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LES QUANTA DU RAYONNEMENT
ET LA THEORIE DES GAZ

PAR

A. SCHIDLOF
(Suite et fin.)

DEUXIEME PARTIE.

IT1. La loi du rayonnement noir déduite de I’ hypotheése des quanta
de lumueére.

L’idée la plus simple, suggérée par la loi des quanta, au sujet
de la constitution de P'énergie rayonnante est incontestable-
ment celle des quanta de lumiére. Selon cette conception, le
rayonnement est composé de grains d’énergie de grandeur

E = hv

qui se déplacent avec la vitesse c. A la fréquence » des oscilla-
tions, selon la théorie classique, correspond la grandeur E du
quantum de lumiére, le coefficient de proportionnalité s étant
une constante universelle. |

Tout élément E de I’énergie rayonnante a de plus une quantité
de mouvement représentée par un vecteur dont la direction est
celle de la propagation du quantum, et dont la grandeur est:

E kv

C C

Enfin, le quantum présente une certaine symétrie par rapport
& un plan paralléle & la direction de propagation, symétrie
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correspondant a I’état de polarisation des oscillations mono-
chromatiques classiques.

En appliquant aux quanta de lumiére d’Einstein les principes
de la mécanique statistique, modifiés, selon I'hypotheése de
Planck, par introduction des cellules de grandeur finie, Bose !
a pu déduire de ces notions extrémement simples la loi générale
du rayonnement noir, sans avoir recours a aucune hypothése
supplémentaire.

Supposons le rayonnement enfermé dans une enceinte de
volume V. L’énergie rayonnante totale U contenue dans le
volume V soit donnée. Cette énergie se compose d’'un nombre
énorme de quanta de lumiére 2vs qui ont les fréquences (gran-
deurs) les plus diverses. Soit N° le nombre des quanta dont la
fréquence est comprise entre les limites »s et v8 -+ dvs, dvs signi-
fiant 'un des intervalles monochromatiques du spectre du
rayonnement. Le spectre entier est divisé en une infinité d’in-
tervalles marqués par les indices s allant de zéro a I'infini.

Soit g, dv la densité de I’énergie rayonnante monochromatique
dont la fréquence est comprise entre les limites » et v - dv.
L’énergie rayonnante totale qui remplit ’enceinte tout entiére
est:

o«

— V [‘gvdv — EN‘WWS ) (19)

0 8

U

Pour déterminer les nombres N° par des considérations statis-
tiques, il faut avant tout évaluer la probabilité d’'une réparti-
tion arbitraire des quanta. I.’expression générale de cette proba-
bilité trouvée, la condition de probabilité maximum définit la
répartition d’équilibre. Celle-ci, jointe a ’équation (19), fournira
les N® et, par conséquent, la densité d’énergie de toutes les radia-
tions monochromatiques qui composent le rayonnement noir.

Les grandeurs caractérisant Pétat d’un élément d’énergie

EY = kY

" sont, abstraction faite de la polarisation du quantum, les trois
coordonnées de configuration ¢,, ¢,, ¢, et les trois impulsions

! Bosg, L. ¢. (voir premiére partie du mém.).
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DPis Pay Pa- Le quantum est done, au point de vue mécanique, un
systéme a trois degrés de liberté dont I'état est représenté par
un point dans une multiplicité & 6 dimensions. Pour tous les
quanta de lumiére dont la fréquence est v, la relation

9 .9
2 2 2 h ‘/‘s
p,t+p, T p,= 5~ — const

2
définit une multiplicité cylindrique & 5 dimensions, lieu géomeé-
trique de leurs points d’état. Les quanta appartenant & I'inter-
valle des fréquences allant de vs &4 vs - d»s ont des points d’état
situés a4 l'intérieur d’une couche cylindrique infiniment mince
dont le volume est:

:ljf [. f /‘fc?pldpgdpgdql dyg,dq, = \'.E:EZ:—:ﬂdv"' ;

Si nous divisons ce volume par le volume des cellules, 2%, nous
obtenons le nombre des cellules sur lesquelles se répartissent
les N® quanta en question.

En réalité, le nombre des cellules pouvant contenir les points
d’état des quanta de lumiére considérés est deux fois plus grand.
I1 faut, en effet, tenir compte de I’anisotropie des éléments
d’énergie, correspondant, au point de vue optique, a leur état
de polarisation. Selon la théorie des ondulations, il y a deux
possibilités de polarisation linéaire pour une direction donnée
de propagation de la lumiére. e nombre des cellules dans les-
quelles se trouvent les points d’état des N° quanta est donc:

s g8
A — 82V ?l{i"ﬁ . (20}

Dans une répartition quelconque des quanta il y aura un
certain nombre p de cellules vides; le nombre des cellules con-
tenant un seul quantum sera p?; le nombre des cellules conte-
nant deux quanta sera p?, et ainsi de suite. Le nombre des
répartitions, différentes les unes des autres, auxquelles corres-
pondent les mémes nombres p?, p?, p; ... est:

o e

AS!
817‘7871 Slr :
Po'Pl‘pe'
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Dans cette expression, A® est défini par I'équation (20), et
les nombres p? doivent satisfaire aux deux conditions:

At= i e = .o
M= 0 p g 2l = . (29

La probabilité de I’état du rayonnement défini par I’ensemble
des p} qui correspondent a toutes les valeurs possibles des
indices s et r, comprises entre les limites () et o, est:

11 A%
W= T S

81,81 ,8)
st UYLy ) R

On peut supposer que les nombres p) sont trés grands, et
utiliser, par conséquent, pour le calcul du logarithme de W,
la formule d’approximation usuelle (voir le deuxiéme chapitre)
qui fournit:

Y a
log W = EAS log A® — EZP;S, log p; - (23)
$

& r

Nous postulons que cette expression soit maximum, en impo-
sant, de plus, aux nombres p; les deux conditions:

U = Ei\'shvs — const ,
s
-

e : p,’s, — consl .,
7

En variant les p;, nous obtenons alors les équations suivantes
dont le nombre est s - 2:

- \
zgﬁpf(i + log pf). = 0,
s r
22 Epf, r.ohyS = 0,
s r
26[}‘,3, = 0 .
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Ce systéme d’équations peut étre remplacé par une seule
équation:

3 koS
22519?(\1 + log pf + ¥ + ") = 0 (2%).
8 r e

renfermant les constantes indéterminées ° et 8. Grace a I'intro-
duction de ces constantes, les dp; peuvent &tre considérés
comme arbitraires, et on peut tirer de I'équation (24) la solution
du probléme:

rhyS

Pf_ o= Bse_—-@_“
La valeur du coefficient B® résulte de I'équation (21) qui con-

duit au résultat suivant:
rhys

— % BS
$ —_— i3
== F =
/" r .

—r
1 —e @

hvS

ps— as(1—e ¥)

On a d’autre part, selon (22):

A .
p— e _ S B
NS s s f") 5 A% )
N® == Erp,__m EA(i——e ¢ Jre P g
s

On en tire, selon (19) et (20),

s? /
L] Yy ,l
U= zsr"’ dv. V.

¢? hy

8

L’entropie du rayonnement est exprimée par:
S == & log W' i= /.*2 A% log A® — /cEEpf, log p3 .
S 8 r

En y substituant la valeur précédemment trouvée de p; on a:

hy$

N . - s U
%Zlfi lO%PﬁZZAS log As-l—%As IOg(‘l e g '8)_?"
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D’ou
hvs
U Y .
Bi= /.'[Q—EAS 10g<l — e I@)J ) (29}
l s
' . : oS 1 .
La relation thermodynamique -~ = i fournit la valeur de la
QL
constante 3:
3= kT .

L’entropie de chaque portion monochromatique du rayonne-
ment noir dans le vide étant une fonction bien définie des
variables V, T, »s, de la largeur dvs de I'intervalle spectral et
des constantes universelles &, ket ¢, il n’y a pas lieu d’adjoindre
au second membre de I’équation (25) une constante additive.
De méme, I'énergie est complétement définie par la formule:

. 8z hys i 1 .
— 27;{’, dvS .\ . s (26)
i Y

qui exprime la loi du rayonnement de Planck.

IV. Application de la méthode statistique de Bose a la théorie
des gaz.

Au lieu de répartir des quanta de Jumiére sur les cellules de
la multiplicité des phases, nous pouvons appliquer la méme
méthode aux molécules d’un gaz monoatomique qui sont égale-
ment des systémes & trois degrés de liberté. Le cas des molécules
monoatomiques est méme un peu plus simple, puisqu’il n'y
a pas lieu de prendre en considération une anisotropie quel-
conque. 7

Soient donc gq,, ¢,, ¢, les coordonnées, p,, p,, p, les impulsions
d’une molécule monoatomique de masse m et de vitesse u; on a:

2 2 2 o -
P b = m?u® — const .

Cette équation définit, comme précédemment, une multi-
plicité cylindrique a 5 dimensions dans laquelle doit se trouver
le point d’état de la molécule considérée. Soit V le volume du
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récipient qui contient le gaz; le « volume » de la couche cylin-
drique infiniment mince, contenant les points d’état de toutes
les molécules dont la vitesse a une grandeur comprise entre u et
u + du, est exprimé par

=/‘fff.ffd‘[’1 dp,dp,dq, dg,dg, = =V’ du .

La multiplicité des phases étant divisée en cellules de gran-
deur A°, le nombre des cellules appartenant a la couche cylin-
drique considérée est:

dnm?

A — — Yuidu . (27)

Soit N* le nombre des molécules du gaz dont les points d’état
se trouvent dans la couche cylindrique en question et dont

Iénergie est voisine de:
‘ R — mu*

*)

P

Ces molécules se répartissent sur les cellules de la portion
considérée de la multiplicité des phases de la méme facon que
précédemment les quanta de lumiére. ‘

En désignant par p;’ les nombres de répartition, nous obtenons
I'expression:

At

P:.I pf ! p:';‘
qui indique le nombre de modes de distribution distincts cor-
respondant a des valeurs données des p;. .

Le nombre des molécules de 'espéce considérée est:
O
Nt =0.p7+1.p'+ 2.0+ ... :Z:lo"‘ . (28)

La probabilité de I’état du gaz défini par 'ensemble des
nombres de répartition p; est:

ALH 1
W — II s
= p;’ ; pl"'![);‘!

On en déduit une formule analogue a I'équation (23) du
chapitre I11:

log W = 2 A" log AY — 22 p. log p - (29)

u
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La condition de probabilité maximum de I’état d’équilibre
thermodynamique est accompagnée, dans le cas présent, des
conditions accessoires suivantes. Les nombres A" définis par
I'équation (27) et I'énergie totale

U = 22 E“rp"

doivent étre constants de méme que précédemment; mais, de
plus, le nombre N des molécules contenues dans le volume consi-
déré est ici également donné d’avance, et par conséquent cons-
tant. Ce nombre est exprimé par:

N :22 Fp,

On obtient done, en variant les p;’, les équations suivantes:

EZopl(i—hogp"):O.
220}), rE¥ =0 ,
SSuse=o,
Noprt=0.

»

En y introduisant des coefficients indéterminés, on remplace
ce systéme d’équations par ’équation unique:

220 P (1 + log p 4 3% 4+ " 4 91») — 0 (30
qui fournit pour les nombres p 'expression:

—r ELL'*‘P)
Py = B g g

En déterminant le coefficient B* de la méme facon que pré-
cédemment (chapitre I11), on trouve:

(F+e)) —(5+)
pff = A“ (’l — e ¢




ET LA THEORIE DES GAZ . 389

Les nombres N, définis par I'équation (28), sont:

EH
Alte ((3 )
EU 4
— e ([3

L’équation (31) est équivalente 4 la loi de répartition des
vitesses de Maxwell

N e (31)

1

En

ot

N = aA%e ¢ )

s1 ’on introduit 'abréviation:

e P = a

— ’

et si 'on suppose ¢ suffisamment grand pour qu’on puisse,
au dénominateur de l'expression (31), négliger, vis-a-vis de
"unité, le terme affecté du coefficient ¢~ ¢. Nous montrerons
plus loin que, dans les conditions expérimentalement réalisables,
la quantité ¢ est effectivement toujours trés grande. Dans la
suite du calcul nous nous bornerons a inscrire les termes de
premier ordre en ¢ °.
Le nombre total des molécules est:

N=o DAe F . (32)
n

On en déduit la valeur de I'exposant ¢:

Eu
0 = — log a = logE N2g B — log N . (33
({2

L’énergie du gaz est:
Eu

U = 2 NERY = az A%e B e . (34)

Pour I'entropie du gaz on trouve:
r U v s
S = £ log W + const = I:[? -+ l\p] + const . (39)
L)

ARcHIVES, Vol, 6. — Novembre-Décembre 1924. i 27



390 LES QUANTA DU RAYONNEMENT

Le terme jouant le réle principal dans I'expression de l'en-
tropie du rayonnement noir, et qui dans le cas présent aurait

la valeur:
El.t
(&)
~Slatieg (1 - ¢ \F )
122 i

ne figure pas dans notre formule (35). 11 se réduit en effet, au
degré d’approximation adopté, a: |

F‘H,

E xAl_tle ij = N )
et le nombre N est & négliger parce que nous supposons ¢ trés
grand par rapport a I'unité.
En dérivant S par rapport a T, on trouve (voir les chapitres I1
et I1I) pour la constante 8 la valeur:

8= tl;

La somme:

mud

. E!L
N o TF 2 — 5T
Z Ae B — A¥e t
u i

est & remplacer, selon (27), par Iintégrale:

2
» mie

A A ey B 2rkm T\

—— Yduy = (25— )V .

7 L[.e wdu = &
0

On en tire, selon (33), la valeur de la grandeur o:
| { [2rnkm T \%2 V )
5 == o e e = . 36
L’énergie du gaz est exprimée par l'intégrale:

N h? 322 mtV TET 4
Thimes = du .
U A (2:—. km T) R t/. ¢ wad

D’ou I'on déduit la formule bien connue:"

(L]

U =

|

NAT . (37

!
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Les valeurs (36) et (37) de o et de U, substituées dans la for-
mule (35), fournissent:

S = kN log t%(z;’;’“’f)%% + const . 38)
Cette expression est identique a '’expression (8) obtenue au
premier chapitre.

‘La présente théorie statistique fournit donc sans autres les
expressions complétes des fonctions thermodynamiques des gaz
parfaits, mais elle indique de plus les limites de validité des
formules obtenues, sans qu’il soit nécessaire d’y faire intervenir
des considérations relatives & la forme des cellules d’état. En
effet, 'approximation avec laquelle les formules précédentes ont
été calculées devient insuffisante si le facteur

—_—0

d=e
n’est pas trés petit vis-a-vis de Punité. Selon (36), on peut for-
muler cette condition de la facon suivante:

h? 3fa N
A =N ; 29
(27:/('1)).'1‘) N &1 (39)

Les conditions dans lesquelles la théorie cinétique des gaz
perd sa signification peuvent étre caractérisées par I'mtroduc-
tion d’une grandeur O, définie par la formule:

h? N\ %z
9= wim (V) -

En désignant par L le nombre d’Avogadro, par R la constante
des gaz parfaits, par M la masse moléculaire du gaz mono-
atomique en question, on peut aussi écrire:

_ hPL® (N\%s
T 9zRM\V/)

Remplacons les constantes universelles par leurs valeurs
numeériques:

®

h = 6,525.107°"
I — 6,074.10% |
8,315.10° .

=
I
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On trouve:

. 300 s 14 N‘ 2/3
0 =210 (V) .

La condition (39) peut alors étre exprimée par:
T>>6. (41)

St la température absolue du gaz, T, n'est pas trés grande par
rapport ¢ ©, toule la théorie cinétique perd sa signification.
Pour ’hélium (M = 4), en prenant
N _ 19
v = 2,71.107 ,
chiffre indiquant le nombre des molécules contenues dans 1 c¢m?
d’un gaz parfait a 0° et 1 atm., on trouve:

® — 0,07 degrés abs.

Cette valeur parait étre assez petite pour qu’une contra-
diction avec les données expérimentales actuelles ne soit pas
a craindre.

La méthode statistique de Bose, qui conduit & I’établissement
de la loi du rayonnement noir par des considérations basées
uniquement sur des principes de quanta, permet aussi de
démontrer que les formules de la théorie cinétique des gaz sont
en accord avec la théorie des quanta. De plus, on arrive, &
I'aide de cette méthode, & prévoir les conditions dans lesquelles
aura lieu la « dégénérescence » du gaz. Ces conditions découlent
de la théorie elle-méme, sans qu’on ait besoin de faire inter-
venir des hypothéses plus ou moins arbitraires sur la « forme »
des cellules d’état.
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