Zeitschrift: Archives des sciences physiques et naturelles
Herausgeber: Société de Physique et d'Histoire Naturelle de Geneve
Band: 7 (1925)

Artikel: A propos du probléme des marées : une généralisation du probléme
des courbes de Lissajous

Autor: Tiercy, G.

DOl: https://doi.org/10.5169/seals-740696

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-740696
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

A PROPOS DU PROBLEME DES MAREES

UNE GENERALISATION
DU PROBLEME DES COURBES DE LISSAJOUS

PAR

G. TIERCY

1. — I étude des marées revient a celle des petites oscilla-
tions d’un systéme mécanique d’un trés grand nombre de par-
ticules autour de sa position d’équilibre stable, sous I'influence
de forces perturbatrices périodiques. On est alors conduit,
pour les petites oscillations propres d’un tel systéme, et avec
les approximations voulues, aux n équations suivantes:

n
E(Ezklt: + s;.ku;. -+ Ez‘k“z‘) == | i ==y 2y teeey H) (1)
i=1
ou les u; sont n variables restant extrémement petites, et ol
les quantités e, &,, et &, sont des constantes, liées aux
coefficients numériques de la fonction H donnant les ¢quations
de Lagrange dans le mouvement relatif du systéme ¢

On obtient la solution des équations (1) en posant:

et I’on cherche & déterminer les valeurs de [ et des a;, qui per-

! H. PoiNcARE, Legons de mécanique céleste, tome 111, Gauthier-
Villars, 1910. — H. Resaw, Traité élémentaire de mécanique céleste,
Gauthier-Villars, 1884.
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mettront de vérifier les équations (1); celles-ci s’écrivent alors:

n
ﬁ o 2 ¢ ] .
eltzai(eik P+, l+ EL-k) oo | d'otn :

Pl

) 2 (e el +ey) = 0

i=1

en posant:
p ” 2 ’
sikl + Eikl + ¢, = Cik ,

on a plus rapidement:

n

Eaicm = 0

I}:‘lv

On a done (n + 1) inconnues, [ et les a; ; pour les trouver on
dispose des n équations homogénes (2); il faut que le déter-
minant de ces équations soit nul:

” Cik“ 2= ) ou e(l) = 0 ; (3)

¢’est, 1a une équation de degré 2n en [; on sait que les racines
en sont purement imaginaires; et I’on a:

?(l) = o(—1) .

comme on s’en apercoit vite en permutant dans ¢ (/) les indices
t et £ et en remplacant [ par (— ).

Cela revient a dire que I’équation (3) est de degré n en ({?),
et que les n solutions (I?) sont essentiellement négatives.

Chacune des solutions de (3), portée dans les équations (2),
conduira a un systéme de valeurs des a;; posons que, pour la
valeur [/j, on tire de (2) les valeurs ai,j; la solution correspon-
dante du probléme des oscillations propres du systéme méca-
nique est donc donnée par les expressions:

Lit
uy; = agel (4)

a la solution (—I;) de (3) correspondra loscillation propre
harmonique:

vy = bye ", (4")
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imaginaire conjuguée de (4); la somme de (4) et (4') donnera

une oscillation propre harmonique réelle du systéme.
Rappelons-que les a;; sont proportionnels aux mineurs Djz (l;)
aij

Dik (&)

indépendant de i. De méme, on trouve que le quotient

est

du déterminant ¢(l); c’est-a-dire que le quotient

brj
Dk (5)

est indépendant de £.

2. — Sil’on considére les quantités u; comme les cordonnées
d’un point dans un espace &, a n dimensions, on a n équations
homogeénes (2) en u;; et la condition pour que la solution du
probléme existe est que le déterminant ¢(l) soit nul.

Avec chacune des solutions l; de ¢(l) = 0, les équations
(2) se réduisent a (n-— 1) équations entre les variables uij;
on trouve donc une variété linéaire en ui; ou droite dans U'es-
" pace &n; ainsi, la solution correspondante du probléme méca-
nique donne, en traduction dans &y, une trajectoire rectiligne,
la loi du mouvement du point sur cette trajectoire étant
fournie par (4). _

Cela revient & dire qu'on ne connait les u;; qu’a un facteur
pres.

Comme, d’une facon générale, les racines de ¢(l) = 0 sont
distinctes, on obtient, pour les solutions géométriques dans &n,
2n droites imaginaires issues de l'origine, sur chacune des-
quelles s’effectue un mouvement de point défini par (4).

3. — Qu’arrive-t-il si 'une des valeurs /; est solution double
de I'équation ¢(l) =0 ?

On sait que, analytiquement, il y a deux éventualités:

@) Si les mineurs Di de ¢ () ne s’annulent pas tous pour
! = [j, les équations (2) admettent une solution de la forme:

Uy = @y el (At <+ B) , )

ou A et B sont des constantes arbitraires; ‘

b) Si tous les mineurs D;x s’annulent pour I = l;;, les ayj,
donc les ujj, pourront s’exprimer linéairement en fonction de
deux d’entre elles prises arbitrairement; autrement dit, les
équations (2) se réduisent a4 (n — 2) équations distinctes.
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On démontre t facilement que les conditions mécaniques
auxquelles le probléme est soumis ne permettent de prendre en
considération que I’hypothése (b).

Quelle est alors la solution du probléme dans la traduction
géométrique dans l'espace &y ?

On cherche un lieu géométrique en u;; répondant aux équa-
tions (2); il existe si ¢(l) = 0, cette équation ayant 2n racines
imaginaires pures, conjuguées deux a deux. Si /; est racine
double, les mineurs D;x eux aussi sont nuls, et les équations (2)
se réduisent & (n — 2). La solution géométrique dans &n n’est
done plus un axe, mais une infinité d’axes situés dans un plan
et passant par I’origine; deux des u;j, done deux des a;j, peuvent
étre choisies arbitrairement. La loi du mouvement du point
représentatif, sur 'un ou lautre de ces axes, est toujours
donnée par les relations (4).

4. — Remarques: a) Le probléme de géométrie dans &g
représenté par les équations (2) admet toujours, comme solution
correspondant a toute racine /; de ¢(l) = 0, au moins un axe
immobile; cela, quelle que soit la parité de n. On n’a donc pas
affaire a la recherche des éléments immobiles dans une rotation
simple autour de l’origine; car, dans ce dernier cas, 'axe de
rotation immobile n’existe que si » est impair 2

b) Silj est solution double de ¢(l) = 0, on est conduit & un
plan immobile, quel que soit le nombre n. Le probléeme de géo-
métrie (2) n’est done pas la recherche des éléments immobiles
dans une rotation simple; en effet, dans une rotation dans
I'espace &n, il ne peut y avoir de plan immobile que si » est
pair; si r est impair, il y a toujours un axe immobile.

5. — [Interprétation géométrique des équations (2) dans Gn.
Supposons que, partant d’un systéme de coordonnées rectan-
gulaires u;, on effectue une certaine transformation de coor-
données, qu'on demande quels sont les points qui, dans cette

t H. PoINCARE, loc. cit.

* G. Tiercy, Sur les déplacements dans lespace ¢ n dimensions,
Kundig, 1915.
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transformation, répondent & une certaine condition et que la
réponse soit fournie par les 2n solutions du systéme (2).

Supposons par exemple qu’on applique aux points de &,
la rotation suivante:

n
2 € U;

% f=—1
Uy =S (6)

2 E;k

==t

On demande alors quels sont les points qui, une fois cette
rotation effectuée, occuperont une position identique a celle
qu’ils iraient occuper si on les soumettait a la transformation
linéaire suivante:

Uk:__* E(MI + el (6)
gsik =

ol [ est une indéterminée.

Egalant les seconds membres de (6) et (6), on obtient le
systéme des équations (2). Et on a trouvé que 2n axes de &n
répondent a la condition posée.

On vérifie ici, aisément, que les directions trouvées doivent
étre conjuguées deux a deux. En effet, si l’on remplace {; par
(—1), les nouveaux coefficients (i — &, j) de (6') sont
respectivement les quantités conjuguées des anciens coefficients
(sl + &rl;); et comme le résultat du caloul (6°) ne doit pas
changer et doit rester égal a celui du calcul (6), il faut bien que
les nouvelles coordonnées ¢i; de la solution soient respecti-
vement les imaginaires conjuguées des u;;. Autrement dit, les
coefficients bi; de (4') sont bien les imaginaires conjuguées des
coefficients a;; de (4).

6. — Considérons les 2n axes imaginaires, solutions des
équations (2).

Deux directions imaginaires conjuguées, correspondant aux
valeurs [; et (—I;) de [, peuvent toujours étre considérées comme
deux des droites invariables dans une certaine rotation autour
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de I’origine; en désignant par (uij): et (vij): les nouvelles coor-
données d’un point aprés cette rotation, on aurait:

S (”ij)l = p;uy; ou (aij)r = pja; ,
’

? (”z‘j)x = pjvy ou (sz)[ = ijij .

) - . . .
Dans ce cas, ¢; et ¢; sont, non seulement imaginaires conju-
gués, mais encore inverses I'un de Vautrel; cela entraine la

relation:

on a d’ailleurs toujours, dans une telle rotation *:

(o 07 — 1) (2 s vtj> =0 ; (8)

=1

et comme les directions en question sont imaginaires conju-
guées, la somme Fujjvi; ne peut pas étre nulle; il faut done
bien que: > p;- —1=0.

Les directions correspondant a lj et (— /) ne sont done ja-
mais perpendiculaires 'une a l'autre.

On en dira autant des directions dues & tout autre couple de
valeurs conjuguées, Il et (— [x), solutions de ¢ (I} = 0.

Si maintenant on considére les directions correspondant a
lj et Iz, ou a lj et (— Ix), on aura:

pieg —1s=0 et pjop—15<0.

Deux cas peuvent alors se présenter; ou bien les directions
oy, €t g, d’une part, p; et p; d’autre part, restent immobiles dans
la méme rotation auxiliaire; ou bien il faut des rotations auxi-
liaires différentes. Si la rotation est la méme, on aura, & cause
de (8): ' '

EHU uy =0, E“ij"ik = 0,
et les directions d’indice k& seront perpendiculaires aux direc-
tions d’indice J.

Si les rotations auxiliaires () et (k) ne sont pas identiques,

1G. Tiercey, loe. cit.
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la relation (8) n’est plus valable; et les directions d’indice % ne
seront pas perpendiculaires aux directions d’indice ;.

Le plan de deux directions imaginaires conjuguées est réel;
la résolution des équations (2), en traduction géométrique dans
&n, conduit done a n plans réels; ajoutons, en passant, que ces
plans, en général, ne sont pas complétement perpendiculaires *
les uns aux autres.

7. — Un cas trés important du point du vue mécanique est
celui ou 'équation ¢ () = 0 admet la racine [ = 0; ¢’est alors
une racine d'un ordre pair de multiplicité, a cause de la forme
de ¢ (1).

On montre aisément que les solutions du probléme sont de la
forme ?:

u, = a,;t 4 B; ,

ol a; et B; sont des constantes. D’ailleurs, on peut prendre les
variables u; de telle sorte que les unes définissent la surface
extérieure de la mer, tandis que les autres donnent la position
des molécules a l'intérieur de cette surface; désignons les pre-
miéres par ug et les secondes par up; on sait qu’il arrive en outre
que les u, se réduisent a des constantes; la surface extérieure
est donc invariable, ou plutét modifiée d’une facon constante;
a 'intérieur, il existe des courants continus, puisque:

u, = a,t 4 f, .

(C’est ce qui arrive dans les marées statiques (premiére sorte
avec ap = (; deuxiéme sorte avec ap 2= 0).

Que donne la représentation géométrique de la solution
dans &, ?

Puisque ! = 0 est une racine d’un ordre pair de multiplicité,
double au moins, les équations (2) représentent, dans &n, un
plan fixe ou un « 2i-plan » fixe. Mais comme les uq sont des cons-
‘tantes, le plan en question sera contenu dans une varisté li-

L G. Tiercy, loc cit.
2 H. PoINCARE, loc. cit.

Arcuives, Yol. 7. — Septembre-Octobre 1925. 19
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néaire d’ordre inférieur & n, et paralléle a celle déterminée par
les axes d’indices b.

Dans les marées statiques de premiére sorte, oit up = const.,
la solution géométrique se réduit a un seul point fixe dans &n.

8.— Solution générale des oscillations propres. La solution
générale du probléme mécanique est fournie par I'expression:

n n
o, = 2 Aj ' + 2 Bj o ; 9)

j:l =

les constantes A; et B; sont imaginaires conjuguées; elles pré-
sentent donc 2 constantes arbitraires, qui sont déterminées par
les conditions initiales (lesquelles exigent en effet qu’on dispose,
au total, de 2n constantes arbitraires).

Les termes Ajuij et Bjvi; donnent ensemble un mouvement
harmonique propre sur une trajectoire rectiligne Aj de &y, droite
située dans le plan réel des solutions uj; et ¢;5: la période de

L exV—1
cette oscillation est —T_‘l/——
J

la composition de n mouvements oscillatoires périodiques
propres, s’effectuant respectivement sur n droites fixes Aj, issues

. La solution générale (9) est done

de Torigine.

On trouve donc la la généralisation d’un probléme classique
de cinématique plane et de physique: la recherche des courbes
de Lissajous. On sait assez combien le dessin de ces courbes est
compliqué, méme dans la géométrie plane correspondant a la
physique de deux diapasons perpendiculaires, lorsque les condi-
tions d’amplitudes, de périodes et de phases sont quelconques.

Il est évident, d’ailleurs, qu’on pourrait remplacer les compo-
santes s’effectuant sur les droites A; par des composantes agis-
sant respectivement sur les n axes d’une équibase orthogonale
de &Gn.

9. — Influence du frottement sur les marées. Les quantités
l; correspondant aux oscillations propres ne seront plus pure-
ment imaginaires; elles auront une partie réelle, d’ailleurs
petite, et essentiellement négative, car I'énergie de I'oscillation
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est décroissante. Par conséquent, les termes représentant des
oscillations propres finissent par disparaitre, puisque les marées
existent depuis fort longtemps. Il ne restera plus a considérer
que les termes correspondant a une influence extérieure; ils
obéissent & des équations du type suivant:

n
woow ’ ’ et
E(Eik”i + g0 4 gy “;‘) = K,e" ,

=1

ou 4 est purement imaginaire et caractérise la période de la
force perturbatrice; les termes de la solution sont de la forme:

U, = et . (i0)

Si on a a considérer plusieurs forces extérieures, la solution
sera:

—_ Rnt
Uy = g™ (11)

ou les 4, sont connus.

Lies termes de la forme (10) définissent dans &, un mouvement
de point; ¢’est un mouvement oscillatoire simple, s’effectuant
sur une certaine droite. Avec I'expression (11), on fait la compo-
sition de plusieurs mouvements oscillatoires simples, dont cha-
cun est exécuté sur une droite particuliére de &n. On retrouve
donc le probléme généralisé des courbes de Lissajou; le frotte-
ment produira simplement une diminution légére de I'ampli-
tude, et un faible décalage de I’oscillation contrainte du « point
résultant » dans &n.
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