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EXPERIENCE DE FIZEAU

ET
PRINCIPE DE RELATIVITE

W. RIVIER

On a souvent paru attacher une grande importance au fait
que la reégle de composition des vitesses d’Einstein:
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appliquée & lexpérience de Fizeau, conduit & un résultat
conforme a la formule de Fresnel, dite « d’entrainement partiel
de I'éther »:

W = o + v(] —_ i;:) ; (2)

A ce propos, nous croyons utile de faire observer ce qui suit.

Fresnel pensait que ’entrainement de I’éther dans un fluide
en mouvement dépendait du degré de réfringence de ce fluide,
les fluides les plus réfringents donnant lieu & un entrainement
presque total, les moins réfringents a un entrainement presque
nul. Proposons-nous de retrouver par une autre voie les con-
clusions qui découlent de cette hypothése; cela nous four-
nira 'occasion de préciser le réle joué par cette hypothése
dans I'établissement de la formule (2)1. Nous remplacerons,

1 Les vues précises de Fresnel, qui conduisent a4 la formule (2),
peuvent se résumer dans les trois principes suivants: 19 P’éther des
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a cet effet, 'image dont s’est servi Fresnel, & savoir celle de
Ientrainement de I’éther, par une autre image conduisant aux’
mémes conséquences.

Nous admettrons que le ralentissement subi par la lumiére
au moment ou elle pénétre dans un fluide est dit & une résistance
des corpuscules du fluide comparable & celle qu’opposerait a un
coureur une succession de haies & franchir ou de barriéres a
escalader. Soient donc un coureur, un champ de course et,
pouvant se déplacer dans ce champ de course avec la vitesse ¢,
dans le méme sens que le coureur ou dans le sens opposé, une
succession d’obstacles que nous supposerons de préférence
constitués par des barriéres s’échelonnant le long de la piste a
des distances invariables les unes des autres. Soient alors W
la vitesse moyenne du coureur quand les ohstacles se déplacent,
w sa vitesse moyenne quand les obsiacles sont arrétés, et c sa
vitesse quand les obstacles sont supprimés. Dans ’expérience
de Fizeau, le coureur représente le rayon lumineux, le champ
de course D’éther immobile, enfin chaque obstacle une des
particules du fluide rencontrées par le rayon lumineux.

Si, dans ces conditions, on augmente la hauteur des barriéres,
w tendra évidemment vers 0, et W tendra vers ¢, parce que,
si les barriéres se meuvent, le coureur participe & leur mouve-
ment pendant le temps qu’il emploie a les escalader. Si, au
contraire, on diminue la hauteur des barriéres, d’une part, w se
rapprochera de ¢, et, d’autre part, la différence W—w tendra &
s’évanouir. Plus exactement, en faisant intervenir la somme t
(fonction de ¢ et de la hauteur des barriéres) des temps que le
coureur emploie & escalader des barriéres pendant Punité de
temps, on obtient la relation:

W=y:+c(l —7),

et les résultats précédents se déduisent immédiatement de
cette relation en ohservant que z tend vers 1 ou vers 0 suivant

espaces vides péneétre librement dans les corps en mouvement ;
20 ]a densité de 1’éther, a Vintérieur dun corps transparent, est
indépendante de I’état de mouvement de ce corps; 3° le rapport de
cette densité a celle de I’éther dans le vide est égal au carré de
Pindice de réfraction du corps. '
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qu'on augmente ou qu’on diminue la hauteur des barriéres.
Bref, en regardant avec Fresnel la fonction W comme une fonc-
tion de ¢ et de w seulement et en désignant cette fonction
par W (¢, &), nous obtenons comme lui, en plus de 'identits :

W0, v) = w,
vraie par deéfinition, les deux conditions aux limites:

W (v, 0
Wiy, ¢)

i

On voit que I'image dont nous nous sommes servi renforce
en définitive le caractére intuitif de la supposition de Fresnel.
Adjoignons maintenant aux trois conditions précédentes la

suivante:
W(—v, —w) = — W(o, w) ,

qui nous permettra d’embrasser dans une méme formule le cas
ou la lumiére se propage dans une direction et celui ou elle se
propage dans la direction opposée. Nous aboutissons alors a cette

: . W .
conclusien que la fonction — , que nous désignerons par z, des
- ] ;

i [ 114 ;- 3
variables — et - que nous désignerons respectivement par x et
v : :

y, doit satisfaire aux quatre conditions qui peuvent se formuler
comme suit.

I.a surface représentée par z doit contenir les trois droites
représentées chacune par un des trois systémes:

=0 i | A |
U R () gj , @ 4T

= Y T =

z — 1

cette surface doit en outre étre symcétrique par rapport a
I’origine du systéme de coordonnées.

Supposons enfin — cinquiéme condition — la fonection =
développable au voisinage de x = 0 en une série entiére en x,
valable pour toute valeur de y satisfaisant aux relations:
— 1 =Zy=+4 1. Ces cing conditions suflisent alors a établir
que la fonction envisagée doit étre de la forme:

z=y+ (1 —»)[(1+A)x+ A,z + A, 2"+ ... ], (6)
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les A représentant des fonctions de y alternativement paires et
impaires, et s’annulant pour y = 01. La plus simple des fone-
tions z de ce type s’obtient évidemment en posant:

A
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On retrouve ainsi la formule (2) de Fresnel, sous la forme:

~J1
~—

=y 4+ (U—2%z, (

Venons en maintenant au point qui nous importe. Plus une
fonction de la forme (6) sera simple, plus il y aura de chance
pour que la surface qu’elle représente tende a se confondre,
au voisinage du plan des yz, avec la surface représentée par (7).
Or, le probléme d’ordre général que résolvait Lorentz en intro-
duisant ses fameuses formules dans 1’électroptique se ramenait
a celui-ci: trouver une loi de composition des vitesses relative
et d’entrainement, aussi simple que possible, qui fit correspondre
a la valeur & = ¢ de la premiére, quelle que soit la valeur ¢ de la
seconde, la valeur W = ¢ de la résultante. Si I'on tient compte,
en plus de cette condition, de certaines propriétés simples de la
régle de Galilée que cette nouvelle loi devait conserver, on

arrive a la conclusion que la fonction z = — des variables
[

v (14 , . i
T=—et y= e représentative de cette nouvelle loi dans le cas
ou les composantes ont une méme ligne d’application, devait

nécessairement satisfaire aux cing conditions envisagées plus

1 On peut ajouter que ces fonctions A n’ont pas besoin de rester
finies pour y = +~ 1 et y = —1, pourvu que leurs produits par
1—y* s’annulent pour ces deux valeurs de y. Naturellement, d’autres
singularités encore peuvent se présenter dans Uintervalle considéré.
Citons par exemple le cas des fonctions A correspondant & I’expres-
sion de W que nous avons obtenue dans un précédent mémoire
(v. Pexpression de W3, pour m = i, dans Optique de Huyghens, Arch.,
p. 370 nov.-déc. 1924). Ces fonctions, qui peuvent s’écrire:

& k14201 — gq)k-2
A=0, A,=—=— }'( ]—'—l—r ), e A/;:———wm'? (— -')) e G
) Al 4 || 12y

& désignant -~ 1 ou—1 suivant que y est positif ou négatif, ont une
partie de leurs dérivées des différents ordres discontinues pour y= 0.

| oy

-
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haut et, par suite, rentrer, comme telle, dans le type (6). En
fait, cette fonction, peut s’écrire:

r 4y

=1t a %

ou. ce qul revient au meéme:

=74+ (1 —1)(x—rat + 1z — Yzt 4- ...)
elle s’obtient done en faisant dans (6):
g = — 0. A, = 402,

et constitue ainsi la plus simple des fonctions de la forme (6)
qui soit en méme temps symétrique en z et y.

En définitive, nous pouvons affirmer que la concordance des
formules (1) d’Einstein et (2) de Fresnel tient aux deux circons-
tances suivantes.

fo Fresnel a saisi, dans une intuition que I’expérience a en
somme confirmée, qu'un fluide n’existait optiquement, et ne
pouvait done, par son mouvement, exercer d’influence sur la
marche d’un rayon lumineux, que si son indice de réfraction
etait différent de 1.

20 Lorentz a tiré les formules gui portent son nom d’un prin-
cipe de cinématique dont I'énoncé peut en quelque sorte
s'obtenir en remplacant dans P'intuition de Fresnel le fluide
par un systéme de référence, le rayon lumineux par un mobile
se déplacant dans ce systeme et I'indice de réfraction du fluide
par le rapport a ¢ de la vitesse du mobile, relative i ce systéme.

Mais il est essentiel d’observer que cette explication de la
concordance des formules (1) et (2) n’est valable qu’a la condi-
tion qu’on admette avec M. Einstein (sous réserve d’une remar-
que faite plus loin) I'identité de la vitesse de la lumiére dans le
fluide en mouvement, mesurée par un observateur entrainé
avee le fluide, vitesse que nous désignerons dorénavant par wy,
et de la vitesse de la lumiére dans le fluide immobile. (Cette
derniére est la seule des deux qui ait été envisagée par Fresnel
et ¢’est elle qui figure, désignée par w, dans la formule (2).) Or
il se trouve que cette identité non seulement est contestée par les
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adversaires de la théorie de la relativité, qui opposent a cette
identité la relation tirée de la régle de Galilée:

w, = W — ¢,
c’est-a-dire donc, d’aprés {2), en premiére approximation du
oINS :

W, T WV —— ¢,

mais qu’en outre elle n’est nullement impliquée dans les résul-
tats expérimentaux obtenus par Fizeau et, plus récemment,
par Zeeman. Ce n’est, en effet, que si ces expérimentateurs
avaient, en procédant a des mesures directes de la grandeur
wy, veérifié Pexactitude de la formule:

W=t (9)

. ; . % . 5 . . .
qui peut d’ailleurs, pour ~ petit, s’écrire en premiére approxi-
mation:

que l'on pourrait parler d’une confirmation de la théorie de la
relativité par les expériences de Fizeau et de Zeeman. Or, une
telle vérification non seulement n’a jamais été tentée, mais elle
parait, pour le moment du moins, hors de notre portée.
temarquons d’ailleurs que les formules (1) et (9) ne peuvent
dans aucun cas étre considérées comme rigoureusement équi-
valentes; car, pour les relativistes eux-mémes, a moins qu’ils
ne fassent abstraction de I'effet Fizeau-Doppler et de la disper-
sion, I'identité w,; = w ne saurait avoir lieu que pour des valeurs

vetites du rapport — et d’une maniére approchéel. Rappelons,
] pport — Pp pp

1 Selon la théorie de la relativité, il n’est pas rigoureux, en parti-
culier, d’admettre, comme nous ’avons fait (v. p. 369), qu’a des
valeurs de w voisines de 0 correspondent des valeurs de W voisines de
¢. Non seulement la vitesse (relative) de pénétration d’une radiation
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en effet, que, pour un observateur entrainé avec le fluide, la
couleur de la lumiére dépend du mouvement de cet observateur;
de ce mouvement dépendra donc aussi la vitesse de la lumiére
dans le fluide, mesurée par l'observateur entrainé, puisqu’on
sait, par des expériences faites sur le fluide immobile, mais
valables, en vertu du principe de relativité, quand le fluide et
I’observateur sont en mouvement, que cette vitesse est lice
& la couleur. En conséquence, au lieu de représenter une variable
indépendante, y doit étre remplacé dans la formule (8), si 'on
veut donner a cette formule sa vraie signification, par une fone-
tion de z dont la nature dépendra du fluide envisagé. Clest
seulement parce que la variation d’une telle fonction est tout
a fait négligeable au voisinage de 2z = 0. que 'on est porté a
assimiler cette fonction 4 une constante.

donnée dans un [luide dépendra du mouvement-radial de ce fluide,
mais encore cette pénétration pourra s’effectuer ou ne pas s’effec-
tuer suivant I’état de ce mouvement. (En d’autres termes, la couleur
d’un corps vu par transparence sera liée a ’état du mouvement de
ce corps le long de la ligne joignant la source a 'observateur.)
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