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1924 Vol. 6. Septembre-Octobre.

LES QUANTA DU RAYONNEMENT
ET LA THEORIE DES GAZ

A. SCHIDLOF

PREMIERE PARTIE.

L’hypothése des quanta de ’énergie rayonnante n’a pas recu
au début un accueil trés favorable, mais récemment cette théorie
a eu un regain d’actualité, grice a la découverte de I'effet
Compton dont linterprétation donnée par A. H. Compton?!
et par P. Debye 2 se rattache & la théorie des quanta de lumiére
telle qu’elle a été concue par A. Einstein 3.

Dans le méme ordre d’idées, on peut signaler une déduction
remarquablement simple de la loi du rayonnement de Planck,
due 4 Bose 4.

Nous nous occuperons ici de certaines difficultés qui surgissent
lorsqu’on cherche & concilier les propriétés des modéles méca-
niques les plus simples de la thermodynamique avec la loi des
quanta, et nous nous proposons de montrer, dans la seconde
partie du mémoire, que ces difticultés disparaissent sil’on adopte -
la méthode appliquée par Bose & I’hypothése des quanta de
lumiére. :

L A. H. Compron, Bull. Nat. res. Conn. Vol 4. Part. 2 No 20 (oct.
1922), p. 10. Phys. Rev. Vol. 21 (1923), p. 483.

*P. DEBYE, Phys. Z. S. Vol. 24 (1923), p. 161.

* A. EinsteiN, Zur Quantentheorie der Strahiung. Phys. Z. S.
Vol. 18 (1917), p. 121.

* Bosk, Plancks Gesetz und Lichtquantenhypothese. Z. 3. . Phys.
Vol. 26 (1924), p. 178.

ArcHives, Vol. 6. — Septembre-Octobre, 1924. 20
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1. La théorie des gaz considérée du point de vue de la mécanique
statistique et de la loi des quanta.

Selon les principes de la mécanique statistique, résultant des
recherches profondes de L. Boltzmann! et de J. W. Gibbs 2,
Pétat d’un systéme de 4 degrés de liberté est représenté par
A coordonnées généralisées ¢q; ¢y .... ¢, et par A impulsions
J 20 2 p;- Divisons la multiplicité des phases, dans laquelle
évolue I'état du systéme, en un trés grand nombre de cellules
trés petites, de grandeur

Q :ff...fdpl dPld‘h dql :fdm ;

La probabilité statistique de trouver dans une cellule déter-
minée le point représentatif de I’état d’un systéme, choisi au
hasard parmi un trés grand nombre de systémes tous pareils,
est, dans le cas de la répartition en phase dite «canonique»:

Y—E
]

PQ — e

E signifie I’énergie moyenne des systémes dont le point d’état
est situé dans la cellule considérée. ¢ est la fonction caracté-
ristique de la répartition canonique et @ le module, grandeur
proportionnelle & la température absolue thermodynamique.

Posons d’abord: Q = 1.

Si nous étendons 'intégrale

a toute la portion de la multiplicité des phases dans laquelle le
systéme peut évoluer, cette intégrale est évidemment égale a
P'unité. II en résulte:

1 L. BoLtzmANN, Vorles. iiber Gastheorie. 3me édit. 1923.
2 J. W. Gisss, Elementary Principles in Statist. Mechanics. 1902.
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D’ou:

E
b= —olog [ ¥ o (1)

Considérons en particulier la molécule monoatomique d’un
gaz qui se trouve dans un récipient de volume V chauffé unifor-
mément & une température T. Dans ce cas, on posera:

ou :

est la « constante de Boltzmann », le rapport entre la constante
universelle des gaz parfaits R et le nombre d’Avogadro L.

Soient alors z, y, z les coordonnées rectangulaires caracten-
sant la position de la molécule & I'intérieur du récipient, z, ¥, z
les composantes de la vitesse de la molecule m sa masse.
L’énergie de la molécule est:

m - . .
E = z(a® + 5 + &)

Les composantes de 'impulsion sont:
nu} ; m) s mz ¥

et on obtient, selon (1), pour la fonction caractéristique y I’ex-
pression:

+o “m.i2 +w _ﬁyf + _Ez_
_kmwvfezﬂmﬁjkzﬂm@j}2“m&. 2)
—w —_w

—_—

A un terme additif prés, qui est une fonction linéaire de la
température, @ signifie I'énergie libre thermodynamique de la
molécule. Possédant I'expression de I’énergie libre F, nous en
déduisons celle de ’entropie:

. OF
5 = — - (3)

On trouve ensuite au moyen des formules connues de la

thermodynamique I’énergie U et I’équation d’état du systéme.
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I1 s’agit maintenant d’introduire dans cette théorie la loi des
quanta qui, selon M. Planck !, s’énonce de la facon suivante.
La grandeur des cellules de la multiplicité des phases n’est
nullement arbitraire, mais elle dépend de la grandeur de 'atome
d’action qui a une significationl universelle. En désignant par 2
cette grandeur, la constante de Planck, la grandeur d’une cellule
de la multiplicité des phases est 2* pour un systéme de A degrés
de liberté.

On peut attribuer & tous les systémes dont le point d’état
appartient a la méme cellule la méme énergie E. Si I'on veut
éviter cette supposition, on peut désigner par E la valeur
moyenne de I'énergie des systémes en question. A cause de
Pextréme petitesse de la constante % les conséquences physiques
sont sensiblement les mémes dans les deux cas.

Appliquons la conception des quanta a la théorie des gaz
monoatomiques et tout d’abord au probleme d'une seule
molécule contenue dans un récipient de volume V. La molécule
possédant trois degrés de liberté, il faut poser, dans ce cas,

Q= fdo=10. (%)

Nous voulons admettre que, malgré cette restriction, la mo-
lécule se comporte conformément & la théorie cinétique clas-
sique et qu’elle est assimilable, par conséquent, & 'un des systé-
mes d’une répartition canonique de Gibbs de module £T. La
grandeur des cellules de la multiplicité des phases étant définie

par (4), on a: .
R = vnﬁf f [' dx dy ds .

La probabilité statistique de I'état caractérisé par la valeur E
de I’énergie de la molécule est:
—E

Pht — e ¥1

~C-

et on trouve, par conséquent, au lieu de (2):

v 4o mia? +» mj;g “+x mz?
L = — kTlog T f e 2T mda f e T mdy f 2ET pds (5)
lw) . ¥
- —_— —c

! M. Pranck, Thecrie der Warmestrahlung. 4me édit, 1921,
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Cette formule différe de ’équation (2) uniquement par la
présence du facteur /—?5 dans Pargument de la fonction log.

L’énergie libre thermodynamique de la molécule est donc:

AL N 3’!2
f= — kT log 3 v (2»2;" l)

— T 4+ b, (6)

L’entropie est exprimée, selon (3), par:

3
of S 20km T\ *

o s flos s V

8 oT fcog( ( h? )

+3k4e, ()

¢ étant une constante caractéristique pour la molécule consi-
dérée,

Pour déduire de I'équation (7) expression de I'entropie d’un
gaz parfait, imaginons N récipients tous de méme volume V
uniformément chauffés a la méme température T et renfermant
chacun une seule molécule de masse m. Supposons qu’on éta-
blisse une communication entre les N récipients. Selon le théo-
réme d’addition de Pentropie, on réalise ainsi un systéme dont
I'entropie est égale a4 Ns, a condition que toutes les molécules
soient identiques les unes aux autres. Ce gaz occupe le volume
NV. Par une compression isotherme et réversible, réunissons
toutes les molécules dans un seul récipient de volume V. L’en-
tropie du gaz prend alors la valeur:

v
S =— Ns + A’NlogN¥V = Ns — #ANlog N .
Selon (7) on obtient ainsi ’expression suivante *:

\Y
5 = iN logs ( -+ counst . (8

2% kmeT e
| N

h2

Cette formule est une conséquence rigoureuse de la mécanique
statistique, de la loi des quanta et des principes de la thermo-
dynamique. L’adjonction d’une constante additive indéter-
minée est indispensable, car, comme I’a fait remarquer P. Ehren-
fest 2, ni thermodynamiquement, ni statistiquement DIentropie

1 Cf. A. Scumnror. C. R. Soc. phys. Genéve, Vol. 41, Ne 2 (avril
1924), p. 61. ‘

2 Cf. P. EHRENFEST u. V. TRkAL, Ann. der Phys. Vol. 63 (1921),
p. 609,
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ne peut étre considérée comme une fonction définie du nombre -
des molécules. D’autre part, le raisonnement thermodynami-
que précédent montre que I'introduction du terme — AN log N
est exigée par le théoréme d’addition de l'entropie 1.

Toutefois, & plusieurs égards, la théorie précédente n’est pas
satisfaisente. Nous avons admis d’emblée la validité de la loi de
répartition des vitesses de Maxwell, soit celle des principes
de la mécanique statistique classique. Or, il n’est pas prouvé
que ces principes solent compatibles avec la loi des quanta.

Considérons, par exemple, a la place d'une molécule qui se
meut & l'intérieur d’un récipient, un oscillateur linéaire de
masse m effectuant des oscillations non harmoniques en parcou-
rant indéfiniment le méme trajet de longueur I. Nous suppose-
rons que la masse de I'oscillateur a, dans un état déterminé, une
vitesse uniforme u qui change de sens aux deux points extrémes
de la course. De plus, supposons le mouvement de cette masse
« quantifié ». Cela signifie que, par hypothése, l'intégrale

>
9;}(1(1 — 2mlu

est un multiple entier du quantum d’action A. Il en résulte
que le plus petit saut de la vitesse de I'oscillateur est:

Malgré I'extréme petitesse de la quantité h, le saut Au peut
devenir trés grand si m et [ ont des dimensions moléculaires.

On en conclura que les sauts discontinus de la vitesse d’une
molécule peuvent aussi étre trés importants siles limites entre
lesquelles varient les coordonnées généralisées ¢;, g5, g3 sont
trés rapprochées les unes des autres. Si, de plus, la température
est basse, les sauts Au peuvent étre comparables ou méme supé-
rieurs 4 la vitesse moyenne calculée selon les principes de la
mécanique statistique. Il va sans dire que dans des conditions
aussi extrémes la loi de répartition de Maxwell perd toute
signification.

t Cf. L. NorpHEIM, Z. S. f. Phys. Vol. 25 (1924), p. 41.
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Pour échapper a cette difficulté, on pourrait supposer que le
mouvement moléculaire n’est pas soamis 4 la loi des quanta:
mais les faits empiriques les plus divers parlent nettement en
faveur de la généralité de cette loi. On y subordonne méme,
dans I'état actuel de la physique, la validité des principes de la
mécanique. Or, I'énergie du mouvement moléculaire est due
en partie aux processus élémentaires accompagnant les ren-
contres entre les molécules, en partie aux effets du rayonnement.
11 est certain que les deux espéces de phénoménes obéissent
a la loi des quanta, et on est ainsi conduit & admettre, quoiqu’on
n’en posséde pas de preuves directes en ce qui concerne le mou-
vement de progression, que la multiplicité des phases d’un
systéme moléculaire de 4 degrés de liberté est divisée en cellules
de grandeur A*,

L’expérience prouve, d’autre part, que lintervention. des
quanta ne doit pas modifier les lois thermodynamiques pour
autant que I'état macroscopique du gaz est plus ou moins voisin
- des conditions habituelles. Mais il en sera peut-étre autrement
aux pressions trés élevées et aux températures extrémement
basses. Toutefois, les considérations précédentes ne permettent
pas de préciser les conditions dans lesquelles a lieu cette dégéné-
rescence des gaz'. Pour pouvoir aborder ce probléme, il fau-
drait savoir quelles sont les limites & imposer aux intégrales (4),
en d’autres termes, il faudrait connaitre la forme des cellules
d’état.

La théorie exposée dans la seconde partie du mémoire nous
permettra de définir les conditions de dégénérescence sans avoir
a aborder la question épineuse de la forme des cellules d’état.

I1. La lot générale du rayonnement déduite de Uélectrodynamique
classique et de la lot des quanta.

Les difficultés auxquelles se heurte la théorie du rayo'nnement
noir de Planck 2 sont trop connues pour qu’il soit utile de les

1 Cf. E. Scur®DINGER, Gasentartung und freie Weglinge. Phys.
Z. S. Vol. 25 (1924), p. 41.
2 M. Pranck, L. c.
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exposer ici en détail. Nous nous bornerons done a développer
quelques considérations sur ce sujet qui sont en rapport étroit
avec la théorie des gaz.

Pour établir la loi de Planck on peut se servir d’un raisonne-
ment relativement simple mettant clairement en évidence
les points de vue théoriques, trés distincts les uns des autres,
dont la synthése constitue la théorie de Planck.

Les équations électro-magnétiques de Maxwell ou la théorie
mécanique des ondulations lumineuses permettent de calculer le
nombre des solutions particuliéres représentant toutes les oseil-
lations stationnaires possibles dans un « bloc d’éther » de forme
donnée. J. H. Jeans ! a effectué ce calcul en supposant, pour
plus de simplicité, le rayonnement enfermé dans une enceinte
cubique & parois parfaitement réfléchissantes. Le résultat du
calcul, qui subsiste du reste pour une forme quelconque de
Ienceinte, est le suivant: par unité de volume de l'espace
rempli de rayonnement, et pour l'intervalle des fréquences
compris entre les limites v et v+dv, le nombre des oscillations
harmoniques simples, polarisées linéairement, indépendantes les
unes des autres est:

8xvidy

c3 ’

¢ signifiant la vitesse de propagation de la lumiére dans le vide.
Rempla¢ons maintenant chacune de ces vibrations indépen-

dantes par un oscillateur virtuel de méme fréquence dont

I’énergie doit étre, selon la loi des quanta, un multiple entier de

hv, et soit E, I'énergie moyenne d’un oscillateur. La densité du

rayonnement stationnaire considéré sera

__ Bmvidyv

\ovdv S o

E, . (9)

Pour que I'état du rayonnement soit un état d’équilibre
thermodynamique, ’énergie moyenne E, doit étre déterminée
conformément au second principe de la thermodynamique.

L’entropie du systéme d’oscillateurs considéré s’obtient, selon

tJ. H. Jeans, Phil. Mag. Vol. 10 (1906), p. 191.
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Planck 1, par une méthode statistique générale applicable 4 un
systeme composé de N systémes indépendants obéissant tous
aux mémes lois mécaniques. La région de la multiplicité des
phases dans laquelle évolue 'un quelconque de ces systémes
(oscillateurs) est divisée en cellules de grandeur finie, déterminée
par la loi des quanta. Ces cellules sont numérotées par des
nombres entiers allant de zéro a l'infini. Un état du systéme
est caractérisé par le nombre des oscillateurs dont le point
d’état appartient aux différentes cellules. Soit, par exemple,
Ny le nombre des oscillateurs dont 1’état est représenté par un
point situé dans la cellule portant le numéro zéro, N; le nombre
de ceux dont le point d’état se trouve dans la cellule 1, et ainsi
de suite.
Quel que soit ’état du systéme, on a:

Noe + N; 4+ ... = N = const .

Le nombre des répartitions possibles des N oscillateurs est
N1, parmi lesquelles les Ny ! . N, ! ...... répartitions résultant des
permutations effectuées a Pintérieur des cellules sont équiva-
lentes.

La probabilité d’une répartition donnée est proportionnelle a:

!
Wi o,
N, N, I ...
Les nombres Ny, N; ...... étant supposés trés grands, on

peut utiliser pour le calcul des factorielles la formule d’approxi-
mation

N

N = (2 ’

En introduisant a la place des N, les «nombres de réparti-

tion »
N.

i

Pi = N
on obtient pour le log W I’expression suivante:

log W = — szilog Pi . (10)
i

I M. Pranck, I e.
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L’état d’équilibre thermodynamique du systéme d’oscilla-
teurs est défini par la condition de probabilité maxima a
laquelle s’ajoutent les deux conditions suivantes : le nombre N
des oscillateurs est le méme pour toutes les répartitions et
I'énergie totale

U= N3p,E;, = NE, (11)
i

est constante. E; signifie I’énergie d’un des oscillateurs dont le
point d’état appartient a la cellule portant le numéro i.

Les trois équations définissant I’état d’équilibre thermodyna-
mique sont donc:

E_BP;'(]O%P;"E‘M:O; (
(12)
28p£:0; E_Eiﬁpi:Q. S
On en déduit expression des nombres de répartition
E;
B
Pl == ‘ E; * (13)
S F
[4

La valeur de l'entropie du systéme résulte du théoréme de

Boltzmann:
S = klog W + const .

On en déduit, selon (10) et (13):

E

)

S = INlog2e B —|—k%-{—const. (14)
i

Planck appelle « somme d’état » I'expression

La signification de la constante §8 résulte de la formule

thermodynamique
' 0S5 1

k
oU T — ¢ °
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D’ou:
§= &T . (15)

Les formules précédentes, qui découlent des considérations
statistiques générales, doivent s’appliquer 4 un systéme quel-
conque comprenant un trés grand nombre d’individus tous
pareils et évoluant suivant les mémes lois mécaniques. Si, a la
place des oscillateurs, nous considérons les N molécules d’un
gaz monoatomique, la somme d’état doit étre remplacée par

I'intégrale
E:
%’ffffe'_.f?’;dﬁjd& :

On déduit de 1a I'expression de 1'énergie totale da gaz:

2
] — ZINT
U 3 AN
et celle de I'entropie:
]
S = kNlog{V (2_";‘:225) % 4+ %kN + const . (16)

En comparant cette derniére formule avec I'équation (8),
obtenue & l'aide de considérations basées sur la mécanique
statistique classique et sur la thermodynamique, on constate
I'absence du terme — AN log N. Les propriétés additives de
Pentropie exigeant ’adjonction de ce terme, Planck I'introduit
par une voie détournée. On considére le gaz comme un systéme
de 3N degrés de liberté évoluant dans une multiplicité de phases
& 6N dimensions et on divise ensuite la somme d’état du
systeme par N ! Cette factorielle indique le nombre des permuta-
tions possibles entre les N molécules du gaz qui peuvent se rem-
placer mutuellement sans donner lieu & un état du systéme
physiquement différent. Toutefois, Ehrenfest ! a montré que
Pintroduction du diviseur

NN

Ni=(3)

ne peut pas étre justifiée statistiquement.

1 P. EHRENFEST u. V. TrRKAL, [. c.
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En ce qui concerne les oscillateurs, la division par N | n’entre
pas en considération, ces systémes étant liés, par hypothese,
a des positions fixes et ne pouvant, par conséquent, pas échanger
leurs réles. En vertu de la loi des quanta, I’énergie d’un des
oscillateurs, systéme & un seul degré de liberté, est

E, = nhv
Marquons chaque cellule par le nombre des quanta d’énergie
n des oscillateurs dont le point d’état se trouve dans la cellule

en question et posons: _
! i = n .

La somme d’état présente la valeur:

nhy

o — [
o Ao

hv

| o kT

Le nombre des oscillateurs de la cellule dans laquelle I’énergie

présente la valeur nhv est:
) hv ithY
Np, = N{1—e T)e T .

L’énergie totale du systéme des N oscillateurs est:

hy
hve K1
hv !

€ == g KT

U = sznnhv == N
n

et I’énergie moyenne est:

. U hy
e® o

En substituant cette valeur de E, dans la formule (9), on
trouve la densité d’énergie qui caractérise I'intervalle spectral
du rayonnement noir compris entre les fréquences v et v -+ dv:
8xzhV? 1

¢ hy

|

dyv — dv . (18)

Ly 4
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L’équation (18), exprimant la loi de Planck, résulte de la
réunion des conséquences tirées des trois hypothéses suivantes:

1. L’état d’équilibre thermodynamique du rayonnement est
un état d’équilibre stationnaire compatible avec les équations
différentielles et les conditions limites imposées par la théorie
électro-magnétique de Maxwell.

2. Cet état est, d’autre part, caractérisé par la répartition
en phase la plus probable du systéme d’oscillateurs virtuels qui,
au point de vue de la théorie des ondulations, sont équiva-
lents aux solutions particuliéres considérées des équations de
Maxwell.

3. L’état de chaque oscillateur doit obéir a la loi des quanta
suivant laquelle I'énergie oscillatoire est nécessairement un
multiple entier de hv.

On peut invoquer en faveur de chacune de ces hypotheses
un grand nombre d’arguments empiriques, mais théoriquement
chacune d’elles appartient & un autre ordre d’idées. La diversité
des points de départ, qui se retrouve dans d’autres modes
d’exposition de la théorie de Planck, conduit a des difficultés
dont s’est occupé H. Poincaré! dans ses derniéres réflexions
concernant la physique, difficultés qui subsistent en grande
partie encore actuellement.

A. Einstein 2, en accentuant 'idée de la discontinuité qui se
trouve a la base de la théorie des quanta, a simplifié considéra-
blement la déduction de la loi de Planck sans pouvoir d’ailleurs
éviter complétement de rattacher cette loi a I'électrodynamique
classique.

Un pas décisif a été fait récemment par Bose ® qui a donné
une démonstration de la loi de Planck basée exclusivement
sur I'hypothése des quanta de lumiére. Nous exposerons cette
conception dans la seconde partie du mémoire et nous montre-
rons alors que I'introduction du raisonnement de Bose dans la
théorie des gaz permet d’en éliminer les difficultés et les incer-
titudes signalées au premier chapitre. (A suivre.)

! H. Poincarg, Confér. Soc. franc. de Phys 11 avril 1912, Der-
nieres pensées. Chap VI et VII.

2 A. EInsTEIN, [. ¢

5 Bosg, . c.
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