compte des conditions speciales
causees par la degenerescence du fluide. L'augmentation de

volume qui doit accompagner le refroidissement ne peut devenir
tres considerable. II est, en effet, invraisemblable qu'un corps
continue ä fournir spontanement du travail contre des forces
interieures considerables tandis qu'on diminue progressive-
ment son energie interieure, en le refroidissant de plus en plus.
Aussi la dilatation observee etait-elle tres petite. Pour cette
meme raison la temperature de l'helium liquide n'a pas pu
descendre aussi bas que ne l'indiquent les chiffres observes
ma;s elle a du rester constamment voisine de 2°,9 abs., meme
au contact d'un milieu de temperature notablement inferieure.

Le thermometre ä helium par contre, peut prendre la temperature

du milieu ambiant, et, comme nous l'avons dit prece-
demment, ses indications sont exactes, meme ä des temperatures

inferieures ä 1° R. Toutefois, dans le voisinage du zero

absolu, le thermometre marque uniquement sa propre temperature,

soit celle du thermostat, mais ne marque plus celle
du corps liquide ou solide avec lequel il est en contact. Par
consequent, les observations experimentales, loin d'infirmer
la theorie, s'accordent bien avec nos previsions. II est
possible que le petit ecart entre la temperature calculee et la

temperature observee du maximum de densite s'explique de la
meme faijon; car nous ne pouvons pas savoir ä partir de

quelle limite le desaccord entre la temperature du corps et
l'indication du thermometre a pu exercer une influence sur les

observations.

L'impossibilite de refroidir l'helium liquide au-dessous d'une
certaine temperature voisine de 2°,9 K explique aussi l'insucces
des tentatives faites pour solidifier cette substance. Peut-etre
serait-il cependant possible, en favorisant artificiellement

l'augmentation de volume, d'abaisser suffisamment la temperature

de ce corps pour en provoquer la solidification.
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