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1924 Vol. 6. Septembre-Octobre.

LES QUANTA DU RATONNEMENT

ET LA THfiOBIE DES GAZ

PAR

A. SCHIDLOF

Premiere partie.

L'hypothese des quanta de Fenergie rayonnante n'a pas recu

au debut un aceueil tres favorable, mais recemment cette theorie

a eu un regain d'actualite, grace ä la deeouverte de 1'effet

Compton dont l'interpretation donnee par A. H. Compton1
et par P. Debye 2 se rattache ä la theorie des quanta de lumiere
telle qu'elle a ete concue par A. Einstein 3.

Dans le meme ordre d'idees, on peut signaler une deduction

remarquablement simple de la loi du rayonnement de Planck,
due äBose 4.

Nous nous occuperons ici de certaines difficultes qui surgissent

lorsqu'on cherche ä concilier les proprietes des modeles meca-

niques les plus simples de la theimodynamique avec la loi des

quanta, et nous nous proposons de montrer, dans la seconde

partie du memoire, que ces difficultes disparaissent si l'on adopte
la methode appliquee par Bose ä l'hypothese des quanta de

lumiere. *

1 A.. H. Compton, Bull. Nat. res. Conn. Vol 4. Part. 2 N° 20 (oet.
1922), p. 10. Phys. Rev. Vol. 21 (1923), p. 483.

2 P. Debye, Phys. Z. S. Vol. 24 (1923), p. 161.
3 A. Einstein, Zur Quantentheorie der Strahlung. Phys. Z. S.

Vol. 18 (1917), p. 121.
4 Bose, Plancks Gesetz und Lichtquantenhypothese. Z. S. f. Phys.

Vol. 26 (1924), p. 178.
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282 LES QUANTA DU RAYONNEMENT

I. La theorie des gaz consideree du point de cue de la mecanique

statistique et de la loi des quanta.

Selon les principes de la mecanique statistique, resultant des

recherches profondes de L. Boltzmann 1 et de J. W. Gibbs2,
l'etat d'un Systeme de A degres de liberte est represents par
A coordonnees generalises q1 q2 q-t et par A impulsions
p1 p2 py Divisons la multiplicity des phases, dans laquelle
evolue l'etat du Systeme, en un tres grand nombre de cellules
tres petites, de grandeur

Q j" I*.. J*dpi • dp^dq1 dq^ Jdw

La probability statistique de trouver dans une cellule deter-
minee le point representatif de l'etat d'un Systeme, choisi au
hasard parmi un tres grand nombre de systemes tous pareils,
est, dans le cas de la repartition en phase dite «canonique»:

4-E
PÜ e

6

E signifie l'energie moyenne des systemes dont le point d'etat
est situe dans la cellule consideree. if> est la fonction caracte-

ristique de la repartition canonique et 9 le module, grandeur
proportionnelle a la temperature absolue thermodynamique.

Posons d'abord: Ü 1.

Si nous etendons 1'integrale

4-—E

C 6 jje M
ä toute la portion de la multiplicity des phases dans laquelle le

Systeme peut evoluer, cette integrale est evidemment egale ä

l'unite. II en resulte:

1 L. Boltzmann, Vöries, über Gastheorie. 3me edit. 1923.
2 J. W. Gibbs, Elementary Principles in Statist. Mechanics. 1902.
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D'oü:
E

i — 6 log j'e "
do> (1)

Considerons en particulier la molecule monoatomique d'un
gaz qui se trouve dans un recipient de volume V chauffe unifor-
mement ä une temperature T. Dans ce cas, on posera:

ou :

AT

H

L

est la « constante de Boltzmann », le rapport entre la constante
universelle des gaz parfaits R et le nombre d'Avogadro L.

Soient alors x, y, z les coordonnees rectangulaires caracteri-
sant la position de la molecule ä l'interieur du recipient, x, y, z
les composantes de la vitesse de la molecule, m sa masse.

L'energie de la molecule est:

E !(.*2+Ja + s2)

Les composantes de l'impulsion sont:

mx my mz

et on obtient, selon (1), pour la fonction caracteristique <p l'ex-
pression:

+ 00 ma? +00 my" +00 mz2

4» — AT log V J' e
241 mdx J* e ikT mdy j* e

2lcT mdz (2)

A un terme additif pres, qui est une fonction lineaire de la

temperature, ip signifie l'energie libre thermodynamique de la

molecule. Possedant l'expression de l'energie libre F, nous en

deduisons celle de l'entropie:

On trouve ensuite au moyen des formules connues de la

thermodynamique l'energie U et l'equation d'etat du Systeme.
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II s'agit maintenant d'introduire dans cette theorie la loi des

quanta qui, selon M. Planck 1, s'enonce de la fapon suivante.
La grandeur des cellules de la multiplicite des phases n'est
nullement arbitraire, mais elle depend de la grandeur de l'atome
d'action qui a une signification universelle. En designant par h

cette grandeur, la constante de Planck, la grandeur d'une cellule
de la multiplicite des phases est h* pour un Systeme de X degres
de liberte.

On peut attribuer ä tous les systemes dont le point d'etat
appartient ä la meme cellule la meme energie E. Si l'on veut
eviter cette supposition, on peut designer par E la valeur

moyenne de l'energie des systemes en question. A cause de

l'extreme petitesse de la constante h les consequences physiques
sont sensiblement les memes dans les deux cas.

Appliquons la conception des quanta ä la theorie des gaz
monoatomiques et tout d'abord au probleme d'une seule

molecule contenue dans un recipient de volume V. La molecule

possedant trois degres de liberte, il faut poser, dans ce cas,

£2 fdo> h3 (4)

Nous voulons admettre que, malgre cette restriction, la
molecule se comporte conformement k la theorie cinetique clas-

sique et qu'elle est assimilable, par consequent, a l'un des systemes

d'une repartition canonique de Gibbs de module &T. La
grandeur des cellules de la multiplicite des phases etant definie

par (4), on a:
A-1 V ms j'j' l*d.rdrdz

La probabilite statistique de l'etat caracterise par la valeur E
de l'energie de la molecule est:

^—E

PA3 e n

et on trouve, par consequent, au lieu de (2):

oo m#2 -f-oe my2 4-» ftiz2

i — AT log — J* e 2kr mdx j" e
~kl~ mdy J mdz (5)

—00 X — OC

1 M. Planck, Theorie der Wärmestrahlung. 4me edit. 1921.
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Cette formule differe de l'equation (2) uniquement par la

presence du facteur ~ dans l'argument de la fonction log.

L'energie libre thermodynamique de la molecule est done:

l /2«:XmT\!'a I

f — — XT log i
V J j ~ cT + h

L'entropie est exprimee, selon (3), par:

if /2tiX/«T\ 2

3,- ^HogjV^-J | + ¥^ + r. (7)

c etant une constante caracteristique pour la molecule consi-

deree.

Pour deduire de l'equation (7) l'expression de l'entropie d'un

gaz parfait, imaginons N recipients tous de meme volume V
uniformement chauffes ä la meme temperature T et renfermant
chacun une seule molecule de masse m. Supposons qu'on eta-
blisse une communication entre les N recipients. Selon le theo-

reme d'addition de l'entropie, on realise ainsi un Systeme dont

l'entropie est egale ä Ns, ä condition que toutes les molecules

soient identiques les unes aux autres. Ce gaz occupe le volume

NV. Par une compression isotherme et reversible, reunissons

toutes les molecules dans un seul recipient de volume V.
L'entropie du gaz prend alors la valeur:

V
S Ns -f- XN log Ns — XN log N

Selon (7) on obtient ainsi l'expression suivante1:

,„T1 V/2^XmeT\3/a)
a XN log | - -h J I + const 181

Cette formule est une consequence rigoureuse de la mecanique
statistique, de la loi des quanta et des prineipes de la
thermodynamique. L'adjonction d'une constante additive indeter-
minee est indispensable, car, comme l'a fait remarquer P. Ehrenfest

2, ni thermodynamiquement, ni statistiquement l'entropie

1 Cf. A. Schidlof. C. R. Soc. phys. Geneve, Vol. 41, N" 2 (avril
1924), p. 61.

2 Cf. P. Ehrenfest u. V. Trkal, Ann. der Phys. Vol. 65 (1921),
p. 609.
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ne peul etre consideree comme une fonction defmie du nombre
des molecules. D'autre part, le raisonnement thermodynami- '

que precedent montre que l'introduction du terme — AN log N

est exigee par le theoreme d'addition de l'entropie V

Toutefois, ä plusieurs egards, la theorie precedente n'est pas
satisfaisante. Nous avons admis d'emblee la validite de la loi de

repartition des vitesses de Maxwell, soit celle des principes
de la mecanique statistique classique. Or, il n'est pas prouve
que ces principes soient compatibles avec la loi des quanta.

Considerons, par exemple, ä la place d'une molecule qui se

meut ä l'interieur d'un recipient, un oscillateur lineaire de

masse m effectuant des oscillations non harmoniques en parcou-
rant indefiniment le meme trajet de longueur I. Nous suppose-
rons que la masse de 1'oscillateur a, dans un etat determine, une
vitesse uniforme u qui change de sens aux deux points extremes
de la course. De plus, supposons le mouvement de cette masse

«quantifie». Cela signifie que, par hypothese, l'integrale

r
(p pdq — 2 mlu

est un multiple entier du quantum d'action h. II en resulte

que le plus petit saut de la vitesse de 1'oscillateur est:

Malgre 1'extreme petitesse de la quantite h, le saut An peut
devenir tres grand si m et I ont des dimensions moleculaires.

On en conclura que les sauts discontinus de la vitesse d'une
molecule peuvent aussi etre tres importants si les limites entre

lesquelles varient les coordonnees generalisees qu q2, q3 sont

tres rapprochees les unes des autres. Si, de plus, la temperature
est basse, les sauts Au peuvent etre comparables ou meme supe-
rieurs ä la vitesse moyenne calculee selon les principes de la

mecanique statistique. II va sans dire que dans des conditions
aussi extremes la loi de repartition de Maxwell perd toute
signification.

1 Cf. L. Nordheim, Z. S. f. Phys. Vol. 25 (1924), p. 41.
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Pour echapper ä cette difficulty, on pourrait supposer que le

mouvement moleeulaire n'est pas soamis ä la loi des quanta;
mais les faits empiriques les plus divers parlent nettement en
faveur de la generality de cette loi. On y subordonne meme,
dans l'etat actuel de la physique, la validite des principes de la
mecanique. Or, l'energie du mouvement moleeulaire est due

en partie aux processus elementaires accompagnant les

rencontres entre les molecules, en partie aux effets du rayonnement.
11 est certain que les deux especes de phenomenes obeissent

a la loi des quanta, et on est ainsi conduit ä admettre, quoiqu'on
n'en possede pas de preuves directes en ce qui concerne le
mouvement de progression, que la multiplicity des phases d'un
Systeme moleeulaire de Ä degres de liberte est divisee en cellules
de grandeur h}.

L'experience prouve, d'autre part, que l'intervention des

quanta ne doit pas modifier les lois thermodynamiques pour
autant que l'etat macroscopique du gaz est plus ou moins voisin
des conditions habituelles. Mais il en sera peut-etre autrement
aux pressions tres elevees et aux temperatures extremement
basses. Toutefois, les considerations precedentes ne permettent
pas de preciser les conditions dans lesquelles a lieu cette degene-

rescence des gaz 1. Pour pouvoir aborder ce probleme, il fau-
drait savoir quelles sont les limites ä imposer aux integrales (4),
en d'autres termes, il faudrait connaltre la forme des cellules

d'etat.
La theorie exposee dans la seconde partie du memoire nous

permettra de definir les conditions de degenerescence sans avoir
k aborder la question epineuse de la forme des cellules d'etat.

II. La loi generale du rayonnement deduite de Velectrodynamique

classique et de la loi des quanta.

Les diflicultes auxquelles se heurte la theorie du rayonnement
noir de Planck 2 sont trop connues pour qu'il soit utile de les

1 Cf. E. Schrcedinger, Gasentartung und freie Weglänge. Phys.
Z. S. Vol. 25 (1924), p. 41.

2 M. Planck, l. c.



288 LES QUANTA DU RAYONNEMENT

exposer ici en detail. Nous nous bornerons done ä developper
quelques considerations sur ce sujet qui sont en rapport etroit
avec la theorie des gaz.

Pour etablir la loi de Planck on peut se servir d'un raisonne-
ment relativement simple mettant clairement en evidence
les points de vue theoriques, tres distincts les uns des autres,
dont la synthese constitue la theorie de Planck.

Les equations electro-magnetiques de Maxwell ou la theorie

mecanique des ondulations lumineuses permettent de calculer le

nombre des solutions particulieres representant toutes les

oscillations stationnaires possibles dans un « bloc d'ether » de forme
donnee. J. H. Jeans 1 a effectue ce calcul en supposant, pour
plus de simplicite, le rayonnement enferme dans une enceinte

cubique ä parois parfaitement reflechissantes. Le resultat du

calcul, qui subsiste du reste pour une forme quelconque de

l'enceinte, est le suivant: par unite de volume de l'espace

rempli de rayonnement, et pour l'intervalle des frequences

compris entre les limites v et v-\-dv, le nombre des oscillations

harmoniqueg simples, polarisees lineairement, independantes les

unes des autres est:
87:v2rfv

c signifiant la vitesse de propagation de la lumiere dans le vide.

Remplagons maintenant chacune de ces vibrations independantes

par un oscillateur virtuel de meme frequence dont
l'energie doit etre, selon la loi des quanta, un multiple entier de

Ar, et soit Ev l'energie moyenne d'un oscillateur. La densite du

rayonnement stationnaire considere sera

8?tv2dv
p dv ;—Ev (9)

J CA

Pour que l'etat du rayonnement soit un etat d'equilibre
thermodynamique, l'energie moyenne Ev doit etre determinee

conformement au second principe de la thermodynamique.
L'entropie du Systeme d'oscillateurs considere s'obtient, selon

1 J. H. Jeans, Phil. Mag. Vol. 10 (1906), p. 191.
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PlanckJ, par une methode statistique generale applicable ä un
Systeme compose de N systemes independents obeissant tous
aux memes lois mecaniques. La region de la multiplicite des

phases dans laquelle evolue l'un quelconque de ces systemes
(oscillateurs) est divisee en cellules de grandeur finie, determinee

par la loi des quanta. Ces cellules sont numerotees par des

nombres entiers allant de zero ä l'infini. Un etat du Systeme
est caraeterise par le nombre des oscillateurs dont le point
d'etat appartient aux differentes cellules. Soit, par exemple,
N0 le nombre des oscillateurs dont l'etat est represents par un
point situe dans la cellule portant le numero zero, le nombre
de ceux dont le point d'etat se trouve dans la cellule 1, et ainsi
de suite.

Quel que soit l'etat du Systeme, on a:

N0 + N, -)- N const

Le nombre des repartitions possibles des N oscillateurs est

N!, parmi lesquelles les N0 Nx repartitions resultant des

permutations effectuees ä l'interieur des cellules sont äquivalentes.

La probabilite d'une repartition donnee est proportionnelle ä:

W
N0! N,!

Les nombres N0, Nx etant supposes tres grands, on

peut utiliser pour le calcul des factorielles la formule d'approxi-
mation

En introduisant ä la place des les « nombres de repartition

»

_ Ni
Pi — N

on obtient pour le log W l'expression suivante:

log W - n2 ft log ft (10)
i

1 M. Planck, I. c.
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L'etat d'equilibre thermodynamique du Systeme d'oscilla-
teurs est defini par la condition de probabilite maxima ä

laquelle s'ajoutent les deux conditions suivantes : le nombre N
des oscillateurs est le meme pour toutes les repartitions et

l'energie totale
U NSp.E, NE,, (lit

I

est constante. E; signifie l'energie d'un des oscillateurs dont le

point d'etat appartient ä la cellule portant le numero i.
Les trois equations definissant l'etat d'equilibre thermodynamique

sont done:

2spt(iog^ + i) o, J

(12)

pt 0 ; 2E.8^ 0

i i

On en deduit l'expression des nombres de repartition

_E,
„ ß

u, - • (13)

ß

I

La valeur de l'entropie du Systeme resulte du theoreme de

Roltzmann:
S — k log W -(- const

On en deduit, selon (10) et (13):

S AN log2e ß + i y- + const (14)
i P

Planck appelle « somme d'etat » l'expression

_Ei
^

I

La signification de la constante ß resulte de la formule

thermodynamique
as _ l _ k

öÜ T ß" '
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D'oü:
ß AT (15)

Les formules precedentes, qui decoulent des considerations

statistiques generates, doivent s'appliquer k un Systeme quel-

conque comprenant un tres grand nombre d'individus tous
pareils et evoluant suivant les rnemes lois mecaniques. Si, ä la

place des oscillateurs, nous considerons les N molecules d'un

gaz monoatomique, la somme d'etat doit §tre remplacee par
l'integrale

On deduit de la l'expression de l'energie totale du gaz:

En comparant cette derniere formule avec l'equation (8),
obtenue ä l'aide de considerations basees sur la mecanique
statistique classique et sur la thermodynamique, on constate
l'absence du terme — log N. Les proprietes additives de

l'entropie exigeant l'adjonction de ce terme, Planck l'introduit
par une voie detournee. On considere le gaz corome un Systeme
de 3N degres de liberte evoluant dans une multiplicite de phases
ä 6N dimensions et on divise ensuite la somme d'etat du

Systeme par N Cette factorielle indique le nombre des permutations

possibles entre les N molecules du gaz qui peuvent se rem-
placer mutuellement sans donner lieu ä un etat du Systeme

physiquement different. Toutefois, Ehrenfest1 a montre que
1'introduction du diviseur

U |».-T

et celle de l'entropie:

(16)

N

ne peut pas etre justifiee statistiquement.

1 P. Ehrenfest u. V. Trkai., l. c.
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En ce qui concerne les oscillateurs, la division par N n'entre

pas en consideration, ces systemes etant lies, par hypothese,
ä des positions fixes et ne pouvant, par consequent, pas echanger
leurs roles. En vertu de la loi des quanta, l'energie d'un des

oscillateurs, Systeme a un seul degre de liberte, est

Marquons chaque cellule par le nombre des quanta d'energie
n des oscillateurs dont le point d'etat se trouve dans la cellule

en question et posons:
i n

La somme d'etat presente la valeur:

Le nombre des oscillateurs de la cellule dans laquelle l'energie
presente la valeur nhv est:

E- nhv

hv '

JcT
n

e

N/>h N(I —e tT)e *T

L'energie totale du Systeme des N oscillateurs est:

hl'
W

n

1 — e

h-j '

kf

et l'energie moyenne est:

U hv
(17)

En substituant cette valeur de Ev dans la formule (9), on
trouve la densite d'energie qui caracterise l'intervalle spectral
du rayonnement noir compris entre les frequences v et v -(- dv:
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L'equation (18), exprimant la loi de Planck, resulte de la
reunion des consequences tirees des trois hypotheses suivantes:

1. L'etat d'equilibre thermodynamique du rayonnement est

un etat d'equilibre stationnaire compatible avec les equations
differentielles et les conditions limites imposees par la theorie

electro-magnetique de Maxwell.
2. Cet etat est, d'autre part, caracterise par la repartition

en phase la plus probable du Systeme d'oscillateurs virtuels qui,
au point de vue de la theorie des ondulations, sont equivalents

aux solutions particulieres considerees des equations de

Maxwell.
3. L'etat de chaque oscillateur doit obeir ä la loi des quanta

suivant laquelle 1'energie oscillatoire est necessairement un
multiple entier de hv.

On peut invoquer en faveur de chacune de ces hypotheses
un grand nombre d'arguments empiriques, mais theoriquement
chacune d'elles appartient ä un autre ordre d'idees. La diversite
des points de depart, qui se retrouve dans d'autres modes

d'exposition de la theorie de Planck, conduit a des difficultes
dont s'est occupe H. Poincare 1 dans ses dernieres reflexions
concernant la physique, difficultes qui subsistent en grande
partie encore actuellement.

A. Einstein 2, en accentuant l'idee de la discontinuite qui se

trouve ä la base de la theorie des quanta, a simplifie considera-
blement la deduction de la loi de Planck sans pouvoir d'ailleurs
eviter eompletement de rattacher cette loi ä l'electrodynamique
classique.

Un pas decisif a ete fait recemment par Bose 3 qui a donne

une demonstration de la loi de Planck basee exclusivement
sur l'hypothese des quanta de lumiere. Nous exposerons cette

conception dans la seconde partie du memoire et nous montre-
rons alors que l'introduction du raisonnement de Bose dans la
theorie des gaz permet d'en eliminer les difficultes et les

incertitudes signalees au premier chapitre. (A suivre.)

1 H. PoiNCARi, Confer. Soc. frarnj. de Phys. 11 avril 1912.
Dernieres pensees. Chap. VI et VII.

2 A. Einstein, I. c.
8 Bose, I. c.
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