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LA DEGENERESCENCE DES GAZ

ET
LES PROPRIETES DES FLUIDES AUX BASSES
TEMPERATURES

PAR

A. SCHIDLOF

SOMMAIRE:

I. Loi de répartition de 1’énergie et expression de I’énergie
totale d’un gaz parfait a4 molécules monoatomiques. Expres-
sion de Pentropie du gaz en fonction d’une seule variable
caractéristique.

II. L’équation d’état d’un gaz dégénéré.

III. Equation d’état générale des fluides dégénérés et propriétés des
fluides aux basses températures.

IV. Application de la théorie aux propriétés thermodynamiques de
Phélium liquide.

Dans un mémoire récent j’ai fait usage de la méthode sta-
tistique de M. S.-N. Bose !, imaginée par ce savant afin d’établir,
par un raisonnement purement statistique basé sur la notion
des quanta de lumiére, la loi du rayonnement de Planck.
Cette méthode statistique permet de trouver les limites de
validité de la loi classique de répartition de 1’énergie, dans le
cas d’un gaz parfait monoatomique 2 En poursuivant ces consi-

1 S.-N.Bosk. Zeitschr. . Phys. Vol. 26, p. 178 (1924).
2 A. ScHipLoF. Les quanta du rayonnement et la théorie des gaz,
Archives, (V), 6, pp. 281 et 381 (1924).
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dérations, j’ai été amené ensuite & une théorie des propriétés
des fluides aux trés basses températures .

La premiére application de la statistique de Bose & la théorie
des gaz est due & M. A. Einstein? qui a soumis 4 un examen
approfondi la signification générale de cette méthode. La ques-
tion de I'introduction de la loi des quanta dans la théorie des
gaz a été de méme traitée récemment par M. M. Planck s a
un point de vue plus général.

Dans mes considérations antérieures je me suis servi de 1'ex-
pression de I'énergie cinétique moléculaire en faisant abstrac-
tion de I’énergie d’'une molécule a I’état de repos. Or, il n’est
pas évident a priori que les coefficients des expressions ther-
modynamiques en soient indépendants. Pour cette raison
je reprendrai, dans les pages qui suivent, les calculs précédem-
ment publiés, mais en tenant compte, cette fois, de la portion
de I’énergie qui est indépendante de la vitesse des molécules.
Les résultats auxquels je suis parvenu dans mes notes antérieures
ne se trouvent d’ailleurs nullement affectés par cette modifi-
cation, ni par quelques autres changements de forme apportés
a la théorie dans le présent mémoire.

1. Répartition de Uénergie et expressions de I'énergie et de U'entro-
pie d'un gaz parfait & molécules monoatomiques.

J’ai établi précédemment les expressions statistiques du
nombre n des molécules dont ’énergie est comprise entre les
limites & et ¢ 4+ de:

A;(Eﬂ)

G

1 A. ScHiLpoF. Sur Péquation d’état d’un gaz dégénéré. Archives,
{V), 6, suppl. p. 17 (C. R. Soc. phys., Genive, Vol. 42, No 1, 5 février
1925). — Sur les propriétés des gaz aux températures extrémement
basses, ibid. p. 29 (séance du 19 février 1925). — Sur P’équation
d’état d’un fluide dégénéré. Application a I’hélium, ibid. p. 32 (séance
du 5 mars 1925). — Dans la suite du présent mémoire les quatre
publications citées seront indiquées par le renvoi l.c. suivi du numéro
I, IT, III, IV. La numérotation se rapporte i ’ordre de publication.

2 A. EinsTEIN. Ber. Berl. Akad. 1924, p. 261 et 1925, p. 3, 18.

8 M. Pranck. Zur Frage der Quantelung einatomiger Gase.
Ber. Berl. Akad. 5 tévr. 1925, p. 49-57.

n
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de I’énergie totale E du gaz:

E = ERE ; | (2)

et de I'entropie S définie, & une constante additive prés, par:

S = — A-EAlog(l - e—(3+9)) . f;i: + kN L (8)

Ces expressions renferment le coefficient A signifiant, selon
Bose, le nombre des cellules d’état auxquelles correspond une
énergie moléculaire comprise entre les limites & et ¢ de:

brmd
k3

& =

Vuidu . (4)

¢ est I’énergie totale d’une molécule monoatomique de masse
m et de vitesse u. % la constante de Planck, et V le volume
occupé par N molécules monoatomiques supposées en équilibre
thermodynamique a la température absolue T. Quant aux
autres symboles contenus dans les formules (1), (2), (3), &
signifie la constante de Boltzmann qui est le rapport entre la
constante des gaz parfaits R et le nombre de Loschmidt-
Avogadro L:

R
k=1 (5)

g et p sont deux fonctions de I’état macroscopique du gaz, en
d’autres termes, des fonctions des variables thermodynamiques
V et T. Je désignerai, de plus, par E; la portion de I'énergie
qui ne dépend pas de Détat thermodynamique, et par U la
portion variable de I’énergie. Je poserai donc:

U=E-E,. (6)
On trouve la valeur de la fonction # en calculant la dérivée

de P'entropie par rapport a U, ou par rapport a E, le volume
V étant supposé constant.

1 A. ScHiDLOF, I ¢., I.
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La différentielle de I’expression (3) est:

E

= i3y - ) (3

+ kNdp — /cEdA.]og(’l - e—(;—+?)) :

Grace a la supposition :

YV — constante ,

il vient:
dA = 0.

Les termes qui restent peuvent étre simplifiés, et on obtient

le résultat:
oS

oU

— 2
=z

Or, thermodynamiquement, la dérivée partielle isochore
de Pentropie a la valeur:

On trouve donc par l'identification des deux expressions de

cette dérivée partielle:
8= iT . (7)

Désignons maintenant par £, I’énergie contenue dans une
molécule & I’état de repos: I’énergie totale d’une molécule
lorsqu’elle se meut avec une vitesse u est alors:

mu?

EN (8)

E:EO

Pour simplifier I’écriture des formules, j’introduis une nou-
velle variable @ par la substitution:

3
p+ﬁ:—-loga, (9)
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qui permet de donner aux expressions (1), (2), (3) la forme
suivante:

mu2

e_m
n — Am———m , (10)
1— e ¥T
mu?
U == 2]17 i (11)
mu?2 U
5 e — kEA log (1 — ae 2kT) + T kNloga ! (12)

On obtient les deux derniéres formules en utilisant la défi-
nition (6) et en posant:

.
2"50 == Ngg = Ey ,

Le nombre total des molécules du gaz remplissant le volume
V est:

mu2

T 2%T
ae ’
N:En_—;zA———m (13)

2T

1 — ae

Il est indiqué de remplacer la fonction qui forme, dans les
termes de la somme (13), le facteur de A, par un développement
suivant les puissances croissantes de la variable a. |

On obtient de cette facon 1’expression:

mu? 2mu?

N = aLEAe'_m -+ otEEAe_ WE Lo

Si Pon introduit ensuite a.la place de A 'expression (4), en
remplacant en méme temps les sommes par des intégrales
prises entre les limites O et @, on trouve facilement la valeur
du second membre de I’équation (13). On ohtient, en effet, la
formule:

4 i » me2 » 2mu2 .

wm —3FT = 2T i

N == —5 \Y (afe T 2 du 4 agfe #T y2duy + ) . (14)
0 0

1 A. ScHipLovw, I. ¢. I1.
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Or, on a:

2 —spir 2KT) /%

S T = ENV= o123, (13
€ 4 (sm)”®

Il en résulte 'équation suivante:

_ (2nkmT)™

\

Pareillement, en remplacant le premier terme de l’expres-
sion (12) de I’entropie par:

_M 5 _2mu2
A~<a2Ae 4k +%2Ae k2 ) )

et en traitant cette série de la méme facon que la série (14),
on obtient:

(2% kmT)" PLEL

Dans la suite de ces considérations je désignerai par:

o2 a3

fl(“)=°ﬁ+§%+§%+--- (18)

la fonction de @ qui intervient dans la formule (16) et par:

2

file) =a + o +

ol

oot (19)
P’autre fonction qui constitue I'un des facteurs du terme (17) .
Selon I'équation (16) on a:

h® N
’ S 20
fl (a) (zﬂka):/E \: ( )
La grandeur « est donc une fonction transcendante des
variables thermodynamiques T et V; ou, plus exactement,

! Dans mes publications antérieures (II, III, IV) j’ai désigné la
fonction f, par le symbole #, et la fonction f, par f(e).
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de l’argﬁment VT?%. Selon les formules (12) et (17), entropie S

v ; U
est exprimée, en fonction de T et de a, par la formule:

_Uu i)
S_T-I—ANfl(a)——/.Nloga. (21)

h 4

Or, le terme -:IE,-, lui aussi, est une fonction de la seule va-
riable @, car on déduit de (10) et de (11) le développement

suivant :

o6 mu?2 5 2rmu2
2rmt 9k T T 2kT 4
U:”hTV afe = u4du+a2fe wtdu + ... ) .

En utilisant la formule:

mu?2

" —8 o 3 /2kT\*

2kT 4 P el o
So Fuwa=g(30 vm . =120, @
2 .
on trouve:

__ 3 (21:]{:):'1‘)8/2 i} a? a3
U = —2——L-3—Vk'i (Q+E%+——“+ ...) s

g

d’ou I'on déduit, selon (19) et (20), 'expression:
3 narf2(®) (23)

Grace a cette derniére formule, ’entropie S est une fonction
de la seule variable . Il vient, en effet, selon (21) et (23):

_ S hle)
S = g NkZ ) — Nhloga, (24)

~ou a est une tonction transcendante de Pargument VT,

11. Equation d'état d’'un gaz dégénéré.

Des formules obtenues au premier chapitre on peut déduire
la théorie compléte de I'état d’'un gaz monoatomique. Cette
théorie, reposant sur la statistique des quanta de Bose-Einstein,
comprend les phénomeénes de dégénérescence, pour autant que
ces phénomeénes concernent ’énergie cinétique des molécules.
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En premiére approximation on supposera que la variable a
est infiniment petite. On tire alors de ’équation (18) la consé-
quence:

-fl(a.)—_"a.

De la et de I’équation (20) découle alors toute la théorie clas-
sique de l'état gazeux i

On obtient une seconde approximation, applicable aux gaz
faiblement dégénérés, si I'on remplace la formule (18) par
I’équation du second degré:

a4 2Vq 4+ 22f (2) = 0 . (25)

Si I'on tire de (25) la valeur de «, et si I’on arréte le dévelop-
pement de la racine carrée aux termes du second ordre, on
trouve:

VT

4

fy - (26)

a=f —

Avec la méme approximation on a, selon (19):

4 s

== S A 27
Puisque, d’autre part, selon I'équation (20):
oy _ 3 hH¥T _ f 2
V= T ITaV TV (28)
et, selon (23) et (27):
T T 1 \of,
v = ()
on trouve:
of, . 3
=3 (1 — S“VEf‘) : (29)

Dans I’équation (24) on remplacera, selon (26), ’expression
log « par:

2
log f, + log(i - 4\/"2_’;) ,

Cf. A. ScuipLorF, . c. I.
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s0it encore par:

log e == log f, — (30)

2
4V§ﬂ'

L’entropie S peut alors étre exprimée, au méme degré d’ap-
proximation, selon (24) et (27), par:

b} 1 '
La différentielle de ’entropie est donc:
1 1
dS = — Nk({——= 4+ —}4df, .
(8 ¥ 1) f
On en déduit, a l'aide de la formule (28):
0S Nk f,
W“”\T(1_4v§)' 31
En vertu du second principe de la thermodynamique, on a:
a8 I
2V — T’

ou p signifie la pression et T la température absolue d’un corps
homogéne quelconque. I.’équation (31) est donc I’équation
d’état du gaz. En remplacant f; par son expression explicite
(20) on obtient cette équation sous la forme suivante:

z._N& N

h3
£ — P il
r v ( 59/2 (21tl’l'mT)a/2 V)
Supposons que le récipient de volume V contienne 1 molé-
cule-gramme du gaz monoatomique considéré de masse molé-

culaire M. Désignons par L le nombre d’Avogrado, par R la
constante des gaz parfaits et posons:

(32)

L3h3
5Y/2R (2rM)7

— (33)

L’équation d’état (32), dans laquelle V signifie alors le volume
moléculaire, se présente sous la forme suivante:

__RT a

—_ 1
e (34)

L Gf. A. ScaIDLOTF, L €. II.
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On y reconnait ’équation classique des gaz parfaits complétée
par un terme qui, en ce qui concerne le rdle du volume V, est
analogue au terme de la pression de cohésion de Van der
Waals. Toutefois, dans le cas présent, ce terme n’est pas en
relation avec les forces moléculaires. On pourrait appeler
cette pression qui se superpose, aux basses températures, a
I'effet des forces capillaires, « pression de dégénérescence ».

Pour Pénergie du gaz dégénéré on trouve, au méme degré
d’approximation, selon (23) et (27):

3 a

U = —({RT — —1 - 35

()
L’énergie d’un gaz dégénéré n’est donc plus exclusivement

fonction de la température. Il est nécessaire d’en tenir compte

o et °°

I roc__z .
lorsqu’on calcule les dérivées partielles 5v ¢ v

étant prise comme seconde variable indépendante.

La valeur numérique de la constante a, qui dépend unique-
ment de la masse moléculaire du gaz et de constantes univer-
selles, est pour I’hélium:

I'énergie U

a = 5,76 .107° litres?. atm. degrés’s ,

tandis que la constante de la « pression de cohésion » de Van
der Waals, calculée au moyen des données critiques du méme
gaz, est:

2,58. 107" litres?. atm.

Pour le néon, le coefficient @ aurait une valeur 11 fois plus
petite, pour ’argon une valeur environ 31 fois plus petite que
pour I’hélium. Le terme correctif de la formule (34) est prati-
quement négligeable en ce qui concerne la température indi-
quée par le thermomeétre a hélium 4 volume constant, méme a
10 K, a cause de la faible densité du gaz. En effet, méme a cette
température, qui est probablement une des plus basses qu'on
puisse atteindre, la correction aurait une importance de 0,35%,
seulement.

La constante a est cependant assez grande, tout au moins
pour I’hélium, pour qu’une vérification de la théorie, par I’étude
des isothermes expérimentales aux basses températures,
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ne semble pas absolument impossible. De plus, la chaleur
spécifique des gaz monoatomiques suffisamment comprimés
fournirait, selon (35), un autre moyen de contrdle de la théorie.

L’étude approfondie des données expérimentales qui se
rapportent a ’hélium présente donc un intérét extraordinaire.
Cette étude permettrait non seulement de savoir si les quanta
interviennent effectivement dans le mouvement de progres-
sion des molécules du gaz, ce qui semble acquis, vu I’état actuel
des recherches théoriques, mais elle projetterait une vive
jumiére sur la question, pour l'instant encore assez obscure,
des lois statistiques suivant lesquelles a lieu la répartition des
molécules sur les cellules d’état.

II1. Equation d'état générale d’un fluide dégénéré et propriéiés
des fluides aux trés basses températures.

La discussion des formules générales établies au premier
chapitre se complique si 'on cherche a s’affranchir des restric-
tions imposées & la variable a.

Dans le cas d’une faible dégénérescence, traité précédemment,
on peut sans autres éliminer la variable T entre les deux équa-
tions (34) et (30), et mettre ’équation d’état du gaz sous la
forme:

pyY = ;U . (36)

Or, M. Planck 1t a démontré, par un raisonnement basé sur
les théorémes de la thermodynamique générale, la proposition
suivante: Si Uénergie libre F d’un corps est une fonction du
onlume V et de la température T, présentant la forme:

F = To(Vt"Y ,

ou ® signifie une fonction quelconque de Uargument VTh, il
existe entre Uénergie U et le produit pV la relation (36).

1 M. PraNck, L c.
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Selon les équations (23) et (24) du premier chapitre on a:

A A @
F=U=—=TS = — NiT (2((&)) - loga) ,
et, puisque a est une fonction de I'argument VT¥:, énergie
libre a bien, dans la présente théorie, la forme exigée par le
théoréme de Planck.

L’équation (36) a donc une signification générale et subsiste,
quel que soit le degré de dégénérescence du gaz 1. Les expres-
sions particuliéres (34) et (3%) de la pression p et de I’énergie U,
par contre, ont été établies uniquement pour le cas 011 les termes
de dégénérescence sont des infiniment petits de premier ordre.
Si cette condition est remplie, nous appellerons Ie corps un
«gaz» Nous réserverons, d’autre part, la désignation de
«fluides » & des corps dont la dégénérescence peut atteindre
un degré plus élevé. Les formules générales (23) et (24) doivent,
en effet, conserver leur signification méme pour 'état liquide,
a cecl prés qu’on ne peut plus considérer, dans le cas d’un liquide,
ces expressions comme complétes, vu 'absence de termes se
rapportant a 1'énergie potentielle des forces moléculaires.
De plus, s’il s’agit d’un liquide, il existe une incertitude quant
a la signification de la variable V. |

Pour vérifier les formules générales de la théorie, je calculerai
directement la pression p correspondant & une valeur finie
de a. En premier lieu, il faut, dans ce but, évaluer la dérivée
partielle de la fonction f, exprimée par la formule générale
(28): en formant la différentielle de log U on obtient, selon (23):

du _dr _ df, df
u — T fa fi

Si on pose dans cette formule:

dU = 0 ,
il vient:
3T _ . (A0f,  12f, |
W_'T('ffﬁ_fgﬁ : , (37)

1 Cf. A, ScHiprovr, [, e. I11.
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Introduisons la fonetion:

2 ol
— — = o 38
+V2+V3+ fo () (38)
On a:
d_fl.—ﬁ et _d_@——-_f.‘l.
do =~ a do o '

d’ott I'on tire:
da da of, _ @ Of1

3V T df, 5y T fav’ (%)
et:

oy __ dfy v _ fi ¥y o

oV = dadV ~ [0V’ (40)

Selon (37) et (40), on peut alors écrire:
L AU ALY
oV - /1 fo f? DV

Cette valeur, portée dans la formule (28), fournit I’expression
cherchée:

=4
e

= g i)
R Pk 2 |

<

0

La dérivée partielle de I’entropie S est, selon (24), (39) et (40):

28 . 3 1 S 13\ o1
oV 2 f in A

Grace a la formule (41), cette expression se simplifie et devient:

S NE& f, .
— = = L2 2
oV V£ (42}

La pression d’un fluide dégénéré est donc exprimée par la

formule générale:
_ NAT f3(a) 43
P= 5 7@ (43)

D’autre part, I’énergie U d’un fluide dégénéré est, selon (23):

3 Npr @
U = Nufl()

Au moyen de ces deux expressions on retrouve immédiate-

ment 'équation (36), conformément au théoréeme de M. Pl

ArcHives. Vol. 8, — Janvier-Février 1926. Qﬁ

LUNIVEHSHE

SRR

NEUCHATEL
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La formule (43) aurait pu, naturellement, étre obtenue plus
commodément et sans calculs a I’aide de ce théoréme.

Vu la généralité des expressions (23) et (24), je ne crois pas
qu’il soit permis d’attribuer a la fonction f, toutes les valeurs
correspondant a Dexpression (20) quand on fait décroitre
indéfiniment T ou V. Selon cette formule, f, augmente indé-
finiment au fur et & mesure que diminue P’argument VT%.
Or, la variable «, établissant le lien entre les fonctions f, et f,
et déterminant uniformément Pentropie S, ne peut prendre
une valeur supérieure a4 1. Pour cette valeur de & les séries (18)
et (19) sont encore convergentes, mais la dérivée:

dj o a?

d—l:lnc:i 1 \,.-’2*.—{‘7?—’_ "
est divergente. Par conséquent la présente théorie perd toute
signification pour des valeurs de la fonction f, supérieures a:

¢ Fid 1 1
it} =1 +W+§§/—2

4 g -

A cette limite supérieure de f, correspond une limite infé-
rieure de I'argument VT*: qui, dans les conditions physique-
ment réalisables, sera atteinte seulement pour des températures.
voisines du zéro absolu. La supposition de l'existence d’une
limite inférieure finie de ’argument VT*: s’accorde donc par-
faitement avec ce que nous savons sur les propriétés des corps
aux trés basses températures. Je crois, du reste, pouvoir appor-
ter au chapitre suivant la vérification expérimentale de cette
prévision.

En désignant encore par f, (1) la valeur que prend la fonction
/s pour @ = 1, on peut exprimer la valeur limite de I’entropie
par:
nple) (44)

limS =

Cette valeur extréme de I’entropie est complétement indé-
pendante des propriétés physiques particuliéres du fluide
considéré.

1 Cf. A. ScHipLoF, L ¢. 111.
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IV. Application de la théorie a Uhélium liquide.

On peut résoudre I’équation (19) par un développement de la
variable & suivant les puissances croissantes de f,:

@ = a, + a,f, + a,f, + a,f, + .- . (45)

Si, pour abréger I’écriture, on pose:

dfy _

7. — 2@,
on trouve:

9(0) =1,

et les coefficients du développement peuvent étre exprimés
en fonction des dérivées d’ordre croissant de la fonction «,
calculées pour la valeur f, = 0. On a donec:

_ _ 1 _ _ 1 ¢(0) __ 1
aO_O, al_m_l, az_——2?()_—§—‘—/-§,
I T 0_1(3 2
“=TT2390) T1.2650) — gla 1/5 :

Les coefficients consécutifs sont exprimés par des polynémes
dont le nombre de termes croit en méme temps que I'indice du
coefficient. La valeur numérique des coeflicients, par contre,
diminue trés rapidement. J’ai calculé les huit premiers coefli-
cients qui ont des signes alternés. On trouvera ci-dessous les
résultats numériques de ces calculs :

a, = 0, ay =4, a, — — 0,3535534 ,
a, = 0,0575499 , a, = — 0,0057648 , a, = 0,0004020 , (46)
a, — — 0,0000210 , a, = 0,0000010 .

Le coeflicient @, est négatif et de 'ordre de grandeur 10-8.
En posant dans le développement (45) f, = 2,62, on trouve:
=1, avec une précision de 0,00005. La somme de la série

convergente:
1 1
1 =1 — b
£, (1) taEtaE T
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doit donc étre rapprochée de 2,62. Selon un théoréme de conver-
gence connu i, on a:

i) < — =2 4 VT = 3414

l — e

V2
Pour I’évaluation de la plus hasse température qu’'on puisse
atteindre dans le cas de I’hélium liquide, il suffira de supposer:

(1) <3 .

La masse moléculaire de I’'hélium étant M = 4, on trouve pour
ce corps, si ’on utilise les unités c. g. s.:

f,VT = 3,956.102 (47)

Selon M. Kamerlingh Onnes 2, la température critique de
Ihélium est: T, = 5,26° K. Le volume moléculaire critique
semble étre voisin de 40 cm3. On en déduit pour la fonction f,

la valeur critique:
fi(¢,) = 0,8219 .

Au moyen du développement (45) on peut calculer la valeur
correspondante &, de la variable caractéristique «. On trouve
alors:

Cette valeur relativement grande de « indique un haut degré
de dégénérescence. Lorsqu’on abaisse la température de ’hélium
liquide quelque peu au-dessous de sa température critique, le
fluide se contracte considérablement, et, par conséquent, 1a
fonction f, augmente trés rapidement. Or, nous avons admis
que la valeur de f, doit nécessairement rester inférieure a 3:
il en résulte que la température de I'hélium liquide doit rester

supérieure 4 :
R2L2 / L\
® = 2::MR(?TV) '

L Cf. J.-A. SerreT. Calcul différ. et intégr., I, 5me &dit., Paris,
Gauthier-Villars, p. 141.

2 H. KaAMERLINGH ONNES. Communicat. Leiden, N°© 124 b, décem-
bre 1911.

(48)
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Aux températures les plus basses que ses puissants moyens
de réirigération lui ont permis d'atteindre, M. Kamerlingh
Onnes * a observé la densité de I’hélium liquide:

o = 0,1465 ,

densité a laquelle correspond le volume moléculaire de 27,30 cm3.
Pour cette valeur de Vla formule (47) donne, en y posant: f, = 3:

® — 2°.9 abs. 2.

Par conséquent, selon la présente théorie, le produit VT
doit atteindre & cette température la plus petite valeur physique-
ment réalisable, et on ne peut abaisser la température au-
dessous de 2°,9 qu’en provoquant une augmentation de volume.
Expérimentalement, on a observé, entre 3° et 2° K, un maximum
de densité de Uhélium lignide qui, manifestement, ne peut étre
attribué a un changement de la structure moléculaire du corps
et ne semble pas encore avoir recu une interprétation satis-
faisante. Selon la présente théorie ce phénoméne doit nécessaire-
ment se produire et précisément entre les limites de tempéra-
ture observées. La température & laquelle se produit le maxi-
mum de densité de I’hélium liquide est, selon M. Kamerlingh
Onnes, 2°,4 K. Elle est donc quelque peu inférieure & la tempé-
rature calculée.

De plus, M. Kamerlingh Onnes admet avoir refroidi I’hélium
liquide jusqu’a 1°.5 K avec une augmentation de volume rela-
tivement insignifiante, et qui certainement ne satisfait pas a

la loi:
VIY* — constante ;

prévue par la théorie. Je ne crois pas que ce léger désaccord
infirme tant soit peu les considérations théoriques. Il est pos-
sible qu’une théorie plus compléte permettrait d’abaisser
légeérement le chiffre prévu pour le minimum de température.

Toutefois, en ce qui concerne la divergence principale entre
la théorie et les faits observés, elle s’explique aisément du point
de vue de la théorie méme.

1 H. KamerLiNGH ONNES. Communicat. Leiden, N° 119, février
1911.
2 Cf. A. ScuipLoF, L. ¢e. IV.
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On ne peut, en effet, interpréter correctement les phéno-
meénes observés sans tenir compte des couditions spéciales
causées par la dégénérescence du fluide. L’augmentation de
volume qui doit accompagner le refroidissement ne peut devenir
trés considérable. Il est, en effet, invraisemblable qu’un corps
continue a fournir spontanément du travail contre des forces
intérieures considérables tandis qu’on diminue progressive-
ment son énergie intérieure, en le refroidissant de plus en plus.
Aussi la dilatation observée était-elle trés petite. Pour cette
méme raison la température de I’hélium liquide n’a pas pu
descendre aussi bas que ne l'indiquent les chiffres observés
ma’s elle a di rester constamment voisine de 2°,9 abs., méme
au contact d’un milieu de température notablement inférieure.

Le thermomeétre & hélium , par contre, peut prendre la tempé-
rature du milieu ambiant, et, comme nous I’avons dit précé-
demment, ses indications sont exactes, méme & des tempéra-
tures inférieures a 1° K. Toutetois, dans le voisinage du zéro
absolu, le thermométre marque uniquement sa propre tempé-
rature, soit celle du thermostat, mais ne marque plus celle
du corps liquide ou solide avec lequel il est en contact. Par
conséquent, les observations expérimentales, loin d’infirmer
la théorie, s’accordent bien avec nos prévisions. 1l est pos-
sible que le petit écart entre la température calculée et la
température observée du maximum de densité s’explique de la
méme facon; car nous ne pouvons pas savoir a partir de
quelle limite le désaccord entre la température du corps et
I'indication du thermomeétre a pu exercer une influence sur les
observations.

1’impossibilité de refroidir ’hélium liquide au-dessous d’une
certaine température voisine de 2°,9 K explique aussi I'insuccés
des tentatives faites pour solidifier cette substance. Peut-étre
serait-il cependant possible, en favorisant artificiellement
l'augmentation de volume, d’abaisser suffisamment la tempé-
rature de ce corps pour en provoquer la solidification.
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