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A. PerrIER et C. BoreL (Lausanne). — Aimantation el cou-
rants longitudinaux.

Cette communication fera I'objet d’un mémoire qui paraitra
dans un prochain fascicule des Archives.

Kurt ZvBER. — Retard de U'étincelle dans la décharge électrique.

Le texte de cette communication n’est pas parvenu au secré-
tariat.

Edgar MEYER (Zurich). —-a) Mesures effectuées avec le
condensateur de Millikan (d’aprés les recherches de M. Yii
Chen Yang).

b) Sur la détermination de la limite, du cété des grandes lon-
gueurs d’ondes, de Ueffet photo-élecirique du mercure (d’aprés les
recherches de Mlle Sophie Taubes).

Le texte de ces deux communications n’est pas parvenu au
secrétariat.

G. Juver (Neuchatel). — Sur un probléme de mécanique céleste
el de dynamique quantique.

Le probléme dont nous voulons nous occuper est un pro-
bléme de mécanique quantique traité par les méthodes de la
mecanique céleste. M. Epstein, dans une série de mémoires 1, a
cherché & appliquer a certains problémes, posés par la théorie
des quanta, une méthode tirée de la théorie des perturbations,
et singuliérement de la théorie de la lune. Il a appelé cette
méthode la méthode de Delaunay, bien qu’il etit modifié passa-
blement — et d’une facon qui ne nous parait pas trés heureuse
— les procédés de calcul employés par Delaunay 2. Dans un
mémoire ultérieur, MM. Born et Pauli jun.3, utilisant une
méthode différente, pour des problémes analogues, reprochent

1 EpsTEIN, Zschr. f. Phys., t. 8, p. 211 et p. 305 (9), p. 92.

2DELAUNAY. Mémoires de U’Académie des sciences, XXVIII et
N XIX; nous avons suivi la méthode telle que Tisserand I’a simplifiée,
Mécanigue céleste, t. 3, chapitre XI.

3 Born et PavLl jun. Zsehr. f. Phys., t. 10, p. 137.
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4 la méthode de Delaunay, modifiée par M. Epstein, de conduire
& une complication progressive, lorsque ’on poursuit le jeu des
approximations successives !,

Nous voulons montrer que la méthode de Delaunay non
modifiée conduit au but — c’est-a-dire a 'intégration — sans
qu’il soit nécessaire de faire des distinctions nombreuses en
cours de route et, enfin, qu’elle permet la quantification imme-
diate, dés que I'on juge que I'approximation est suffisante.

Posons le probléme. Soit un systéme dépendant de f para-
metres x;, #,, ... 27 et solent w,, @,, ... @y, les variables canoni-
quement conjuguées. Appellons H (x, @) la fonction hamil-
tonienne du probléme, et imaginons que I'on ait H = H; 4 R.
Dans un grand nombre de cas, on sait intégrer les équations

canoniques:

—_— 1,
dt = sw; ' dt 0%;

Supposons que cette intégration donne un mouvement quasi
périodique non dégénéré; désignons, comme le fait M. Epstein,
par w; les variables angulaires (fonctions linéaires du temps) et
par u; les variables d’action qui leur sont conjuguées. Si I'on
néglige R, on sait que le probléme sera quantifié lorsqu’on fera

nh

= ~2in— Les »; et les @; sont liés aux w; et aux u; par une

transformation canonique. Cette transformation modifie H
de la maniére suivante :
H, devient une fonction des u; seulement: Hj (uy, ... up),
R devient une série de Fourier:

=
: h cos : )
s e (‘"1 w, + mywy, + ... + mf”f)

m.om_...m -
17 ra

dont les coefficients sont des fonctions des u; seulement. Cette
transformation canonique étant effectuée, pour intégrer les
équations correspondant & la fonction H compléte, il suffit de
considérer les équations:

dw, _o(H, +R) 4% o(H, + R

dt = ow, ' dt T D,

1 Ct. loc. cit. p. 158.
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L.a méthode de Delaunay consiste 4 procéder par approxi-
mation pour effectuer cette intégration. On prend un des termes
de R et on néglige les autres. Cette intégration conduit & une
transformation canonique qui fait disparaitre dans R le terme
employé. On continue ainsi jusqu’a ce que tous les termes de R
aient disparu. Si R est une série infinie, ce procédé parait trés
long, mais dans un grand nombre de problémes, il suffit de
prendre dans R les termes principaux; en négligeant les autres,
on a une approximation suffisante. Nous ne nous occuperons
pas de la convergence.

Nous allons donc considérer le probléeme hamiltonien pour
lequel la fonction caractéristique est

K, (et ons uf) + b(n, ... iy cos (my a4+ . 4 mew,) .

I1 convient pour la suite de faire un changement de variables
qui conduise immédiatement & I’équation jacobienne de De-
launay. Posons p; = wi, ¢; = — u;. C’est une transformation
canonique ; on doit dés lors considérer I'équation de Jacobi:

0S5 0S8
I, (q, ... + blg, ... q,) cos (m ——— ceo + m %) B,
1 ‘if) (¢ If) Yy + quf
o étant une constante, et ot 'on a posé:
H, [~ gy mxe —r[;‘) — 361 (qys - ’]f) )

b(—q,. ...—qf) = S, ""7[) )

Il suffit de trouver une intégrale compléte de cette équation
dépendant de f constantes a, oy, ... @r dont aucune ne soit additive.
On y arrive par un changement canonique de variables?:

f ! 1 /‘"
\ 4 — ({/1) ‘Pl) — ; mjp_j
i / 19
' milg,) s
7; = "2+ (g, 'p;) = p; (t>1) .
m %

\ 1
L’équation de Jacobi-Delaunav se transforme et devient:

a — I,
OO

Y
m;, —— = arc cos
olq,)

1 Cf. TissErAND, loc. cit. p. 191.
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I'encadrement désignant ce que devient la fonction encadrée
aprés qu’on y a fait le changement de variables. L’intégrale
compléte cherchée — exprimée avec les variables nouvelles —
est:

(g,)

V= J' arc cos |~ —b'(jC d((]‘ + 2 (q,)

L’intégrale générale des équations du mouvement est dés
lors exprimée par les formules:

Y
- (t + C) = ﬁ ) oV
pj) = —(j=1 vor 1
i>1) B o 2V gy
i AR \
s0it:
g (91) d(
- - ‘/1
| U AS g e
: \ |b~ — |2 — 3¢,
\/ B = (q9,) (1> 1)
| (p) = n}[ arc cos a——%&l
1
(7,) h;}(,] + (@ — IC )—g—(é—
(p,) :f 419,) 7 Ty b (i>1) .
i mo | Vb e — 22,

En revenant aux variables p et ¢ et en remarquant que

e R = b2 — — Je 2,
di Y0 O =20 [« — JC,17]
il vient
() ~ f m;
1 ' dq _ 1 - Qn
i = 2 [ (= e 5% - 350
; 2
‘:' ; u—du-q—bwe
e n’qu q qu d
=Ty, P = % [.77 wb t
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La premiére équation fait voir que ¢; doit varier entre deux
racines de O = 0. La nature du probléme montre bien, en effet,
que ¢; ne peut varler d’une de ces racines a l'infini, car ¢; est
une constante variée et, par conséquent, ¢; ne doit pas s’écarter
beaucoup de la valeur constante —u,; qu’elle aurait avec une
seule approximation. Soient Q. et Qs ces deux racines, on a

done:
Qa. = 44 = Qb ¥

et en intégrant, on sait que ¢, peut se mettre sous forme d'une
série de Fourier paire en (¢ -+ ¢):
G, = ¢, + ¢, cos b, (t + ¢) 4+ c,cos 20,0t + ¢) + ... ,

b €tant définl par I'égalité:

On a ensuite
Iili

®©
L
q4; = & + —c¢, + 2 nT;C"' cos kf,(t + ¢) ,
k=1

My

puis aprés des calculs simples:

f m. o0
p, = — EFn“L“f + PYl 4+ o) + P sin &6, (¢ + c)
2 1

k=1

pr = a5+ POt 4 o) + S P sin k0, (¢ + ¢ (i>1) .

k=1

Il est intéressant d’avoir aussi

i = é m;p, = 0,1t 4+ ¢) + % 0, sin Byt 4 ¢) .
1 k=1
La premiére partie du probléme est ainsi résolue. 11 faut
remarquer que ces équations ne représentent pas forcément un
mouvement quasi périodique, au sens de M. Charlier !, car les
p: peuvent croitre indéfiniment en valeur absolue.
Pour poursuivre l'intégration, on prendra la nouvelle fonction

1 CHARLIER, Mechanik des Himmels, t. I, p. 97.
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hamiltonienne Ry = R — b cos (myp; + ... + mrpy), en
considérant les & et les § comme de nouvelles variables et
non plus comme des constantes. 11 est cependant mal commode
de laisser sous les signes cos. ou sin. des expressions qui contien-
nent explicitement /. On fait le changement de variables sui-
vant:

{ 1.
B = G + '“Q_Lh'kﬂ/; 4

m .
o i [, B [)_*__ﬁ.L,(,Ao w>1,

vl

auxquelles on conjugue les variables

\ 2 _ g (1)
51‘1__2122 sal i Ll

{
4

B

Cette transformation est de nouveau canonique, mais comme
elle contient ¢ explicitement, la nouvelle fonction hamilto-
nienne n’est pas R; transformée, mais R; — « = R’; les nou-
velles équations canoniques sont:

2+ PO e (i1

dp; oR’ da,

(=%

I_(\):' de —

..
.J.L

Or, la fonction R" ne contient plus le terme b cos (mypy + ...
-+ myspy). Le terme général

buln?...nf €OS {1y Py F wo A npp )

est devenu (a des expressions additives connues preés):

(,n onp €OS (A 4 o ”f)‘f} ,

ou les € ne dépendent que des . On est ainsi ramené & un pro-
bléme ou la fonction perturbatrice a un terme de moins. On
continue de la méme facon.

Supposons qu’on s’arréte & une approximation et qu’on doive
quantifier le mouvement; par exemple, supposons qu’on s’arréte
aux formules qui donnent les p; et les g;. Comme on n’a pas
trouvé une intégrale compléte a variables séparées, on ne peut

pas quantifier en posant épi dg: = kih.
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On procéde alors comme suit. On cherche les variables angu-
laires et les variables d’action qui correspondent au stade consi-
déré. Les variables angulaires sont des fonctions linéaires de ¢
et les variables d’action sont des constantes; de plus, ces deux
sortes de variables sont canoniquement conjuguées. Or, remar-
quons que les 4; sont précisément des fonctions linéaires de ¢
et que les w; qui leur sont conjuguées sont des constantes 1. Les
conditions quantiques s’écrivent des lors:

‘ 1 . k. h
\ b = € oy Dheply = i: ,
{

m; m;q ki h )
/ Wy .’:L»—F—('O—}—r—r——L/:ckﬁk:Q—:— (t>1),

les k; étant des entiers. Ces conditions déterminent les valeurs
discrétes qu’il faut donner aux £; (i > 1) et & «. Or « est la
valeur de I'énergie; il est trés souvent utile de la connaitre en
fonction des nombres quantiques k; ... ky. En invoquant encore
une fois la théorie des transformations canoniques, on trouve:

& pa b G i
o == 2?‘ :J.L.:L)-;.?P- /:'i ;

équation qu’on résout par rapport i o carles P en dépendent.

Nous avons montré qu’il est possible par un procédé formel
d’intégrer rigoureusement tout probléme correspondant & un
mouvement quasi-périodique troublé; il faut peut-étre une
infinité de démarches si la fonction perturbatrice est une série
infinie: mais dans un grand nombre de problémes physiques,
un nombre fini de démarches donnera une approximation
suffisante. Nous avons montré de plus qu’a chaque stade dans
Iapproximation correspondent des conditions quantiques bien
déterminées, et que les variables d’action et les variables angu-
laires qu’on obtient servent a franchir une nouvelle étape dans
I’approximation. La méthode originale de Delaunay, revue par

1 Dire que les variables angulaires sur des fonctions linéaires de ¢
et que les variables d’action, qui leur sont conjuguées, sont des cons-
tantes, ce n'est pas les définir rigoureusement. Mais les 4 et les u
sont bien ici les variables cherchées: si 'on fait & = 0. on retrouve

. T°Z — U

v Y
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Tisserand, est donc parfaitement convenable pour les pro-
blémes de dynamique quantique. C’est aux physiciens de voir
si elle peut leur étre utile !

Remarques: 1° Nous ne nous sommes pas occupé des cas
de dégénérescence, mais il semble bienq ue pour I'intégration.
ils ne jouent aucun role singulier.

20 Nous donnons les calculs détaillés ailleurs, dans un ou-
vrage qui est en préparation.

3¢ Les conditions quantiques obtenues sont valables lorsque
le systéme a un mouvement quasi périodique pour le stade
considéré. Si le mouvement n’est pas quasi périodique, nous
proposons la méme forme pour les conditions quantiques.

4° Nous ne savons pas quelles sont, sous cette forme de
calcul, les conditions nécessaires pour la quasi périodicité. Le
seul avantage de la méthode de M. Epstein sur celle que nous
venons de développer, c'est qu’elle lui permet de distinguer
une certaine quasi périodicité au cours des approximations;
mais le calcul des variables d’action est beaucoup plus simple
par notre méthode que par la sienne.

Mme C. BitLer-Burricaz (Genéve). — FEtude du frottement
tntérieur de minces fils d’invar aux hautes lempératures.

Cette communication fera I'objet d'un mémoire qui paraitra
dans un prochain fascicule des Archives.

Pierre WEeiss (Strasbourg). — Le probléeme du ferromagné-
tisme.

I’aimantation d’une substance est une fonction des deux
variables champ magnétique et température. Cette fonction
a été déterminée expérimentalement avec une grande exactitude
dans le cas du nickel. 11 s’agit de trouver le mécanisme des pro-
priétés qu’elle représente ou, en d’autres termes, de donner une
théorie moléculaire de I'aimantation. J’ai suivi a cet effet une
marche analogue a celle de van der Waals, dans sa théorie de la

1 On peut I'employer pour le probléme de Poscillateur non-har-
monique.
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