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1925 Vol. 7. _ Mai-Juin

SUR LA FORCE
qui tendrait 4 rapprocher un continent de Iéquateur

- PAR

R. WAVRE
(Avee 4 fig.)

MM. W. Koppen, P.-S. Epstein, W.-D. Lambert et E.-H.-L.
Schweydar ont entrepris d’intéressantes études sur la force qui
sollicite un continent & fuir le pole. M. Wegener résume les
principaux résultats obtenus par ces auteurs dans le dernier
paragraphe de son livre « La genése des continents et des
océans »1 et donne aussi les indications bibliographiques.

Hypothése.

Le plus simple, dans ces études d’un probléme local de géo-
tectonique, est d’admettre que I'ellipsoide des géodésiens est une
figure d’équilibre et que la présence sur celui-ci d’un continent
ne modifie sensiblement ni sa forme ni son mouvement autour
de son axe de révolution. C’est 14 sans doute une hypothése
légitime, car le socle continental n’a qu’'un volume trés petit
par rapport & celui de I'ellipsoide.

Notre présente étude portera sur un élément de socle, de
volume infiniment petit, de sorte qu’il nous suffit de requérir
que 1’on puisse, a partir d’un certain ordre de petitesse de I'élé-
ment, ne pas tenir compte de pareils troubles ou bien les envi-
sager eux aussi comme infiniment petits. C’est fort peu deman-
der, et cette hypothése est peut-étre une conséquence d’un
théoréme d’Euler sur la stabilité du mouvement. Nous éprou-
vions tout de méme le besoin de l'expliciter. Elle revient a

1 Trad. ReicreL, Blanchard, Paris, 1924.
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164 SUR LA FORCE QUI TENDRAIT A RAPPROCHER

demander que le mouvement a I’état limite soit la limite des
mouvements dans les états voisins. Précisons le parti que nous
tirerons de cette hypothése.

Soit C une petite région de Pellipsoide et I et 11 deux répar-
titions des masses dans la région C.

Nous ferons abstraction des troubles dans le mouvement de
Pellipsoide que pourrait apporter le passage de I’état T al’état I1,
pourvu que la région C soit suffisamment petite.

Nous ferons abstraction également de la déformation de
Pellipsoide, en dehors de la région C, qu’entrainerait cette modi-
fication des masses.

Soient alors g! et gt les champs de la pesanteur correspon-
dant aux états I et II, puis f1 et f1I les pressions exercées sur
I'unité de surface d’une paroi quelconque, intérieure au géoide.
Posons:

Ag=gt—3g"', Af=fM—f.

Notre hypothése entraine cette conséquence que les varia-
tions Ag et Af tendent vers zéro lorsque la répartition II des
masses tend vers la répartition I, ou encore, lorsque le volume
de la région C tend lui-méme vers zéro.

Le poids d’'un volume V sera a I’état 1I:

P — !/i‘/iv/’egn av = [ [ [(s"+ag)edv,
A v

e étant la densité de masse; et ce poids doit étre entendu comme
la résultante générale des poids des différents éléments de V.

Il tendra vers la valeur qu’il a a I’état I lorsque les deux états
tendent 'un vers I'autre. Plus que cela, si le volume V tend
lui-méme vers zéro, la variation des poids: '

AP =P P = [ [engav .

L
sera un infiniment petit d’un ordre supérieur a celui du poids P:
P'= [ [ [egfav .

I

La méme remarque s’appliquerait aux pressions, et aux
pressions sur un élément de surface infiniment petit. L’erreur
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relative commise en négligeant les variations A sera toujours
infiniment petite. ,

1l ne faudra pas confondre les variations A prises en un méme
point, qui proviennent des altérations de la répartition des
masses, avec les différences d qui s’introduiront plus loin pour
représenter des différences du champ de la pesanteur, en deux
points, pour une seule et méme répartition des masses.

*
* *

La méthode.

1. Nous ne présupposerons pas que les actions des poids des
différents éléments d’un socle se réduisent a une résultante
appliquée au centre de gravité; et en effet, il convient de ne
pas parler de centre de gravité puisque les forces de pesanteur
ne sont pas paralléles et que c’est ce défaut méme de parallé-
lisme qui engendre la force que ’on cherche & mettre en évi-
dence, -

2. Par un artifice fort simple, nous éviterons le calcul des
pressions sur la surface immergée du socle continental.

3. Nous discuterons séparément I'influence de la partie
émergente et de la partie immergée sur I'intensité de la force
translatrice et distinguerons trois répartitions du champ de la
pesanteur a 'intérieur du géoide.

4. Enfin nous critiquerons I'ordre de grandeur de cette force
en cherchant les limites des erreurs. commises dans les calculs
approximatifs.

Soit E la partie émergente du continent, et J la partie immer-
gée, c’est-a-dire comprise dans l'ellipsoide. Par socle ou con-
tinent nous entendons 'ensemble de E et de J.

L’état I sera celui ou le continent n’existerait pas, la partie J
étant remplie par la substance dans laquelle il baigne, sub-
stance appelée sima.

L’état II sera I'état réel correspondant a la présence d’un
continent.

Notre figure 1 représente ces deux états, mais ce n’est que
pour la clarté que nous y avons dissocié les deux parties J.

Soit, en un point x, e(z) la densité de masse du continent
ou du socle, et i(z) la densité de masse du sima.
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Sous I'influence de I'attraction et de la force centrifuge synthé-
tisées dans la pesanteur, il y a donc équilibre relatif dans I'état 1
entre la partie J a densité i(z) et le reste du géoide. Cette partie J
que I'on peut, si cela semble bon, supposer solidifiée, est sou-
mise aux forces suivantes:

a) le systéme P; des poids des éléments de J a densité i(z);
b) le systéme ®!' des pressions sur la surface immergée.
Puisqu’il y a équilibre relatif, on doit avoir:

P40 =0 . (1)

Dans Pétat I1, le socle est soumis aux forces suivantes:

a) le systéme Py des poids de E a densité e(x);

b) le systéme Pjdes poids de J & densité e(x);

¢) le systéme &1 des pressions sur la surface immergée.

Le systéme &1 différe probablement fort peu de @1, de sorte
que, dans cet apercu de méthode, posons:

P =", (2)

artifice que nous discuterons tantot.
Soit alors S le systéme résultant des forces appliquées au

socle:
S:P;I_E_le_l_(bll.
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- Par (2) et (1), 'élimination de la pression &1 peut s’effectuer
et donne: ‘
§ =P, + P} —P]. (3)

~ Le systéme des forces appliquées au socle est ainsi ramené
a trois systémes de poids. Soit g(x) I'intensité de la pesanteur
en z, Zg’(x) la direction de la verticale (c¢’est un vecteur de lon-
gueur unité) et [x E] le moment du vecteur E, pris en x, par
rapport & I'origine d’un systéme d’axes, dont il est inutile de
préciser la position pour le moment.

Appelons s la résultante et = le moment résultant du sys-
téme S. Soit dE I’élément du volume Vy de E et dJ I’élément du
volume V; de J.

En langage vectoriel, nous aurons:

Mais en vertu de (3), nous devons prendre le champ de la
pesanteur a I'état IT dans les deux premiers termes des seconds
membres, et a ’état I dans les derniers.

*
* *

Remarqgue sur le cas d’un socle de volume infiniment petit.
P

La région C, ou se produit une altération des masses, sera
done ici la région E + J. Dans le cas ou celle-ci est de
volume infiniment petit, la variation A® = @1 — @I du
systéme des pressions est infiniment petite, aussi bien vis-a-vis
de @1 que de — P!, et les variations de nos intégrales seront éga- -
lement infiniment petites vis-a-vis de ces intégrales elles-mémes.
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De la sorte, nos expressions (4) et (5), dans lesquelles le champ
serait pris a 1'état I, donnent pour un socle infiniment petit
I'ordre de grandeur de la force translatrice (c’est ici un infi-
niment petit, parce que non rapporté au poids du continent),
avec une erreur relative infiniment petite et une erreur absolue
du second ordre. L’artifice de tout & '’heure qui consiste a
poser:

o — ¢!
au lieu de:
o = o'+ AD

est bien légitime car I'erreur commise sur la pression est un
infiniment petit d’un ordre supérieur a celui de la pression elle-
méme.

Nos formules (4) et (5) sont done vraies & la limite, en vertu
de notre hypothése du début, lorsque le volume C tend vers
zéro, et le champ de la pesanteur peut étre pris a I'état I.

*
* *

L’ellipsoide de référence et la déviation de la verticale.

Rappelons la signification des différents signes qui s’intro-
duisent avec cet ellipsoide de révolution aplati dont le géoide

Py, E

M —

Fig. 2.
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s’écarte fort peu et que certains géodésiens appellent I'ellipsoide
absolu. Soit (fig. 2) a le grand axe ou axe équatorial, b le petit
axe ou axe polaire, o l'aplatissement, ¢ I’excentricité, ¢ la
latitude géographique, angle de la normale a I'ellipsoide avec
le plan équatorial, y la latitude géocentrique, R le rayon de
courbure du méridien, » le rayon du paralléle.

Rappelons les relations fondamentales:

a? )2

a a?

pot W

r=uwacoso(il—=u) 2, R=a(l—-:(—m

9 3
. i 9 L, m’ 6
¢ — Y = m sin ?—Tsmip—-}-—:}—smcp—-...,

-

avec 1 = ¢ sinfo et m —

L’élément d’aire limité aux paralléles de latitude ¢ et ¢ 4- dg
et aux meéridiens A et 2 -+ d4 sera sur I'ellipsoide:

des = Rdo x rdx ,
et sur une surface parallele a distance A:
de’ = (R 4 h)do XX (r + h cos 9} an .

L’élément de volume en coordonnées orthogonales ¢, 1 et A
peut se mettre sous la forme:

ay — Rr(l + %) (1 + !f cos cp) dodidh .
r

La formule de Newton donnant l'intensité de la pesanteur
g a la surface de I’ellipsoide et a la latitude ¢ est:

g = g (1 + psin®g) ,

gp est I'intensité de la pesanteur pour ¢ = 0, soit & 'équateur,
et B est la constante 529 >< 10-5. :

Pour 'angle d¢ de la déviation de la verticale & une hauteur
h au-dessus de l'ellipsoide, nous admettrons la formule sui-
vante: '

op = B

h <
— sl . 6
— sin 20 (6)
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Elle aurait besoin, ainsi que la précédente, d’étre tant soit
peu corrigée. Toutefols nous ne discuterons pas les approxi-
mations qui proviennent de son emploi pour la partie E, nous
discuterons au contraire I'emploi que 'on pourrait en faire
dans la partie J dont Paction est prépondérante, comme nous
le verrons.

Force translatrice pour un élément vertical, rapport de cette force
au poids de Uélément.

L’élément sera composé des normales a l'ellipsoide, qui tra-
versent une portion de surface do de P'ellipsoide, limitées a la
hauteur Az et a la profondeur £;. 11 s’agit donc d’un élément de
fuseau dont la section par I’ellipsoide est infiniment petite tandis
que sa hauteur totale reste finie.

Fig. 3.

Le volume total V. de I'élément étant infiniment petit,
notre méthode s’y appliquera en toute rigueur, sil’on prend les
intégrales de (4) et de (b) dans I’état I. ‘

Nous supposons la densité e de cet élément constante et
la densité du sima constante jusqu’a la profondeur #;, et cela
uniquement pour simplifier nos calculs. (Voir a ce propos la
remarque de la fin de cet article.)
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Soit dg la différence de lintensité de la pesanteur, et dg la
déviation de la verticale & partir d’une origine 0, de coordon-
nées ¢ =g, A =12 et h = 0, prise au point ou I’élément traverse
I'ellipsoide. En faisant dV = do dk, approximation qui sera
discutée a la fin de cette étude, la formule (4) s’écrira:

hE

sdo [ (14 25) G + o5

o
0 2

-
S

= e
! 80 b d ->
+ (e—i)gdcrf(1+—:)(g+33)dh- (7)

—ad ®

- Fixons notre systéme d’axes comme 'indique la figure (4),

ne

OX est tangent au méridien vers 'équateur et OY est dirigé
suivant la normale & I'ellipsoide vers le bas.

Affectons de I'indice X les composantes suivant axe OX
et faisons de méme pour Y.

Tenons compte des relations:

o pevs
gFr=10, g=1,
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et s deviendra, en projection sur OX:

hE 0

Sg\.~> s g\ .=
8 egdo‘f(l +_”_)agx dh 4 (e—i)gds ['(1 + .—>agx dh . (8)
e/ g g

U —hi

Or ﬁgx est positif dans E, il ne peut étre que négatif dans J,
que Pellipsoide soit homogéne ou qu’il y ait une forte concen-
tration de masse en son centre, e est positif, e-i est négatif, de
sorte que les deux termes de s* sont tous deux positifs.

Cette remarque purement qualitative permet d affirmer Uexis-
tence d’une force translatrice dirigée vers I équateur.

Elle nous montre que les effets dus a la partie E et & la partie J
s’ajoutent, et cela que la condition d’isostasie soit satisfaite ou
ne le soit pas.

Projetons s sur 'axe OY:

hE

s¥ — egds f('l - B

(3

Y]

| 93

) (1 + 33¥) dh

3

0 .
+ (e — i) gds [ (1 i 9:") (1 + 3g%)dh . (9)
~ha g

L’équation s¥ = 0 exprime que le corps flotte sur le sima;
ce sera donc la condition d’isostasie. Mais avant d’en venir 14,
remarquons ceci: les expressions (8) et (9) nous prouvent que
les termes provenant des différences d’intensité de la pesanteur
0 g ne donnent lieu qu’a des termes du second degré end g et 65,
petits vis-a-vis de ceux du premier dans (8), et des termes du
premier et du second degré petits vis-a-vis de 'unité dans (9).
La déviation de la verticale produit donc un effet devant lequel
on peut négliger, en premiére approximation, Ueffet dit aux diffé-
rences de ['intensité de la pesanteur.

Nous discuterons plus tard cette approximation et ne
maintiendrons ici que les parties prépondérantes. Alors (8) et

(9) deviennent:
hE . ; 0
> -
sX — egdo fﬁgxdh + (e — i) egds [.ngdh ; (10)

L=
0 —hJ

sY — egdohg + (e — 1) gdshy . (11)
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La condition d’isostasie impose au corps de plonger de la
quantité qu’il faut pour satisfaire a ce qui équivaut ici a la loi
hydrostatique d’Archiméde, condition essentielle dans la
théorie de M. Wegener. Cette condition fournit I'équation:

sY — 0 ,

ou
ehy = (i — e) hy . (12)

Multiplions les deux membres par do pour passer aux volumes:
eVe — (i — €) Vy . (12)

Soient Pg et P; les poids de E et de J, la pesanteur étant prise
a lorigine O, conformément aux approximations que nous
faisons pour le moment; soit P, le poids total de I'élément;
P, = Pz + P;.

Multiplions par ¢ les deux membres de (12'), alors on aura:

P]q = T — PJ B
e

e [ — e
pJ —_— p|<; s I)E g 3
® I — e l

| S Py == "e— p
1

C

Etudions I'ordre de grandeur de la force translatrice. Cest
le champ de la pesanteur a l'intérieur de l'ellipsoide qui nous
est le moins bien connu et ¢’est ce champ qui est prépondérant
dans le cas d’'un continent, comme nous le verrons tout &
I’heure.

Envisageons trois cas 1°) 20) 39); les deux premiers concernent
des distributions extrémes du champ entre lesquelles la distri-
bution réelle se trouve certainement, le troisiéme consiste
a supposer que la déviation de la verticale est donnée a l'inté-
rieur comme a l'extérieur par la formule (6).

Cette derniére distribution, que nous appellerons vraisem-
blable, fournit une excellente approximation pour liceberg, le
bateau, et en général, pour les corps qui enfoncent peu dans
I'eau ou dans quelque autre substance a la surface de la terre.

Sur la figure (4), & droite, nous avons tracé trois lignes de
forces correspondant chacune a I'un de nos cas.
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19) Supposons qu’il n’y ait pas de déviation de la verticale
a I'intérieur de V'ellipsoide. Alors dgx = 0 dans J, et il ne subsiste
que l'effet dii & la partie émergente:

hE
X B s B he .
s, = egds - sin 2:9.”[./161}1 = hgegds 3, Hi 20 .

20) Supposons que dans J la direction de la verticale soit
paralléle au rayon vecteur qui joint le point le plus bas de notre
élément au centre C de 'ellipsoide.

Alors J-éx est, avec une excellente approximation, égal a
¢ — y soit & m sin 2¢ et nous avons:

X

0
=" + (i — €) gdam sin 2:pfdh

-hJ

8 b
e [leegdc Ll : + (1 — e) mfugdc] sin 29 .

34

3°) Supposons que la déviation dans J soit donnée par la
méme formule que dans E, alors:

0 p
= (i — e)gdas__sin 2@./’}!(31@
—hJ
— [hEegdc %’ -}Z—l]-a + (i'— e) %% gdchJ:I sin 29 .

Nous constatons ainsi par la présence du facteur sin 2¢ que
la force translatrice est nulle a I’équateur et au pole, qu’elle est
maximum a 45° de latitude géographique.

Synthétisons les résultats correspondant a nos trois hypo-
theses dans le tableau suivant:

g he .
sX — hEegch-E sin 20
10 0
s 20 ) (i — e) gdomhy sin 2¢ (13)
30 (i — e) £ @ gdahy sin 20
2 a?®
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Exprimons enfin la force sx au moyen des quantités les plus
facilement accessibles aux mesures physiques, e, 1, et hg; cela
présente quelque intérét au point de vue pratique et nous sera
utile pour la critique des approximations. Remplacons donc /s

par sa valeur tirée de la condition d’isostasie:

hJ e ¢ ]l]; %
i — e
Alors:
3 hg .

§X = hEegdcgfsm??

1o | 0

+ 20 ] hgegdsm sin2g (14)
3() %%r—i—e‘egd'shg sin?? ”

Rapportons la force translatrice aux poids des parties E et J
d’une part et au poids total P de ’élément d’autre part. Alors:

1°S 0
he ) '
§% = -QB—T:' sin 29 Pg | 20 ! °m sin 20 P;

| 7% (15)
| — e (1
3 (l——;——e-—i‘iﬂ sin 20 P;
ef
X—-i—e*@ TR .
s ; 2asm.;pPL
10 0
i — e ) !
+ 20 i m sin 29 P¢ (16)
i—GBIIJ

30

— L~ sin 20 P, .
l 2 a :

Explicitons les coefficients 5, 5,, p; de Pc; ce sont les quo-

tients de la force translatrice par le poids du continent, et les
quantités '

PL& P28 » G388

sont égales a l'accélération que communiquerait au corps la
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force translatrice, si celui-ci baignait dans un sima qui ne lui
oppose aucune résistance:

il E

I —

e’ X
oy T — - — sin2o , s, = ¢, P,
it 2 a
) . .
1 — e[ 5 hg %
- i iy 2 — .
by B . & — =+ m{sinlop, s, = e, P
[} 2 a
l‘—*‘ e :5 k[-}-—;— ]IJ . X
. £ — — = sin 2¢ s = o P .
(31 1 2 a i 2 2 ¢

La force s} est celle que I’on obtiendrait en supposant que les
poids de E et de J se réduisent a une résultante appliquée au
centre de gravité, comme 'ont fait pour un socle de dimen-
sion finie MM. Epstein et Lambert, et en utilisant judicieuse-
ment la formule (6).

Pour nous faire une premiére idée de 'ordre de grandeur des
coefficients g, , 0,, et 0, dans le cas d’un continent, prenons les
valeurs suivantes de e, i, et /fig:

Densité moyenne du socle continental e = 2.9.

» » du sima jusqu’a une profondeur de 100 km
1= 3,

Hauteur moyenne de la surface continentale au-dessus du
niveau du sima apreés adjonction a celui-ci du tiers de la pro-
fondeur moyenne des océans, iz = 3,2 km, ce qui nous donne
par la condition d’isostasie b; = 96 km.

Enfin prenons:

1

5 = 529 < 107° ; a« = 6378 km , o = 5983 °
290,90

d’ou
: ! ! 1
150 <% <mmg Y 3 <M a9

Nous devrions prendre pour ¢ une valeur légérement plus
faible que 6378 km, par exemple 6376 km, rayon équatorial
du sphéroide de sima diminué des deux tiers de la profondeur
moyenne des océans, mais ’erreur ainsi commise est insignifiante
et s1 nous prenons la valeur ordinaire du rayon équatorial,
¢’est pour que toutes nos formules algébriques ne cessent de
s’appliquer au cas de l'iceberg, du bateau et en général des
corps flottants a la surface des mers.
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Ceci étant, les valeurs de nos coefficients sont approximati-
vement les suivantes:

sin 20 sin 2o si
6. == -
v

1
17 92.606.000 ° 2T 8904 ' 3 T 733.540 °

Ces chiffres nous prouvent par leurs écarts combien il serait
important d’étudier la répartition réelle du champ de la pesan-
teur & l'intérieur du géoide. Le premier coefficient ¢, est celui
qui mesure la force translatrice créée par la partie émergente
seule, le dernier ¢; mesure 'effet de ces deux parties, émergente
et immergée, réunies, et g, est 30 fois plus grand que 3.
L’action de J est donc 29 fois plus forte que celle de E; comme
nous Pavions annoncé, elle est prépondérante.

La force translatrice serait donc, approximativement, a 45°,
au plus le 8904itme du poids total du continent, au moins le
22.606.000ieme et une valeur vraisemblable serait le 753.540i1eme,

(’est ainsi que la force translatrice communiquerait a un
continent primitivement au repos en une seconde une vitesse de
Pordre du '/, * de millimétre, vraisemblablement. en supposant
qu’il n’y ait pas de résistance du milieu. Mais nous ne voulons
ni entrer ici dans 1’étude des coefficients de viscosité du sima,
ni nous abandonner aux recherches, évidemment un peu illu-
soires, du mouvement vers I’équateur, avec une faible dévia-
tion vers Iouest, pareille a celle des vents alisés, que créerait
la force translatrice. Nous préférons procéder & la critique des
approximations faites dans les calculs précédents. Mais cette
critique étant fastidieuse et n’étant pas essentielle pour la
géologie, traitons tout d’abord le cas d’un socle de section finie.

Cas d’un socle de dimension finte.

Tant que le corps flottant est de volume infinitésimal. le
passage de I'état I a 1’état 11 n’altére le champ de gravitation
que dans une mesure infiniment petite. Nous passerions de
notre élément de fuseau & un trongon de fuseau compris entre
deux plans méridiens infiniment voisins 4 et 4 + d4 et deux
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paralléles & distance finie ¢, et g,, par une simple intégration en
p. Nous pourrions par exemple calculer la pression sur I'équa-
teur pour un fuseau symétrique par rapport a lui.

L’intégrale qu’il faudrait envisager est sur I'ellipsoide:

Po
: G o
cos’ o sing

l2
er sin29do = 2a4%(1 — 52)f e sin2m)2d? ;

%1 P

elle est facile & calculer. En I'effectuant sur la sphére, c’est-a-dire
en faisant ¢ =0, on en obtiendrait une valeur approchée,
égale a:
2a
3

(cos® o, — cos?q,) .

On pourrait éventuellement procéder & cette intégration en
tenant compte des dénivellements moyens d’un profil conti-
nental pris a4 longitude constante.

Passons maintenant a 1’élément de volume fini et mettons en
évidence un terme nouveau dont il faudrait a tout prix tenir
compte, si I'on tenait & rester rigoureux, quitte & constater
que ce terme est d’ailleurs pratiquement trés faible et peut
étre négligé en premiére approximation. Admettons provisoire-
ment que le systéme des pressions @11 soit égal au systéme &!,
et soient 55; et (féu les déviations de la wverticale corres-
pondant aux états I et II. Reprenons I'expression (4) de la
force translatrice (p. 167) et projetons sur I'axe des X:

= [ fesizan e [ f fosaiza— [ [ fasier
E - J I

Quant a la condition d’i1sostasie, elle reste la méme a cet ordre
d’approximation.

Introduisons la variation A de la déviation de la verticale
dans le passage de I'état I a I'état 11:

A:S;;x—ﬁzx.

I 2

Alors on vérifie aisément que s¥ prend la forme:

s":f.h['fgeagfdu_ft[t['g(i_e)a}fw
—f{fgeédlﬂ—wj"[lfg‘e&d.].
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Les deux premiers termes, dont les effets s’ajoutent, sont ceux
que l'on obtiendrait en étendant, par simple intégration, au
socle total, la force translatrice qui agit sur un élément vertical.
Les deux derniers termes, qui se réduisent & un seul :

1= [ fusar.

E47J

sont de l'ordre de A, et la difficulté porte ici sur la détermination
de cet ordre de grandeur.

La variation A provient du passage de la répartition des
masses dans Pétat I & la répartition dans I'état II, c’est cette
variation qui engendrerait la déformation du géoide dans son
ensemble, et par contrecoup la variation du systéme des pres-
sions @' — @11, Pour sortir des abstractions précédentes, disons
que c’est ce terme A qui mesurerait par exemple I'attraction
du continent sur les particules d’eau de I'océan qui 'entoure.
SiI'on voulait en tenir compte, il faudrait & cet ordre de gran-
deur envisager également I'influence qu’aurait le passage [ —1I
sur la direction de I'axe de rotation de la terre, pour autant qu’on
peut parler d’un axe pendant que s’effectue ce passage qui
déforme le géoide dans son ensemble.

Sans prétendre & la rigueur, montrons pourquoi 'influence du
terme A sur la force translatrice est probablement extrémement
faible.

a) Le champ des vecteur A est sensiblement symétrique par
rapport a la latitude moyenne du continent, car ’écart A, en
un point donné, provient de la différence dans les champs
d’attraction correspondant a Pétat 1 et a I'état II, ou encore
de la substitution de E + J & densité e, & J a densité z.

b) La masse totale de matiére reste constante en vertu de la
condition d’isostasie; la hauteur sz étant faible, A est petit
vis-a-vis de Jgf sauf, peut-étre, au voisinage de E.

¢) Le champ de vecteur A étant sensiblement symétrique, la
différence @1— @u est faible; de plus, dans l'intégration Z,
les termes provenant de deux particules symétriquement pla-
cées par rapport a la latitude moyenne, egA et —egA, s’en-
tredétruisent de sorte que Z a une valeur extrémement faible.
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. d) Le terme Z, étant faible vis-a-vis de ceux en d ;;;f dont
les effets s’ajoutent, ne contribue trés probablement pas a
renverser le signe de la force translatrice. ,

Pour toutes ces raisons, il me semble que 'on peut en pre-
miére approximation étendre par simple intégration & un socle
de dimension finie les expressions de la force translatrice d’un
élément infinitésimal. _

Le terme A est probablement maximum au bord des conti-
nents, et ce maximum pourrait étre révélé par des mesures
combinées de physique et de géodésie. Les travaux des géodé-
siens nous donneraient dés aujourd’hui son ordre de grandeur.

Les déformations du champ qui se synthétisent en ce terme
A sont trés complexes. Des expériences précises, ou ensemble
des observations géodésiques, ou encore de tres longs et minu-
tieux calculs permettraient de déterminer dans quelle mesure
on pourrait tenir compte du faible effet de la variation A sur la
force translatrice.

Critique des approximations dans le cas d'un élément vertical
de section infiniment petite.

Nous désignerons par la lettre 6 affectée de différents indices
des quantités susceptibles de varier entre certaines limites que
nous déterminerons dans la suite.

Posons:

R = afy , dVg — dcdhﬂ;ﬂl , (i -+ %?) = Bgn ,
2 E o

r = acoso.b,, dVJ:dcthfL, (1—|——§’7)J:ﬁ§g,

88X = Bg.05, , 1+ dgY = b5 .

Calculons la plus grande déviation de la verticale que nous
ayons a envisager, c’est-a-dire la déviation ¢ en un point P
de profondeur 4; dans I’hypothése 2° ou la pesanteur serait
dirigée vers le centre C de I'ellipsoide. La condition isosta-

tique donnera A; <C100. Nos calculs sont faits en forcant et
prenant 2; = 100 km.
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Considérons le triangle OPC dont deux cotés sont représentés
sur la partie droite de la figure 4 (p. 171).
La relation des sinus:

sin ¢ __sin (p — Y)
oc — Ccp

donne:
sind = —O—(E sin (¢ — ) ,

CP :
soit, puisque:

sin(cp—y)(tp—y’-et CP > OC — OP,
. 1 6
sind < =1 <gl—1.
M ;
b

La relation:

_ m? . mé 6
¢— Y = msin cp-——-féwsm-up—i-?sm o — ...

montre d’une part que ¢ —y s’annule avec sin 2¢, c’est-a-dire
au pole et a 'équateur, car sin » 2¢ contient sin 2¢ en facteur,
et d’autre part:
e —y < m4+m? 4+ mP4 ..,
SO1t:
‘m

g — 1<

1—m

1 1 i
'Orm<§§§,d0nc @-“{<m et Sln«.}<ﬂ.

La relation évidente:

sin |8¢p| = |80 = tg |Bc|
donne:
3o 1 sindo

== , puis 1=

1= =
sin 6@ €08 69

Les relations:
= . ~ ! o~ =+ 7~
8g% = sindo = d¢ .05, et cosBo = 1 4 8g¥ = O,
montrent que:

’ 14
cos g = 6&; = 1 et cos 0o = Bsc =1

Or |80| < ¢ de sorte que cos{ = cosdg.
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L4 ’ A
Représentons 6, et #; par une méme lettre f5,, et ses
limites de variabilité seront:

cos = f; =1.
Or: |
cosy = Y1 — sin? ¢ ,
1 \2
4 § —
cosd > \/ (291) ;
d’ou

AL
23 84 681
L’approximation qui consiste a prendre 'angle dg au lieu de son
sinus et I'unité au lieu de son cosinus ne donne lieu qu’a une

erreur relative, inférieure a S—i%gi ‘

Pour le calcul des limites d’indétermination de 65, et de 6;,
nous avons envisagé deux cas extrémes:

a) celui ou l'attraction augmenterait en raison inverse du
carré de la distance au centre de Pellipsoide, ce qui reviendrait
a supposer que la masse totale y fiit concentrée; et b) celui
ou l'attraction diminuerait proportionnellement & la distance
au centre, ce qui serait le cas d’une sphére homogeéne. Il faut,
bien entendu, combiner I'attraction avec la force centrifuge.

Les travaux de Clairaut et de ses successeurs sur les sphé-
roides hétérogeénes en rotation permettraient de resserrer ces
deux limites.

Les calculs des autres limites d’indétermination n’offrent
pas de difficultés, et voici les résultats auxquels nous sommes
arrivé; elles aussi pourraient étre resserrées:

IN

0,9999 < 6, = 1,

I\

0,99888 = 0F = 1,00112

g

IN

0,9782 = 0]

4 E
1 = 0F

0.9687 = 0f

1,0378 |

IN

1,000963

IN

i,

IN

0,99327 = 6 1,00484

1

IN
IN

1,003% .
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Introduisons les symboles:
0F = ﬁ?gﬁsgﬁﬁ '
07 = 03,0, 0 ,
qui donnent lieu aux inégalités:

0,9986 < 6% < 1,0022 ,

0,94748 < 67 = 1,0378 .
Alors:
hg
s* = edogh® [Sodh +
Joes

e — 1
e

0
edagt’ [Bodh

J

s¥ = edogt®h b (== i)edsgt'h, .
La condition d’isostasie s’écrit:

0Behy = 07 (i — e}k, , (17)
801t :
E
B ®

J—Bji__eE.

Pour les valeurs précédemment admises de e, 7 et kg on trouve:
893 km = hy = 98,2 km .

Nous ne discuterons pas 'approximation qui provient de
Pemploi de la formule:

R h .
0o == f—sin2o
- :

a Pextérieur de 'ellipsoide, mais nous distinguerons a nouveau
les trois cas 1°) 20) 3°) de répartition du champ & Pintérieur.
Alors:

B Ay
sX = (Fegdohg —'2— —(}' sin 2¢
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et en exprimant /; au moyen de la condition d’isostasie:.

; . B kg
sX — (E g -ai egdashg sin 20
10 / 0
\ ; : .
+ | v 291 . egdah® sin 29 . ()
? 4 BE 2 e [ hE

= = e“ddh}q sin 20
i —e22 @, ? ‘

Cette derniére expression (19) est a comparer avec 'expres-
sion (14) (p. 175).

Exprimons le rapport de la force translatrice au poids du
continent. Mais que faut-il entendre par poids, maintenant
que nous nous astreignons a tenir compte des variations du
champ de la pesanteur ? Il est bien naturel d’appeler ici poids
de I'élément la projection de la résultante des poids des diffé-
rentes particules de E et de J, sur 'axe vertical OY. Cela s’im-
pose méme dans notre cas et permet d’exprimer la condition
d’isostasie sans faire intervenir de facteur ¢, tandis que toute
formule approchée, qui aurait 1ié les poids de E et de J au moyen
de kg et de A;, aurait augmenté le nombre des symboles d’ap-
proximation 6 dans I’expression de sx.

Pour nous rendre compte comment, avec nos nouvelles défini-
tions des poids, la condition d’isostasie peut s’exprimer sans fac-
teur d’approximation, réintroduisons le systeme des pressions &
sur la surface immergée de I’élément. En désignant par Qg, Q;,
Q¢ les poids de E, de J et de E + J, et par W la projection de
la résultante du systéme & sur I'axe vertical, la condition
d’isostasie s’écrit:’ _ i

Qe Qs+ ¥ =20.

soit en désignant par Q' le poids qu’aurait J & densité de masse i:

Qe+ Q—Q =0.
Mais on a:

; i
Q;ZZQJ,
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de sorte que la condition d’isostasie s8’écrit:

%+ Q(1—1)=0.
ou encore: .
P o et Oy = D (20)

i i

Qe =

En passant des poids aux hauteurs par les relations:

Qi = 0Fegdahyg et Q; = Wegdshy , (21)

on retrouve la condition d’isostasie avec les facteurs d’approxi-
mation:

OEehy = 09 (i — e) hy . (17')

Les relations (18), (20) et (21) permettent d’exprimer la force
translatrice au moyen du poids total:

0E B hgt — e
P i ”
TR 2 ¢ sin 26 Q
( 0
Bi—e)-—0Q _
+ {28 . (22)
hy .
%%sm?«?(}c

La formule (19) exprime la force translatrice au moyen des
quantités les plus facilement accessibles aux mesures physiques:
e, 1 et hg; elle montre & quel degré d’approximation 'expression
(14) de la force translatrice était exacte. ‘

La formule (22) au contraire ne peut pas étre comparée sans
précautions a la formule (16) (p. 175), il faudrait tenir compte
de ce que P; est une expression approchée du poids, tandis que
Q: mesure véritablement la pression normale qu’exercerait
I'élément sur le plan horizontal, tangent a ellipsoide, mené
par lorigine de notre systéme d’axes, si, dans sa position
réelle, il ne s’appuyait que sur ce plan. On a d’ailleurs:

Qc = 6Py + BEPg .

En remplacant les ¢ par leurs limites d’intédermination,
nous verrions que la force translatrice est a 45° supérieure au



186 SUR LA FORCE QUI TENDRAIT A RAPPROCHER

22.690.000™e du poids Q. de I'élément, qu'elle est inférieure au
8124 me du poids Q. 1l est intéressant de savoir d’autre part
quelles sont les limites de I'erreur dans le cas dit vraisemblable.

Remplacons A;, par sa valeur tirée de (17) (p. 183), dans (22),
3%; nous trouverons:

G hn(BEi—e 00 B e
L el e s e — in 2 g
2 a(elg i T i)s“‘ 7 Qe

La force translatrice est donc dans le cas 3° comprise
entre les deux limites suivantes, pour les valeurs choisies de ¢, i
et hy:

sin 2o

853.700

sin 29

Qe et x5 500

Qe .

comme le montre le calcul de sx.

Remargue.

Nous avons supposé que la densité ¢ était constante, ainsi
que ¢, dans la région C; sans compliquer le calcul de s*, on
peut admettre, et c’est trés naturel, que e et i sont variables,
1 — e étant constant. Un de mes éléves a entrepris de déter-
miner la variation de ¢ en profondeur et la déviation de la
verticale dans le géoide en partant des travaux classiques de
Clairaut sur la masse fluide hétérogéne en rotation et des études
plus récentes de Helmert qui s’y rapportent.

Cela permettra de remplacer notre distribution 39 par une
distribution du champ plus exacte et de calculer I'intensité
de la force translatrice en étant encore plus avare d’hypo-
théses.
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