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QUELQUES REMARQUES

SUR

LA THEORIE DES QUANTA

PAR

G. JUVET

On sait que la théorie des quanta appliquée a I'atome de
Bohr trouve son expression la plus élégante avec 'emploi des
notions dues & Hamilton, &4 Jacobi et & Lie. Le principe de
moindre action, Iintégration de certaine équation aux dé-
rivées partielles, les transformations canoniques, permettent de
trouver aisément — les principes de la théorie des quanta étant
admis — les raies spectrales émises par un atome dont I'état
dynamique n’est pas trop compliqué. Pour les cas de plus
en plus compliqués, c’est a la théorie des perturbations que I'on
a recours et, l1a encore, les idées fondamentales de la mécanique
analytique sont d’une remarquable fécondité.

Nous voudrions faire ici quelques remarques sur les conditions
quantiques que Schwarzschild, MM. Sommerfeld et Epstein
ont proposées pour trouver les trajectoires stationnaires dans
les problémes que pose la dynamique de I'atome de Bohr,
ainsi que sur P'unicité des trajectoires ainsi déterminées.

On sait que I'on a pu écrire jusqu’a maintenant les conditions
quantiques pour les seuls problémes conduisant & des mouve-
ments quasi-périodiques. C’est de ceux-la que nous parlerons.

Soit un probléme a n degrés de liberté; désignons par ¢4, g, --- s
qn les coordonnées lagrangiennes et par py, ps, ... p» les moments
correspondants. On peut choisir les ¢ de différentes maniéres,
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Il y a cependant, comme nous le verrons, certains choix préfé-
rables. On sait que tous les problémes de dynamique relatifs
a des systémes holonomes admettant une fonction de forces U
et dont les liaisons sont indépendantes du temps conduisent a
une équation aux dérivées partielles, dite de Jacobi:

¥ é b\' DV EE N R
H(ql y e qil’ E, g 'bT‘) — al = 0 " (1)
. n

la fonction H(gy, ... 4qn, py, ... pn), dans laquelle on a rem-
placé p: par la dérivée partielle % , étant la fonction principale,
ou hamiltonienne, du systéme différentiel canonique:

dg; _oH ap; oH :

d—t‘:E, %:—-Sa (t=1,..n), (2
auquel satisfont les fonctions inconnues ¢: et p:;. On sait que
H =T — U dans les cas que nous considérons, et que a; est
la constante des forces vives [2T est la force vive].

Si 'on connait une intégrale compléte V (g, ... qn, 0, ... &n)
de 'équation (1) dépendant de n constantes arbitraires a;, ... @,
dont aucune ne soit additive, l'intégrale générale du systéme
(2) est donnée par les formules suivantes:

. ;= v
I 3)
oV .
(3]- == (=2, 50:m) 5

aaj

vV

P =g (i=1..n). (&)

La recherche d’une intégrale compléte de I'équation (1) est
facilitée dans certains cas fort importants en pratique, lorsque
I'on a choisi certaines coordonnées ¢, ... . au moyen desquelles
il est possible de trouver une solution de (1) de la forme:

V=14 + e + - + 1) ()

fi ne dépendant que de ¢: et des constantes. On dit alors que
Téquation (1) se résout par la séparation des variables. Pour
n = 2 et 3, MM. Levi-Civital et Dell’ Acqua? ont indiqué tous

1 Math. Ann. Bd. 59, p. 363-397, 1904,
2 Math. Ann. Bd. 66, p. 398-415, 1909.
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les cas ou une telle décomposition de I'intégrale V est possible.
Pour n quelconque,-il existe un cas trés important ou cela se
produit, c’est le cas de Stiickell. Nous supposons que nous
sommes dans ce cas et que I'intégrale compléte de (1) peut se
mettre sous la forme (5).
Remarquons alors que p; est une fonction de ¢: seulement.
Si les circonstances initiales n’ont pas été choisies trop mal-
heureusement 2, le mouvement du systéme peut se représenter
dans 'espace 4 n dimensions Ea(gy, ... ¢») par une «trajectoire »
comprise a l'intérieur d’un parallélipipéde rectangle a n dimen-
sions et tangente aux « faces » de ce parallélipipéde. Cette tra-
jectoire peut étre fermée, le mouvement est alors périodique;
elle peut ne se fermer jamais et alors elle pourra passer aussi
prés que l'on veut de tous les points d’'un domaine a 2 dimen-
sions, ou 4 3 dimensions, ... ou & n— 1 dimensions compris dans
le parallélipipéde considéré, ou passer aussi prés que.l’on veut
de tous les points de ce parallélipipéde. Dans ces cas, le mouve-
ment est quasi-périodigue, mais il n’est dit quasi-périodique
non dégénéré que dans le dernier cas. Dans I’avant-dernier, il
est quasi-périodique dégénéré d’ordre 1 : c’est donc lorsque le
domaine, ol I'ensemble des points de la trajectoire est dense par-
tout, est & n—1 dimensions; s'il est & 7—2 dimensions, il est
dégénéré d’ordre 2, etc. Un mouvement purement‘ périodique
est donc un mouvement quasi-périodique dégénéré d’ordre n—-1.
 Nous supposons que nous avons affaire 4 des mouvements
quasi-périodiques non dégénérés. La fonction V est, par rapport
a chaque ¢:, une intégrale indéfinie d’'une fonction admettant
deux déterminations; en effet V est de la forme

i=n

q;
vV — ~ 8:(g;) dq;

\/(I)i (7;‘)—

les g: et les @; étant univoques. Lorsquert vlarie, les variables

1 Cf. CHARLIER, Mechanik des Himmels, Bd. 1, passim.

2 Cela veut dire que les racines les plus proches, en dessus et en
dessous des valeurs initiales, g;, de certaines fonctions ®, (g,),
¢, (q,) sont toutes d’ordre un de multiplicité.
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. ; 1
g: oscillent entre 2 valeurs: a; et b;. t variant de o» g part de
i

a;, arrive a b; et revient a a;. Les n nombres v; ne sont liés par

N

aucune relation linéaire et homogéne a coefficients entiers.

. . 1 : :
Cela signifie que, ¢ variant de — ou d’un multiple entier de

i
fois ;1‘, les autres variables ¢y, ¢, ... ¢i—1, ¢i41, ... ¢n DNe revien-
dront pas a leur point de départ.

Si I'on choisit pour ay, «,, ... @, toutes les valeurs qu’on veut,
on obtient, au moyen des équations (3), " trajectoires et I'on
passe de I'une a autre par continuité.

La théorie des quanta nous force a n’utiliser qu’un ensemble
discontinu de telles trajectoires, celles qui correspondent a
des valeurs bien particuliéres des constantes e, oy, ..., @n.

Cet ensemble discontinu est déterminé par les conditions
quantiques suivantes, proposées par MM. Epstein et Sommerfeld :

Sﬁpidqi = k;h TR — N BN (6)

ou les nombres /; peuvent prendre toutes les valeurs entiéres.
. [. - . . » . .
Le signe ,9) signifie que I'intégrale qui porte sur une expression

de la forme: fonction de ¢; multipliée par dg:, doit &tre prise
sur I'intervalle complet de variation de ¢: dans le mouvement
quasi-périodique considéré, c’est-a-dire de a: & b; et retour a a;
(au retour, p; prend les mémes valeurs qu’a I'aller, changées
de signes). Les conditions (6) déterminent les valeurs des
o, ... @, qui sont ainsi discrétes.

Les trajectoires que ’on obtient ainsi sont dites trajectoires
stationnaires, ou trajectoires stables. '

Le probléme que nous nous posons est alors le suivant.

Si par un choix différent des coordonnées lagrangiennes du
systéme [Qq, ... Q» par exemple, et Py, ... P,, les moments
correspondants], I'équation de Jacobi s’intégre par séparation
des variables, les trajectoires qu’on obtiendra en écrivant

.9§‘P‘.dQ‘. = K,k i=1..n) (7)

sont-elles les mémes que celles que fournissent les équations
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(6) ? Il nous semble que I'on n’ait jamais répondu rigoureuse-
ment a cette question. Il est vrai que M. Epstein! a montré
qu’on peut donner une interprétation géométrique aux variables
qui permettent la séparation, et il est possible d’esquisser, a
partir de cette idée, une démonstration mi-analytique, mi-
géométrique 2. Il ne nous parait pas cependant qu’une telle
démonstration soit & 'abri de certaines objections et nous
allons en indiquer une qui est purement analytique et qui,
nous l'espérons, est rigoureuse.

Cette démonstration se fait aisément & partir des formules
qui expriment les conditions quantiques telles que M. Brody3
les a écrites; pour y arriver, il nous faut rappeler quelques
notions.

Les variables Q; et P;, au moyen desquelles la séparation
serait possible dans I'’équation de Jacobi, sont des variables
canoniquement conjuguées; elles sont liées aux variables pri-
mitives ¢; et p; par des relations

Q, = Qi(q;' o Py Pn)

(8)
P:' — Pi(ql’ qn v Py pn)

telles que l'on ait:

i=n i=n

DP3Q; — D pdg, =88 . 9

i=1 i=1

La transformation (8) est dite canonique et la relation (9)
qui exprime que la forme de Pfaff 2P;d0 Q. différe, en vertu

1 CGf. SoMmMERFELD, La Constitution de I’Atome et les Raies spec-
trales (trad. Bellenot}, p. 664 et EesTeIN, Ann. der Phys., 51 (1916).

2 8i 'on imagine la trajectoire représentée dans un espace a n
dimensions, 7n(x,, %y, ... zn), au moyen de coordonnées quelconques,
on définira de la maniére suivante les variables qui permettent la
séparation. Il existe des hypersurfaces (n-1) dimensionnelles qui
sont tangentes aux diverses trajectoires que I’on obtient en variant
les conditions initiales. Ces hypersurfaces, en nombre 2n, se corres-
pondent 2 & 2, on écrit les équations de chaque couple sous la forme:

g, = Yilng, tgs oo %, =4, .. 0),

ou g; est constant sur chacune des surfaces de la ¢éme paire. On voit
que cette définition, pour étre précisée, exigerait d’assez longs
préambules et de grandes précautions.

3 Cf. Zs. f. Phys., t. 6, p. 224, 1921.
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de (8), de la forme de Pfaff Sp;d¢q: d’'une différentielle totale
exacte, cette relation, disons-nous, est tout a fait caractéris-
tique des transformations canoniques. En admettant qu’il
soit possible d’exprimer les p; ... p. en fonction des Q et des g,
c’est-a-dire, en admettant qu’il soit possible de résoudre, par
rapport aux p, les n premiéres équations (8), on pourra expri-
mer S en fonction des Q et des ¢. D’une maniere générale,
toute transformation canonique peut se définir de la maniére
suivante. On prend une fonction S(g;, ..e gn, Qq, ... Qn) et 'on
pose : _
Pi:%, pi:——sbq% (E:i...n). (10)

Les équations (10), résolues 1 par rapport aux P et aux Q,
définissent une transformation canonique; S en est dite la
fonction générairice.

Si les ¢ et les p satisfont aux équations (2), les fonctions
Q et P satisferont aussi & un systéme canonique dont la fonec-
tion principale K(Qq, ... Qu, Py, ... Px) est égale a la fonction
H(gys .- qn, p1y -.- pa), 01 Pon a remplacé les g et les p par
leurs expressions en fonction des Q et des P 2.

L’ensemble des transformations canoniques forme un groupe
comme il est aisé de s’en rendre compte.

On sait, d’autre part, que P'expression fZp,dg:, Pintégrale
étant prise le long d’une courbe fermée de ’espace e:n(qy, ... ¢n,
Pis -+ Pn), est un inevariant intégral, c’est-a-dire une quantité
indépendante du temps, si les ¢ et les p satisfont aux équa-
tions (2). C’est un invariant intégral relatif car il porte sur
une courbe fermée. On sait par les travaux de Poincaré que
I'on peut former immédiatement un invariant intégral absolu,
mais qui est exprimé alors par une intégrale double:

‘]’t[’EBPiB‘Iz‘ '

1 (Cela est toujours possible si la fonction S n’a pas été trop mal
choisie. On peut d’ailleurs échanger le réle de certains p et des ¢
correspondants, moyennant un changement de signes. :

2 Nous nous limitons ici aux transformations canoniques (8)
dans les seconds membres desquelles ¢ n’entre pas. V ne dépend donc
pas explicitement de . |
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étendue & une variété quelconque a deux dimensions de I'espace
€2n(gyy -+ qgny P1y - Pr). D’'une maniére générale, on sait que les
intégrales doubles, quadruples, ... 2n-uples suivantes sont des
invariants intégraux pour les équations canoniques (2):

i=n

S
:ffffgsl’fs‘hapkﬁ‘{k ’ (1)

12.'1 zf"'fsplsqIBPEqu = Bpnaqu ?

les domaines: d’intégration étant respectivement des domaines
quelconques & 2,4, ... 2n dimensions de 'espace exn(gy, ... @n,y Pq s
v Pn)-

Une transformation canonique (9) portant sur les formes de
différentielles qui figurent dans les seconds membres de (11) en
conserve I’aspect les intégrales étant prises alors sur les
domaines correspondants de l’espace E2.(Qq, -.-Qn, Py, ... Pa).
On a done:

1, :ffﬂapf% :ffzapiaqi :

I, :ffff;kﬁpiﬁqiﬁpkﬁqk :L['bf;kapisQispkan, 12)
1, = f 1 3gs - Bp, g, = f f 3P,5Q, ... 5P, 3Q, .

(2:1 (Zn

Ces choses-la étant rappelées, voici comment M. Brody?
écrit les conditions quantiques. Il pose: |

L = (b 4+ . k)R,
(kb A kyhg + oo + by k)02,
(k hyky 4+ oo + ko kg k)R - (13)

I

Jo w= kR e k”) h\" 3

n

1 Loc. cit.
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les nombres k; ... k. étant des entiers; mais il faut remarquer
que cela suppose que I'on ait choisi tout d’abord les domaines
sur lesquels portent les intégrales doubles, quadruples, etc.,
dont il est question. Il ne nous parait pas que ce choix, M. Brody
Pait indiqué avec précision.

Le voici indiqué pour les systémes quasi-périodiques. Suppo-
sons que les ¢ soient les variables qui permettent d’obtenir la
solution de I’équation de Jacobi par séparation des variables.

On sait alors que
p: = ®:q) -

Dans le plan (¢:, p:), cette équation représente une courbe
fermée c;, symétrique par rapport 4 I'axe ¢; et admettant, aux
deux points ou elle coupe cet axe, une tangente paralléle a
Taxe des p:. I1 y a donc n courbes analogues & considérer dans
les plans (g, p1), (¢aP2), --- (gn pn). Ces courbes enferment des aires
que nous appellerons dy, ds, ... d». Si les variables Q; permettent
aussi la séparation dans I'équation de Jacobi, il conviendra de
définir des domaines Dy, ... D, dans les plans (Q, Py) ... (Q»Ph).

Les intégrales I, ... I, portent alors sur des domaines a 2, 4,
... 2n dimensions de 'espace e2. (qy, ... ¢n, P1, --- P2) [OU respecti-
vement de I'espace Ez,(Qy, ... Qn, Py, ... Px)] qui se projettent sur
les plans (¢, py), .- (gnp») [ou sur les plans (Q,Py), ... (QnPa)]
a l'intérieur et sur la frontiére des domaines d,, ... dn (ou Dy,
... D). Pour étre précis, voyons d’'un peu plus prés comment
il faut définir le domaine sur lequel porte I3 par exemple.

On exprimera les points de d; en fonction de 6 paramétres
‘:11 ;2a (:6:

gy = q; 55 s« Gg)
P = PG %)

et on fera en sorte que les { soient compris dans des intervalles
de fagon que, les ¢ variant, les ¢: et les p; représentent dans le
plan (g:p:) les coordonnées d’un point qui reste a l'intérieur
de la courbe ¢; ou sur cette courbe elle-méme. Le choix des
fonctions qui figurent dans les seconds membres de (14) est
encore trés arbitraire. Nous verrons que ce choix se précisera
D€ PirN plus loin. Les domaines d’intégration de I'espace E2, seront
& “@\es domaines correspondants.
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La démonstration de l'unicité des conditions quantiques
sera immédiate lorsqu’on aura fait voir que les équations (13)
entrainent les relations: :

%Ptd‘h = kb,

car alors elles entrainent aussi les relations:

[I
P PidQ = b
les I; étant entiers.
On arrive a cela par un changement de variables canonique.
Ce changement de variables a été déja proposé par M. Som-

merfeld 1. On pose
é pidq; = v; -

Ces ¢: sont des constantes, les variables canoniquement
conjuguées u; sont des fonctions linéaires du temps.

Remarquons tout d’abord que ¢: est la quantité dont varie
la fonction

i=n 2

V = zl‘fpidqi,.
l=
lorsque le point ¢: décrit le segment (a:b;) aller et retour, ou
si I’on préfére, lorsque le point ¢; décrit dans son plan complexe
lg: = =: + V=1 A;] un chemin fermé entourant les deux points
gi = a; et q; = b;. Les ¢0; s’appellent les modules de périodicité
de la fonction multiforme V, laquelle se trouve étre d’ailleurs
Iaction maupertuisienne du systéme.

On sait d’autre part que V, qui est I'intégrale compléte de
Iéquation de Jacobi, dépend de n constantes et que par
suite, les V; sont des fonctions de ces seules constantes; on peut
donc trouver ces constantes en fonction des ¢; et exprimer V
en fonction des ¢:4 on obtient ainsi une fonction:

9?(?1’ 911’ ‘)l’ e ',n) ¥

qui nous permettra de former une transformation canonique,
celle qui précisément fera passer des (¢, p) aux (u, ¢). Si nous

1 Loc. cit., app. 7.
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prenons, en effet, les ¢ comme des moments et les u comme des
coordonnées de position, en posant:

04 oY
; u, —
0q; i v,

i

P =

’

ces formules définissent une transformation canonique puisque:
Yp,8q, — Zvdu; = §(V— Zuv) .

La fonction H transformée est la fonction principale pour les
(u, ¢). Puisque les ¢ sont des constantes, H ne dépendra pas
des u, et 'on aura: '

H=of,, ..v),

et par suite:
du, oH o9

7;% = ov; 0v; i
d’ou ui = v;t -+ &

Or on sait que si g; déerit son domaine entier de variation,
les autres ¢ restant constants, <’ augmente de ¢;, c’est-a-dire
de son module de périodicité. M. Sommerfeld ! a montré que,
dans ces conditions, u; varie de I'unité. En effet, si Py et Vr
désignent respectivement les valeurs de ¥ au début et 4 la fin
du voyage de ¢;, on a:

ny—‘:yd —_— Vj .

Le premier membre est une fonction des ¢; dérivons-la, il
vient:
o, 9Py 0 (sii))

dv; ov; 1 (sit=j)’

Mais en employant une notation analogue pour les u, on aura:

0 (si i #))
. —_— . = *
0T MHE = (s =)

Ces circonstances prouvent que ¢; est une fonction de u;,
périodique et de période 1.
Revenons dés lors a I'étude des intégrales I4, ... I.. A T'espace

t CI. loc. cit., app. 7, .
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exm(Gyy --Gny Py, - pn) correspond Pespace & (tq, ... Un, 01, ... ¥n);
aux domaines dy, dy, .. d2. correspondent des domaines »,, d,, .. d2»
qui se projettent sur les plans (u:, ¢;) suivant des rectangles.
En effet, la courbe ¢; est décrite lorsque v: reste constant et
que u; varie de 'unité, elle a donc pour correspondante une
ligne qui se projette suivant la droite A; B; paralléle & I'axe
des u; et de longueur égale & 'unité. Les points intérieurs a c;
ont pour correspondants des points qui se projettent intérieure-
ment au rectangle A;B;C;D;, D: étant I'origine et C; le point sur
I'axe u; d’abscisse 1, car lorsqu’on modifie les constantes dont
dépend p; de facon que p: tende vers zéro d’une maniére quel-
conque, ¢; tendra aussi vers zéro; la courbe C; se réduira a
un segment de I'axe des ¢; compté doublement, et sa corres-
pondante aura pour projection le segment D;C;. Ainsi I'inté-
rieur de ¢; aura pour correspondant un domaine qui se projette
suivant le rectangle A;B;C;D;.

Les domaines o, , ... 024 se projetteront donc a 'intérieur de ces
rectangles et sur leurs bords; ils ne sont pas pour autant définis.
Nous les définirons et, par 14 méme, nous définirons rigoureuse-
ment les domaines d,, ... d2, sur lesquels plane encore beaucoup
d’arbitraire, de la maniére suivante. o, est la portion de 2-plan
qui se projette suivant les rectangles A;B;C;D:; o, est la por-
tion de 4-plan qui se projette suivant les dits rectangles, etc.
o2. est un parallélipipéde rectangle n-dimensionnel qui se
projette aussi suivant ces rectangles. Or les intégrales I, ... I
étendues a ces domaines o,, ... 02, porteront sur des éléments
différentiels de méme forme qu’auparavant, puisque les (g, p)
sont transformés canoniquement en les (u, ¢); on aura par
suite:

I, = fdevidui = (ky + ky 5 o k)R,

I, E ffftfzz‘? dvl-a’uidvjduj = (‘("1 ky + ... + l{'”_lvfi") h3

. . - . . . ‘e .

L= [ [ dedu .. dv,du, = (ki by oo k) 0"
-—-Ti\;l)‘——
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Or par le choix des domaines d’intégration, les intégrales
précédentes se décomposeront. Si I'on écrit:

;ff dv,du;, = x; ,

I'intégrale double étant prise sur le rectangle A;B;C;D:, on aura:
2:&?‘- o= (2 A'i)k ’
i i
Exixj = (2 k‘.kj) h?
ij i

. . . . .

By oo, = Ry o RS} AT

et I'on en tire, en résolvant par rapport aux z::

Xy = A‘ih .

1
ffdvidni == Wy /‘du‘. =v,,
e’ L2 L%
0 ,

et par conséquent

Or

i

v, = kb .

On voit done que les conditions quantiques écrites sous la
forme (13) sont équivalentes aux conditions écrites sous la forme:

(’5 p;dq, = k;h |

pour autant que les domaines ds, ... dz., ont été choisis comme
il vient d’étre dit1l.

Supposons alors qu’on ait trouvé d’autres variables Q ... Q.
qui permettent la séparation des variables dans ’équation de
Jacobi. Les conditions quantiques s’écriront dés lors:

[ [2aP,dQ; = (b + o+ k)b

fffdePfdedede = (kyky + oo Ry k) A2
]

f...fdPl dQ, ... dP_dQ, = (k ky ... k) R"

-2n -

77 1. Les calculs sont ceux de M. Brody, mais nous avons précisé,
plus qu’il ne I’a fait, la détermination des domaines d’intégration.

Bt i -t S
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les domaines d’intégration Dy, D, ... D2, étant les correspon-
dants, par la transformation (g, p) — (Q, P), des domaines d,,
dy ... dan. Ils se projettent & I'intérieur des courbes fermées C;
d’équations P; = P; (Q.). | |

On pourra de nouveau faire un changement de variables
(Qi, P:) — (Us, Vi), les V; étant les modules de périodicité de
la fonction 0

3 ) P

i—l1

“T

W étant encore ’action maupertuisienne, mais exprimée cette
fois en fonction des Q;, ... Q.. Mais dans Pespace &z, (Uy, ... Ua,
Vi, ... V), il n’est pas évident que les domaines Dy, (D4, ... PDan,
correspondant aux domaines Dy, Dy, ... D2., se projettent a
I'intérieur de certains rectangles. Il en est bien ainsi toutefois,
car les nouveaux modules de périodicité, V; ... V., sont liés
aux anclens par des relations linéaires & coefficients entiers
de déterminant égal a Tunité. Il en est de méme pour les
~ équations qui lient les U aux u. Cela prouve que les domaines
9y, ... 02, ont pour correspondants des domaines Dy, Dy, ... PD2n
qui sont des parties de variétés linéaires se projetant suivant
des rectangles sur les plans (U;, V;). On en déduit que l'on a

bien encore:
/l
PP =

les I; étant les nombres £; pris dans un ordre qui peut étre
différent. »

- Le théoréme que nous avions en vue est donc démontré.
Enoncons-le:

Si Uéquation de Jacobi relative @ un systéme peut se résoudre
par séparation des variables pour plusieurs choix des coordonnées
lagrangiennes, et si le mouvement obtenu est quasi-périodique
non dégénéré. les conditions quantiques s’ écrivent toujours, quelles
que soient les variables, sous la forme:

b;é‘pidqi = kh , (i="1..n). (W

fORQ
ARrcHIVES. Vol, 7. — Janvier-Février 1925. ! 3 UN]VEH"TE
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La maniére dont M. Brody a écrit les conditions quantiques
(cf. éq. (13) ) nous a servi a faire la démonstration de ce théo-
réme. 1l convient de faire des remarques sur le choix des
domaines sur lesquels sont prises les intégrales I;, ... I.. Ces
domaines ont été choisis de maniére que leurs correspondants
dans l'espace &:.(uq, ... 4a, ¢1...¢2) entrainassent la décomposi-
tion des intégrales et permissent de les mettre sous la forme des
fonctions symétriques élémentaires de certaines intégrales
doubles (les z;). Un probléme qui nous parait avoir un grand
intérét est le suivant: quels sont les caractéres des domaines
dy, dy, ... d2n ou des domaines D,, D,, ... D2, ? Peut-on les
définir simplement et immédiatement sans avoir besoin de
passer par les domaines linéaires o, ... 92, ou (Mg, ... (D2n ?
Il serait intéressant de trouver ces caractéres, car cela per-
mettrait, croyons-nous, de généraliser les conditions quan-
tiques pour des mouvements plus compliqués que les mouve-
ments quasi-périodiques, et I'idée ingénieuse de M. Brody aurait
une portée plus considérable.

Remarquons enfin pour terminer que si les ¢: permettent
la séparation des variables, le changement de variables:

7, = q,(Qy) (t=1..n),

permettra une nouvelle séparation. Ce cas est banal et se traite
aisément lorsqu’on prolonge la transformation ponctuelle pré-
cédente. Notre démonstration permet de montrer que, s'il
existe d’autres variables séparables que celles qu’on peut
définir d’'une maniére aussi banale, les conditions quantiques
s’expriment de la méme maniére avec ces nouvelles variables.
Il y aurait intérét & prouver rigoureusement et d’une maniére
directe le théoréme que nous venons de démontrer d’une ma-
niére assez longue.
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