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LES QUANTA DU RAYONNEMENT

ET LA THEORIE DES GAZ

PAR

A. SCHI»LÖF
(Suite et fin.)

DEÜXIEME PARTIE.

III. La loi du rayonnement noir deduite de VHypothese des quanta
de lumiere.

L'idee la plus simple, suggeree par la loi des quanta, au sujet
de la Constitution de l'energie rayonnante est incontestable-
ment celle des quanta de lumiere. Selon cette conception, le

rayonnement est compose de grains d'energie de grandeur

Ii — Ii v

qui se deplacent avec la vitesse c. A la frequence v des oscillations,

selon la theorie classique, correspond la grandeur E du

quantum de lumiere, le coefficient de proportionnalite h etant
une constante universelle.

Tout element E de l'energie rayonnante a de plus une quantite
de mouvement representee par un vecteur dont la direction est

celle de la propagation du quantum, et dont la grandeur est:

K h v

<: c

Enfin, le quantum presente une certaine symetrie par rapport
k un plan parallele k la direction de propagation, symetrie



382 LES QUANTA DU RAYONNEMENT

correspondant ä l'etat de polarisation des oscillations mono-

chromatiques classiques.
En appliquant aux quanta de lumiere d'Einstein les principes

de la mecanique statistique, modifies, selon l'hypothese de

Planck, par l'introduction des cellules de grandeur fmie, Bose 1

a pu deduire de ces notions extremement simples la loi generale
du rayonnement noir, sans avoir recours ä aucune hvpothese
supplementaire.

Supposons le rayonnement enferme dans une enceinte de

volume V. L'energie rayonnante totale U contenue dans le

volume V soit donnee. Gette energie se compose d'un nombre

enorme de quanta de lumiere hvs qui ont les frequences (grandeurs)

les plus diverses. Soit Ns le nombre des quanta dont la
frequence est comprise entre les limites rs et vs -[- dvs, dvs signi-
fiant Fun des intervalles monochromatiques du spectre du

rayonnement. Le spectre entier est divise en une infinite d'in-
tervalles marques par les indices s allant de zero ä l'infini.

Soit q dv la densite de l'energie rayonnante monocliromatique
dont la frequence est comprise entre les limites v et v -f- dv.

L'energie rayonnante totale qui remplit l'enceinte tout entiere
est:

3C

u v f ?v</v 2N'5/"S • ll9>
P 6'

Pour determiner les nombres Ns par des considerations statis-
tiques, il faut avant tout evaluer la probabilite d'une repartition

arbitraire des quanta. L'expression generale de cette probabilite

trouvee, la condition de probabilite maximum definit la
repartition d'equilibre. Celle-ci, jointe ä l'equation (19), fournira
les Ns et, par consequent, la densite d'energie de toutes les radiations

monochromatiques qui composent le rayonnement noir.
Les grandeurs caracterisant l'etat d'un element d'energie

lv' Av5

sont, abstraction faite de la polarisation du quantum, les trois
coordonnees de configuration </,, qt, q3 et les trois impulsions

1 Bose, I. c. (voir premiere partie du mem.).
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Pv Pii Ps- Le quantum est done, au point de vue mecanique, un
Systeme ä trois degres de liberte dont l'etat est represents par
un point dans une multiplicite ä 6 dimensions. Pour tous les

quanta de lumiere dont la frequence est v«, la relation

2 2 2 h VS

Pv + P, P, C2-
COnSt

definit une multiplicite cylindrique ä 5 dimensions, lieu geome-
trique de leurs points d'etat. Les quanta appartenant ä l'inter-
valle des frequences allant de j,s ä i,s ; dvs ont des points d'etat
situes ä l'interieur d'une couche cylindrique infiniment mince
dont le volume est:

r c r i* r /(Va
J J J J J J dpidpidp!>dqi<i<hd<t3 v d'/S

Si nous divisons ce volume par le volume des cellules, A3, nous
obtenons le nombre des cellules sur lesquelles se repartissent
les Ns quanta en question.

En realite, le nombre des cellules pouvant contenir les points
d'etat des quanta de lumiere consideres est deux fois plus grand.
II faut, en effet, tenir compte de l'anisotropie des elements

d'energie, correspondant, au point de vue optique, ä leur etat
de polarisation. Selon la theorie des ondulations, il y a deux

possibilites de polarisation lineaire pour une direction donnee

de propagation de la lumiere. Le nombre des cellules dans

lesquelles se trouvent les points d'etat des Ns quanta est done:

A's (20)
c"

Dans une repartition quelconque des quanta il y aura un
certain nombre p® de cellules vides; le nombre des cellules con-
tenant un seul quantum sera p®; le nombre des cellules conte-

nant deux quanta sera p®, et ainsi de suite. Le nombre des

repartitions, differentes les unes des autres, auxquelles
correspondent les memes nombres p®, p®, pf est:
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Dans cette expression, As est defini par 1'equation (20), et
les nombres p® doivent satisfaire aux deux conditions:

a' p[s, + + i't + S7''- • r21)

r

N1 0 p® + 1 pf + 2 p® -f rp'r 122)

La probability de l'etat du rayonnement defini par 1'ensemble
des p® qui correspondent a toutes les valeurs possibles des

indices s et r, comprises entre les limites 0 et co, est:

» II
On peut supposer que les nombres p® sont tres grands, et

utiliser, par consequent, pour le calcul du logarithme de W,
la formule d'approximation usuelle (voir le deuxieme chapitre)
qui fournit:

log YY 2 AS I°K A® - 22 Pr lo" ,23)
S S r

Nous postulons que cette expression soit maximum, en imposant,

de plus, aux nombres p® les deux conditions:

L N ® A v® ~ const

En variant les p®, nous obtenons alors les equations suivantes
dont le nombre est s -j- 2:

+ i°"^) ° •

S r

2^8pf.r.Av® 0

S r

2 0 •

r
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Ce Systeme d'equations peut etre remplace par une seule

equation:

22 nPr ^ + l°« Pr + '' + rhf) ~ 0 <2'iU
S r

1 '

renfermant les constantes indeterminees As et ß. Grace ä

1'introduction. de ces constantes, les dpf. peuvent etre consideres

comme arbitraires, et on peut tirer de 1'equation (24) la solution
du probleme:

/•/IVs

Psr — ßs e ß

La valeur du coefficient Bs resulte de 1'equation (21) qui
conduit au resultat suivant:

rhvs

' r
I '~rj
1 — e

D'oü

Bs As l — e ß

On a d'autre part, selon (22):

h,s rhv* _A"S

i I- AS<-
1 — e ' / re '>- 2^f 2A8(l-e ^ /IVs

1 — e
ß

On en tire, selon (19) et (20),

2 8rc hvs - iU > rfv®. V.
(?J Av

s ß"j
e — 1

L'entropie du rayonnement est exprimee par:

S k log W /,• As log As — k pf. log p*
S S r

En y substituant la valeur precedemment trouvee de pf. on a:

P8r loS Pr 2 ^ '°g ^ + 2 AS l0g Al ^ ~~ S" '
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s k ry—2as io= (- e 0 (25)(25)

s

L'entropie de chaque portion monochromatique du rayonne-
ment noir dans le vide etant une fonction bien definie des

variables V, T, vs, de la largeur d rs de l'intervalle spectral et
des constantes universelles k, h et c, il n'y a pas lieu d'adjoindre
au second membre de 1'equation (25) une constante additive.
De meme, l'energie est completement definie par la formule:

qui exprime la loi du rayonnement de Planck.

IV. Application de la methode statistique de Bose ä la theorie
des gaz.

Au lieu de repartir des quanta de lumiere sur les cellules de

la multiplicite des phases, nous pouvons appliquer la meme
methode aux molecules d'un gaz monoatomique qui sont egale-
ment des systemes ä trois degres de liberte. Le cas des molecules

monoatomiques est meme un peu plus simple, puisqu'il n'y
a pas lieu de prendre en consideration une anisotropic quel-
conque.

Soient done qv q2, q3 les coordonnees, pv p2, p3 les impulsions
d'une molecule monoatomique de masse m et de vitesse n; on a:

126)

s

P, + P-, m-u1 const

Cette equation definit, comme precedemment, une multiplicite

cylindrique ä 5 dimensions dans laquelle doit se trouver
le point d'etat de la molecule consideree. Soit V le volume du
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recipient qui contient le gaz; le « volume » de la couche cylin-
drique inflniment mince, contenant les points d'etat de toutes
les molecules dont la vitesse a une grandeur comprise entre u et

u + du, est exprime par

J fffffdPidPzdP3d(hd(l*d'lz — '1-v'»3"2rf" •

La multiplicite des phases etant divisee en cellules de grandeur

h3, le nombre des cellules appartenant ä la couche cylin-
drique consideree est:

A" — "f-Xu2du (27)
n6

Soit N" le nombre des molecules du gaz dont les points d'etat
se trouvent dans la couche cylindrique en question et dont

l'energie est voisine de:

Ces molecules se repartissent sur les cellules de la portion
consideree de la multiplicite des phases de la meme fa§on que
precedemment les quanta de lumiere.

En designant par p" les nombres de repartition, nous obtenons

l'expression:
A"!

Ii t u i a \

Po -Pl -PZ

qui indique le nombre de modes de distribution distincts cor-

respondant ä des valeurs donnees des p".
Le nombre des molecules de l'espece consideree est:

N" 0 p» + 1 P<; + 2 2 rP" <28»

La probability de l'etat du gaz defini par l'ensemble des

nombres de repartition p" est:

II A'!
// t II I ,.U 1

uPo -Pi -P,

On en deduit une formule analogue a 1'equation (23) du

chapitre III:
log w 2 A" loB A" - 22 P'r l0" P'r (29>
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La condition de probability maximum de l'etat d'equilibre
thermodynamique est accompagnee, dans le cas present, des

conditions accessoires suivantes. Les nombres A" definis par
l'equation (27) et l'energie totale

doivent etre constants de meme que precedemment; mais, de

plus, le nombre N des molecules contenues dans le volume consi-

dere est ici egalement donne d'avance, et par consequent constant.

Ce nombre est exprime par:

it r

On obtient done, en variant les p", les equations suivantes:

22iSjp"(1 + log p") ~0 •

22^-0,a r

=0 •

r

En y introduisant des coefficients indetermines, on remplace
ce Systeme d'equations par l'equation unique:

225/,"(1 + log p"+ x"+ 'v + f1'') —0
it r 1

qui fournit pour les nombres p'' l'expression:

p"r B"e O '

En determinant le coefficient B" de la meme facon que
precedemment (chapitre III), on trouve:

-(?+*)
p'lr A."\l —e X'J ;) e

V 7
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Les nombres N", definis par l'equation (28), sont:

389

(31)

N" aA"e
^

si l'on introduit l'abreviation:

— P
e k a

et si l'on suppose q sufflsamment grand pour qu'on puisse,

au denominateur de l'expression (31), negliger, vis-a-vis de

'unite, le terme affecte du coefficient e~?. Nous montrerons
plus loin que, dans les conditions experimentalement realisables,
la quantite o est effectivement toujours tres grande. Dans la
suite du calcul nous nous bornerons ä inscrire les termes de

premier ordre ene p.

Le nombre total des molecules est:

E»

N a ^ A" e ß
* (32)

U

On en deduit la valeur de l'exposant q\

a

u 2k"k" 1£"
• (34)

u u

Pour l'entropie du gaz on trouve:

Archives. Vol. 6. — Novembre-Decembre 1924. 2
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Le terme jouant le role principal dans l'expression de l'en-
tropie du rayonnement noir, et qui dans le cas present aurait
la valeur:

- > A" log I - e

-(^r+P

ne figure pas dans notre formule (35). II se reduit en eilet, au
degre d'approximation adopte, ä:

_E»

2 »A"e f N
U

et le nombre N est ä negliger parce que nous supposons tres
grand par rapport ä l'unite.

En derivant S par rapport ä T, on trouve (voir les chapitres II
et III) pour la constante ß la valeur:

% AT

La somme:

2A-« tkT

est ä remplacer, selon (27), par Fintegrale:

mil*
-lit m? v f~muIdu

hs
I)

On en tire, selon (33), la valeur de la grandeur q:

L'energie du gaz est exprimee par l'integrale:

cc mu2

0

D'oü l'on deduit la formule bien connue:

U -|NAT. (37)
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Les valeurs (36) et (37) de o et de U, substitutes dans la for-
mule (35), fournissent:

,-T1 V (2r.kmeT\*h j
S Ich log j - J | + const (38)

Cette expression est identique et 1'expression (8) obtenue au

premier chapitre.
La presente theorie statistique fournit done sans autres les

expressions completes des fonetions thermodynamiques des gaz
parfaits, mais eile indique de plus les limites de validite des

formules obtenues, sans qu'il soit necessaire d'y faire intervenir
des considerations relatives ä la forme des cellules d'etat. En
effet, 1'approximation avec laquelle les formules precedentes ont
ete calculees devient insuffisante si le facteur

n'est pas tres petit vis-a-vis de l'unite. Selon (36), on peut for-
muler cette condition de la facon suivante:

h» \* *<<lm ,39)
2kI i>}.'V j V

Les conditions dans lesquelles la theorie cinetique des gaz

perd sa signification peuvent etre caracterisees par l'introduc-
tion d'une grandeur 0, definie par la formule:

2-km I V/

En designant par L le nombre d'Avogadro, par R la constante
des gaz parfaits, par M la masse moleculaire du gaz mono-

atomique en question, on peut aussi ecrire:

_^/NV/s
2-RM \V/

Remplacons les constantes universelles par leurs valeurs

numeriques:
h 6,525 10""
I, 6,074 1023

R 8,315 10'
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On trouve:
(40)

La condition (39) peut alors etre exprimee par:

T » © (41)

Si la temperature absolue du gaz, T, n'esl pas tres grande par
rapport a 0, toute la theorie cinetique perd sa signification.

Pour l'helium (M 4), en prenant

chiffre indiquant le nombre des molecules contenues dans 1 cm'
d'un gaz parfait a 0° et 1 atm., on trouve:

© 0,07 degres abs.

Cette valeur parait etre assez petite pour qu'une contradiction

avec les donnees experimentales actuelles ne soit pas
ä craindre.

La methode statistique de Bose, qui conduit ä l'etablissement
de la loi du rayonnement noir par des considerations basees

uniquement sur des principes de quanta, permet aussi de

demontrer que les formules de la theorie cinetique des gaz sont

en accord avec la theorie des quanta. De plus, on arrive, ä

l'aide de cette methode, ä prevoir les conditions dans lesquelles
aura lieu la « degenerescence » du gaz. Ces conditions decoulent
de la theorie elle-meme, sans qu'on ait besoin de faire inter-
venir des hypotheses plus ou moins arbitraires sur la «forme »

des cellules d'etat.

^ 2,71 1019
V
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