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LES SOLUTIONS COSMOLOGIQUES

DES

EQUATIONS DU CHAMP DE GRAVITATION

Les equations tensorielles covariantes du champ de

gravitation ont ete etablies par Einstein 1 d'abord sous la forme
suivante:

Les Wh, sont les composantes d'un tenseur symetrique du
deuxieme rang obtenu par contraction k partir du tenseur
de courbure du quatrieme rang de Riemann-Christoffel. Ge

sont des fonctions connues des composantes gik du tenseur
metrique de la multiplicite, ainsi que des derivees premieres
et secondes des gik.

Les T,-k sont les composantes covariantes du tenseur materiel,
tenseur symetrique, dont les 10 composantes ont la signification

de l'energie et de la quantite de mouvement attachees

au point d'Univers considere. T T- signifie l'invariant du
tenseur materiel, et * la constante de la gravitation universelle
de Newton-Einstein.

PAR

A, SCHIDLOF
(Avec 1 fig-)-

I. Preliminaires.

1 A. Einstein. Ber. d. Berl. Akad. 1915, p. 844.
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Les solutions des equations (L) ont la forme1:

ds2 gikdxl dxk (i, / 1, 2, 3, 4) (2)

ou dxl. dxk signifient les accroissements des quatre coordonnees
d'un point d'Univers. ds2 est l'invariant caracterisant la
longueur de l'element d'arc d'une ligne geodesique decrite, par
exemple, dans la multiplicite consideree, par un point materiel
libre.

Les equations differentielles d'une geodesique sont:

c/~ 1L • dx^ dx'J

1? + 0 (3)

dx'
oü u' signifient les composantes de la « direction » ou

quadrivitesse du point materiel en question. Les dependent
du Systeme de reference choisi et jouent, selon Einstein, le

role des composantes du champ de gravitation. Ce sont des

fonctions lineraires des git et de leurs derivees:

ri _ i Jk ^ (4|~ 2= ^ + ^ ö/.
1

Les gik sont les composantes contre-variantes du tenseur

metrique. Le tenseur contracts Put s'exprime au moyen des

rLv et de leurs derivees de la fagon suivante 2:

D _ arä- p» Ö2logV— g nvölogV— g /Si
ik — ~~v if* tv — i- k ik .v '

üx dar ö.r Ö#

oü:
g I gut-j i

1 Suivant l'usage on supprime le symbole X correspondant ä

l'operation de la contraction (fusion des indices co- et contre-
variants).

2 Cf. A. Einstein. Die Grundlage der allgem. Relativitätstheorie
Ann. de Phys. 49 (1916), p. 769. Reimprime dans le recueil «Das
Relativitätsprinzip », 3me edit., Teubner 1920. Les grandeurs
designees ici par P^v sont les composantes du champ de gravitation
d'Einstein changees de signe.
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signifie le determinant des composantes covariantes du tenseur

metrique.
Supposons donnees les composantes Tu- en un point P de

la multiplicity, alors les 10 equations (1) du champ de
gravitation fournissent les valeurs des 10 «potentiels de

gravitation !> gik. Les gik interviennent de plus dans les 4 equations,
exprimant les principes de conservation de l'energie et de la.

quantite de mouvement. qui, dans la tbeorie de la relativite
generale, ont la forme:

Les Tik etant donnees non seulement en P mais aussi en tous
les points voisins de l'espace-temps, on aurait ainsi 14 equations
determinant les gik, done quatre de trop. En realite, la forme
des equations (1) a ete determinee, precisement, par la condition

de satisfaire identiquement, pour n'importe quelle repartition

de la matiere, aux equations de conservation. T1 en resulte

que six seulement parmi les 10 equations (1) dependent effec-
tivement de la repartition materielle. Parmi les dix composantes

gik quatre restent, par consequent, indeterminees.
Cette indetermination est d'ailleurs une consequence essentielle

du principe de la relativite, qui exige la liberte du choix
du Systeme de reference.

On peut toujours introduire, en tout point de la multiplicity
quadridimensionnelle, un svsteme de reference tel que
1'invariant quadratique (2) prenne la forme:

ds2 — f*dt* — äJ (7)

L'element lineaire ds est ainsi decompose |en un element

spatial de et en*uri temps dt perpendiculaireäl'element spatial.
Oräce au choix particulier du Systeme de reference on a alors:

Sit Ski 0 (/ 1, 2, 3)

Puisque de plus on doit choisir conventionnellement l'une
des unites, le nombre des inconnues est ramene ä 6 et correspond

au nombre des equations independantes.
Selon la theorie de la relativite restreinte la propagation de
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la lumiere a lieu suivant les geodesiques de longueur nulle.
II resulte done de (7) que:

est la vitesse de propagation de la lumiere dans le voisinage
du point P de la multiplicity. Le potentiel de gravitation g44=/4
est en general une fonction du temps t et des coordonnees

spatiales a;1 x2 x3.

II. Solutions statiques des equations d'Einstein.

Un champ de gravitation est statique si les potentiels de

gravitation gik sont independants du temps I. Nous poserons
dans ce cas:

de3 signifiant l'invariant quadratique de l'espace tri-dimen-
sionnel. Les ya ainsi que / sont alors fonctions des coordonnees

spatiales seules, et les equations (1) fournissent d'une part la
metrique de l'espace, les ynt, et d'autre part le champ scalaire
de la fonction / (vitesse de la lumiere) dans l'espace.

En utilisant, ä quelques modifications insignifiantes pres,
les symboles adoptes par H. Weyl dans son traite classique 1

nous marquerons par un asterisque place ä droite du Symbole
r'-k celles des composantes du champ de gravitation qui ont
un caractere purement spatial:

T'ik pour : i, k v 1, 2, 3

Les symboles asterisques se rapportent done exclusivement
ä l'invariant ternaire de3.

On demontre facilement que, tous les gik etapt independants
du temps t, on a les relations:

1 H Weyl. Raum — Zeit — Materie. 5me edit., 1923, § 31

da3 Y-kdxldxk (i, k 1, 2, 3) (9|

i, k 1, 2, 3

(10)
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Les ft signifiant les derivees de / par rapport aux x' sont les

eomposantes covariantes du gradient tridimensionnel de la
fonction scalaire /. Les

r t'V,

sont les eomposantes contre-variantes correspondantes.
Designons par y le determinant des ya- On a selon (7) et (9)

V~g fVi
Les produits f\Zy ont la signification d'une densite vec-

torielle, celle du champ scalaire de la fonction /. Les regies
de l'analyse tensorielle1 fournissent les expressions de la
derivee co-variante fa du gradient fi et de la divergence de la
densite vectorielle p\/y qui soit designee par le symbole A/:

fa ^ ~ ^7, 7~T7~k - (i. *, » 1-2, 3)
bx dx bo? 5#

A/._
Vy Dx*

Ces formules permettent d'etablir les relations suivantes
entre les eomposantes R;t et Pa des tenseurs de Riemann-
Christoffel contractus se rapportant respectivement aux
invariants ds'2 et da-:

fa
1!i/t — pa ~ [
K.4 R4i 0

«44 m
tu»

Dans le cas statique, si 1'on fait abstraction des tensions
s'exercarit entre les elements de la matiere, les eomposantes
covariantes du tenseur materiel sont nulles ä la seule exception

de la composante:

^
44 — DiiV- 3' f~

f> etant une fonction scalaire des variables spatiales signifiant

la densite de la matiere. L'equation qui determine la

A. Einstein, I. c. ').



10 EQUATIONS DU CHAMP DE GRAVITATION

fonction / prend alors la forme

A f 1
— •f 2 '

On peut au moyen de cette equation montrer que la solution
statique des equations d'Einstein conduit ä la theorie bien

connue du potentiel newtonien.
Nous nous bornerons ici ä signaler une seule des consequences

tirees par Einstein de sa theorie de la gravitation, consequence
resultant immediatement de la forme (7) de la solution statique
et de la relation qui existe, selon la theorie de la relativite
restreinte, entre la mesure du temps et la vitesse de propagation

/ de la lumiere.
Supposons qu'une source de lumiere monochromatique, un

atome emettant une raie spectrale, soit en repos dans un champ
de gravitation statique en un point oü la fonction scalaire /
presente la valeur /,. ds signifle la « duree propre » de la periode
optique de la lumiere emise. L'atome etant, par hypothese,
en repos on a: do 0, et par consequent:

ds =: fldtl

dti signifie la duree de la periode du phenomene optique,
mesuree en unites de temps d'un Systeme de reference local,
en un point quelconque de la multiplicity quadridimension-
nelle. L'observateur qui utilise ce Systeme de reference peut
comparer la duree

ds

j.
avec la duree dtt de la periode du meme phenomene optique
produit par un atome identique au premier mais place dans

une autre region de l'espace oü la fonction / a la valeur /,.
A cause de la signification invariante du ds2 la duree propre
de la periode optique est la meme pour les deux atomes iden-

tiques; il en resulte que la periode observee, qui pour le second

atome est
ds

dt2 —
12

presente une valeur differente de dt, si /3 /,.

*
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Puisque en physique on caracterise les raies spectrales par
leurs longueurs d'onde, nous introduirons ä la place des periodes
dti et dt<2 les longueurs d'onde A, et A2, proportionnelles, a l'en-
droit oü les raies sont observees simultanement, aux periodes
dtt et dtr

On trouve alors:
^2 fx

\ ft '

Si la premiere raie spectrale a ete produite au Soleil ou sur
une etoile, la seconde sur la Terre, on a /, < /2 et, par consequent

A, > A,. Le phenomene en question, signale pour la
premiere fois par Einstein, et formant depuis lors le sujet d'un
nombre considerable de recherches executees suivant les

methodes les plus perfectionnees, est, au point de vue spectros-
copique, un deplacement vers le rouge de la raie, d'autant plus
considerable que l'intensite du champ de gravitation est plus
grande.

On peut calculer l'effet au moyen de la formule:

Ai A2 f
^1 ft

Malheureusement, dans le cas du champ de gravitation
solaire l'effet en question est extremement faible. De plus,
d'autres causes multiples produisent des deplacements dans le

meme sens ou en sens contraire bien plus considerables. II
n'est done pas etonnant que les recherches spectro-heliosco-
piques, quoique poussees avec une perseverance et une inge-
niosite admirables n'aient pas encore abouti ä un resultat
decisif1.

III. Champ de gravitation entourant un centre materiel.

Considerons maintenant un champ de gravitation qui par
rapport ä un point donne de l'espace presente une symetrie
spherique. Les potentiels de gravitation, f et yik ne dependent

1 Cf. F. Croze, Ann. de physique, t. 19, 1923, p. 93.
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alors que de la distance r entre le centre 0 et le point considere,

et 1'invariant da2 prend la forme:

da2 - /t-[(dx>)2 + (dx2)2 + dx8)2] + l[xldxl +- x2dx2 + x3dx3]2

oil k et I sont des fonctions de r seul.

Etant donnee la «fluidite » du Systeme de reference de la

theorie de la relativite generale, on peut, par une deformation

appropriee de la coordonnee r, rendre egal ä 1 Fun des deux
coefficients k et I. Posons done:

k l
Puisqu'on a:

(a-1)2 + (x2)2 + (a3)2 r2

II vient:
x1 dxl + x2dx2 -f- x3dx3 — rdr

et par consequent:

di2 (dx1)2 -f- (dx2)2 + (dx3)2 -f- lr2dr2

Introduisons ä la place des coordonnees cartesiennes a;1 x* x3

des coordonnees polaires r, <p. On a dans ce cas:

(dx1)2 (dx2)2 + (dx3)2 dr2 + r2dä2 -f- r2sin2Sd<f2 '

et si nous posons:
] + lr2 h2

il vient:
da* —. h2dr2 + r2dä2 + r2 sin2 3d®2 (12)

II s'agit de trouver l'expression de h en fonction de la variable

r. Dans ce but, pour pouvoir appliquer ä l'expression (12)
les methodes usuelles de l'analyse tensorielle, nous voulons
considerer r, & et <p comme des coordonnees de Gauss caracte-
risant les points d'une multiplicite ä 3 dimensions. Les coefficients

A2, r1 et r2sm2& jouent alors, mais d'une fagon purement
formelle, le role des composantes du tenseur metrique ya
representees par le tableau suivant:

A2 0 0

0 r2 0

0 0 r2 sin2 ä

a -jj
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Grace ä sa symetrie spherique le champ varie de la meme
fagon dans n'importe quel plan passant par le centre. II suffit
done d'effectuer le calcul pour un seul de ces plans, defini par
la condition particuliere:

3 J sin 3 — 1

Posons:

Tik 0(i=^ A) ; Tll A2 ; Tss r2 ; y33 r2 sin35

On en deduit:

11 lV11 — • v2s — • Y33 t
' ~ h2 ' ' ~~ r2 ' ' — rs sin2 3 '

En calculant selon (4) les composantes r^* on n'en trouve
que 10 dont les valeurs different de zero. En representant par
le symbole h' la derivee de h par rapport ä la variable r, on
obtient les expressions suivantes:

pi* _ A' ^1* _ r _ >'sins3
1 11 - ; 1 22 - - yi ; 1 33 - - hi

r?2* 1= I** - ~ ; r;r Ctg 3 : rT, - sin 3 cos 3

Le determinant des ytk est:

Y h2r* sin2 3

Selon la theorie generale on utilisera pour le calcul des Pg

la formule (5). II suffit d'y munir d'un asterisque les symboles
27* et d'y remplacer \/— g par \/y Apres avoir effectue les

derivations par rapport ä r et par rapport ä indiquees dans

cette formule, il faut dans toutes les expressions remplacer
les fonctions trigonometriques de 3 par les valeurs qu'elles

prennent [pour S ~
Ce calcul fait, on trouve, selon (11), les expressions suivantes

des composantes Ru, RJ2, R33 du tenseur contracte de Rie-
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mann-Christoffel:

f" h'f' 2 h' f" h'f'R — P I !— — J i_
11 — 11 f ^ hf hr f hf

R -P + 1
} '(13)

«22 — 22 h*f — h'\h f) h?

— Ro«

f — iL f" — 01
' dr ' 1 ~ dr2 '

Dans le cas present oü / est uniquement fonction de r et
oü: y A2r'' on trouve pour A/ l'expression suivante:

r _ra 2r
' h2 h" rh2

La troisieme des equations (11) donne par consequent:

7"')-

Pour trouver les fonctions / et h il suffit d'integrer les equations

R1( 0 et R44 0. La seconde de ces equations peut
s'ecrire, selon (13 a):

r h'f' ,2f'_
T W I ~ ° '

tandis que la premiere est, selon (13):

_r.hrf ~t~ kf^~rh~
II en resulte:

7(^9 «-

equation dont 1'integrale est:

fh — const

Si l'on admet qu'ä une distance infiniment grande du centre
les deux fonctions / et h tendent vers 1, la constante d'inte-
gration prend la valeur 1. Nous pouvons alors, en posant

fh 1 (14)
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eliminer la fonction h d'une des deux equations differentielles
simultanees. Nous ob tenons ainsi:

£+(9'+yT °

L'integrale de cette equation differentielle est:

_0
2 m

f- — j- const

m etant l'une des deux constantes d'integration. Selon la
condition limite precedemment admise la seconde constante

d'integration doit avoir la valeur 1. On trouve done les deux
solutions suivantes:.

f 1 - — ; h2 — 1—- (15)
r 2m

La constante m est caracteristique pour l'intensite du champ
de gravitation ä une distance donnee du centre. D'apres
Newton cette intensite est proportionnelle ä la masse attirante.
m a les dimensions d'une longueur. On appelle cette longueur
le rayon de gravitation de la masse placee au centre du champ.

Les solutions (15) dues ä Schwarzschild 1 n'ont, du reste,
une signification que si l'on suppose r > 2m. Si, en partant de

cette limite, on fait crottre r, le potentiel f augmente et le

potentiel h2 diminue. Les deux potentiels tendent vers la limite
commune 1 pour r oo.

Cette supposition qui a ete faite pour determiner les

constantes d'integration devrait avoir une signification generale.
Dans ce cas, a une distance infmiment grande de toute matiere
les potentiels de gravitation devraient prendre les valeurs
galileennes:

Y i ^ ^
0 (1 i) a 1— 0 (ijtk) °4i — 1 ^ ' 044 '

1 K. Schwarzschild. Ber. d. Berl. Akad., 1916, p. 189.
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Si l'on cherche ä appliquer cette hypothese au monde stel-
laire tout entier, on se heurte ä un paradoxe assez grave.

Quoique la theorie de la relativite proclame en principe
l'equivalence de toute espece de Systeme de reference, les

conditions limites postulees pour les regions infiniment eloignees

permettent la distinction de certains systemes ayant une

importance particuliere, ceux pour lesquels les gik prennent ä

l'infini les valeurs galileennes.
Pour faire disparaltre cette difficulte, il faudrait introduire

dans la theorie des conditions limites qui ont le meme caractere
de covariance generale que les equations gravitationnelles elles-

memes, ou bien il faudrait pouvoir se passer de toute espece
de condition limite relative aux regions infiniment eloignees
de l'espace.

Dans un important memoire consacre au probleme cosmo-

logique Einstein 1 a montre que des conditions limites satis-

faisant au postulat de covariance ne peuvent pas etre prises
en consideration. Elles ne s'accorderaient pas avec les petites
vitesses stellaires observees par les astronomes. Pour echapper
ä l'obligation d'introduire des conditions limites quelconques
on peut se representer l'espace fini et entierement rempli de

matiere. Avant d'aborder cette idee il est necessaire d'examiner
le probleme de la repartition continue de la matiere dans une

portion limitee de l'espace.

IV. Champ de gravitation produit a l'interieur
d'une masse fluide.

Le probleme d'une repartition materielle de symetrie sphe-

rique oü les deux potentiels /- et h2 sont des fonctions d'une
seule variable r a ete egalement resolu par Schwarzschild 2.

En tout point d'un fluide incompressible homogene et
isotrope en repos les composantes mixtes T'k du tenseur materiel
ont les valeurs representees dans le tableau suivant:

1 A. Einstein. Kosmologische Betrachtungen zur allgem.
Relativitätstheorie. Ber. d. Berl. Akad., 1917, p. 142. « Das Relativitäts-

» prinzip »; ^i. 130.
v"

2 K. Schwarzschild. Ber. d. Berl. Akad. 18 (1916), p. 424.
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T' —J- I,

p 0 o i
^ 0

0 — p o o

0 0 — p 0

0 0 0

(16)

p signifie la pression statique regnant au point considere du
fluide. Cette pression est une fonction de la distance r. fi0 est

la densite invariable du fluide incompressible.
dx1

Designons par id les composantes de la direction

d'Univers (quadri-vitesse) d'un point materiel. Si du Systeme
de reference par rapport auquel la matiere est en repos nous

passons ä un Systeme de reference quelconque nous obtenons
les expressions suivantes pour les composantes covariantes
Tik du tenseur materiel:

— SaP + (ft + P) uiuk (16«)

Dans le probleme statique le vecteur de direction a une
seule composante telle que uiui 1. Le champ de gravitation
presentant la symetrie spherique est fonction de la seule

variable r et les seuls potentiels de gravitation differents de

zero sont: g44 /'- et g41 —A"2. Nous appliquerons toutefois
ici le meme mode de calcul que precedemment en utilisant des

coordonnees polaires et en posant:

Tu A2 :

y11 — ;T /d '

T22 — Ta;

y-1' zz: y3;

On obtient alors les expressions suivantes des composantes
covariantes et du scalaire du tenseur Tn:

TU ~ /'2ft : 'ril h'P ; T22 T33 ''P
'1' '!'• ft - •

Selon (1), (13) et (13a) les equations non homogenes du

champ de gravitation existant ä l'interieur du
alors la forme suivante:

fiuidi

Archivks, Vol. G. — Janvier-F<ivrier 19J'».

DE

L'UNIVERSITE

NEUCHATEL
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f h'f 2/"\ _ *
R" - J?\f" T +" ~) ~ ifl{^ + 3p]

^=-7+lj + Tr Th'l»>-ri } W
r ih' f'\ 1 /.

R22 R33 p [j — JJ — P + 1 J ''"(to — P)

Des deux premieres equations (17) on deduit:

t(j + kh) ZÄ2(^ + ^
Si l'on met la troisieme equation sous la forme:

2 (b! f<\. 1 2A2

r\h~T)~^ + ~rr ^ _ P)

on peut eliminer entre les deux dernieres equations la fonction
/•'

-j et on obtient alors l'equation differentielle:

+ 1 0

dont l'integrale est:

I XJJL.»'2 coust

h devant rester fini pour r 0, la oonstante d'integration
doit etre nulle et on trouve:

i 1 -^ |18>

La pression p du fluide doit etre une fonction de r satisfaisant

au principe de conservation exprime par les equations (6). Si

nous y substituons les valeurs:

- hfr* ; xi - p ; - i
nous obtenons, apres avoir simplifie l'expression, l'equation:

p' + ip + ft)) ^ 0

dont l'integrale est:

f(p + ft>) co,lsl •
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Supposons avec Schwarzschild que la masse fluide constitue

une sphere de rayon a et que la pression p0 ä la surface de la

sphere soit nulle. Puisque ä la surface l'expression constante

/ (p + prend la valeur /„ <u0 on doit avoir partout:

f(p — /ol^O •

Pour determiner les constantes /„ et hB, on admettra qu'ä la
surface, les solutions / et h se raccordent d'une facon continue
ä celles qui se rapportent au champ exterieur dans -le vide. Ce

champ etant defini par les equations (11) et (15), il vient:

fiP + iO % (19)

II reste alors uniquement ä calculer la fonction /.
Remplacons dans l'equation (17a) p>0 + p, qui signifie la

densite materielle totale en un point du fluide, par la valeur
tiree de (19). Eliminons-en encore r au moyen de l'equation (18),

nous obtenons:

-V _ W _ h'
3 — 2Ä0/* 3 — ^

L'integrale de cette equation est:

h(2h0f— 3) const

Puisque a la surface de la sphere les fonctions h0 et, /„ doivent

remplir la condition:

Kfo i

la constante d'integration prend la valeur h0 et on trouve:

' "W" (20)

La discussion de la formule (18) montre que le carre da

rayon de la sphere est necessairement

< —

car il est evident que h doit rester fini ä toute distance finie
du centre.
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Pour r a la condition de continuity imposee ä la solution

indique qu'on doit avoir en tout cas:

«
"l > 2 '

Pour 2m a le potentiel h2 deviendrait infiniment grand
ä la surface du fluide.

L'invariant quadratique de l'espace rempli de fluide est:

d>.j2 (dx1)2 -f- (dx2)2 -p (dx3)2 -f- l[xld.rl + x2 dx2 -)- a 3 dar3]2

Le coefficient l de cette expression a la valeur:

soit, selon (18),

/ /':i° —
3 A

Designons par A la valeur extreme du rayon a de la sphere
fluide correspondant a la supposition h0 oo. II vient, selon (18)

v/4' (21)

L'expression du coefficient I peut done etre mise sous la

forme:

I ,2
' -- 122)
— r-

et on a:
h2 1 + Ir2 --Ai-

„ (23)
— r-

Le carre de l'element lineaire de l'espace prend done la
forme normale bien connue:

da2 S(rf.P)2 + A2
(S.Prf.r1')2

qui est celle de l'invariant metrique d'une multiplicity homo-

gene spherique ou elliptique.
Pour se rendre compte d'une facon intuitive des proprietys

geometriques d'un pareil espace, il est utile d'introduire une
coordonnee supplementaire, et de considerer l'espace spherique
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comme une des multiplicites tri-dimensionnelles d'une multi-
plicite euclidienne ä 4 dimensions.

Soient xt, x.2, x3, z des eoordonnees cartesiennes rectangu-
laires. Posons:

- I

2 2 o\ + + .»s i"
et soit:

2
i

2
i > i"-(- A's + •*", + " —

l'equation d'une rnultipiicite tridimensionnelle spherique de

rayon A. II suffit d'etudier les proprietes metriques d'un des

« plans» meridiens de eet espace spherique. Nous poserons
done:

jrs 0

et nous obtenons l'equation du plan meridien sous la forme:

x\ + x\ +-J A> (24)

La geometrie de ce plan meridien est done la meme que celle
d'une sphere ordinaire de rayon A.

Supposons que le centre de la sphere fluide coincide avec
l'un des poles de la sphere euclidienne (xi 0; 0; z A).

Les equations (19) et (20) indiquent les valeurs de la pression

p ä toute distance r du centre. On trouve:

A __ A

(25)r — ' » Ah — h0
'

La sphere fluide ne recouvre qu'une calotte de la surface (24)
et on a necessairement a < A. La coordonnee supplementaire £

signifie la « hauteur » comptee ä partir de l'equateur de l'espace
spherique. Selon (23) on a:

h
A

; b„ -
et, par consequent,

P V-o 3. I25«)

Si l'on admet que h0 reste fini, la calotte recouverte de fluide
ne peut pas s'etendre jusqu'ä l'equateur parce qu'on a neces-
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sairement z0 > 0, mais en realite le fluide s'etendra bien moins
loin. II est, en o'Tet, indispensable que la condition

=0 > I (26)

soit respectee. Si l'on pouvait attribuer ä z0 toutes les valeurs
positives inferieures a A, le numerateur de la fraction (25a)
resterait toujours positif, le denominateur par contre changerait
de signe pour une certaine etendue r du fluide, qui d'ailleurs
pourrait etre aussi petite que l'on veut, pourvu que l'on suppose
z0 suffisamment petit.

Cette circonstance est inadmissible, parce que p doit rester
fini pour toute valeur de z superieure ä z0 et prendre la valeur
zero pour z z0. Pour exclure la possibility que p devienne
infini et change ensuite de signe, nous devons admettre l'ine-
galite (26). II en resulte pour le rayon a de la sphere fluide
la condition:

Nous avons vu plus haut que a doit, selon l'equation (18),
rester necessairement < A. La condition (26 a) est encore .un

pea plus restrictive car elle indique que a ne doit pas depasser
la limite 0,9427A.

V. Le principe de Mach et les equations cosmologiques
d'Einstein.

L'exemple qui vient d'etre traite met en evidence les diffi-
cultes auxquelles se heurte la theorie de la gravitation s'il
s'agit d'envisager de grandes etendues de l'espace remplies
de matiere.

D'autre part, des considerations statistiques, applicables aussi

bien ä la theorie d'Einstein qu'ä celle de Newton, conduisent

ä la conclusion que les astres, concentres 4 an instant donne

en une region limitee de l'espace, auraient la tendance de s'en

echapper et de se dissiper, ce qui semble etre en contradiction
avec l'existence du ciel etoile.
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L'objection la plus grave au point de vue epistemologique est

d'ailleurs celle qui vient d'etre signalee au chapitre III.
Einstein a donne ä cette objection la forme d'un principe, appele
« principe de Mach »1, qui peut etre enonce de la facon suivante:

Designons par Gu les composantes tensorielles qui, en vertu
des equations du champ de gravitation, doivent etre egalees

aux xTit. Le principe de Mach demande que la repartition de

la matiere ä eile seule, representee par les Tm, doit suffire ä

determiner completement et d'une fafon covariante le champ lensoriel

des Glic¬

he champ qui conduit la matiere, celui, par exemple, qui
maintient le plan des oscillations du pendule de Foucault ou

qui produit l'aplatissement d'une sphere fluide tournante, ne

peut etre du ä une cause Active telle que l'espace absolu de

Newton ou la condition limite imposee aux gu.
En particulier il faut demander que l'inertie d'un corps

soit entierement defmie par les masses qui l'entourent, de sorte

que cette inertie doit devenir nulle, si l'on eloigne toutes les

autres masses ä une distance infinie (Principe de la relativite
de l'inertie). Or, les conditions limites qui s'accord eraient avec
le principe de la relativite de l'inertie sont incompatibles avec
les faits astronomiques. Einstein est done arrive a la conclusion

suivante: La seule maniere de satisfaire au principe de Mach,
sans se heurter ä d'autres difficultes, est de supposer l'espace

fini, quoique sans bornes, et entierement rempli de matiere.
On remedie en meme temps au defaut de la theorie de la
gravitation de ne pas expliquer l'existence du Systeme stellaire.

Cependant, l'exemple traite au chapitre IV demontre que la
matiere ne peut etre repartie dans l'espace entier, jusqu'a la
limite de la plus grande distance qui est. superieure ä A, sous
forme d'un fluide continu. II est du reste facile de voir que la
supposition de n'importe quelle repartition materielle statique
est incompatible avec les equations (1) admises jusqu'ici. En
effet, dans un champ statique, la ligne d'Univers tracee par un
point materiel immobile, dont la direction d'Univers a la seule

composante ui (uini — 1), doit etre une geodesique.

1 A. Einstein. Ann. de Phys. 55 (1918), p. 241. Cf. aussi W.
Pauli, Relativitätstheorie, (Teubner), 1921.
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L'une des equations de cette geodesique est:

^ 0
d,s

II en resulte, selon l'equation generale des geodesiques (3)

que

ru o

La derniere des equations (10) entraine alors la consequence:

r ^!- o
t>x'

pour i 1, 2, 3, et on a par suite: / const. 1, en contradiction

avec la derniere des equations (11) qui fait dependre la
valeur variable de / de la repartition des masses.

Pour remedier ä cette contradiction il faut generaliser l'ex-
pression du tenseur Git. Si l'on ajoute au premier membre des

equations (1) le terme — Ä gik, oü X signifie une constante
universelle — la constante «cosmologique» d'Ein stein — les

equations de conservation du tenseur materiel Tt* restent
satisfaites identiquement. Le tenseur:

Gik Ri* - 2
R ~

est, « conservatif » au meme titre que le tenseur primitif
— -y ^lk IL et il remplit en meme temps tout.es les autres

conditions mathematiques qui, selon Einstein, doivent etre imposees

aux composantes tensorielles Gik S mais de plus les equations
du champ de gravitation completees par le terme cosmologique

sont compatibles avec des repartitions statiques de masses
immobiles dans un espace spherique ou elliptique.

1 Les composantes du tenseur en question doivent etre des fonc-
tions lineraires des derivees secondes des gik et ne dependre d'ail-
leurs que des gik ainsi que de leurs derivees premieres et secondes.

Ces conditions doivent etre remplies pour que la theorie se confonde
en premiere approximation avec Celle de l'attraction newtonienne
des masses.
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•En effet, les ncravelles equations du champ de gravitation
sont:

Rot — 2- Sik R - — -^ik (la)

Dans les conditions cosmiques oil la densite moyenne de la
matiere est extremement petite, on peut negliger les actions
mutuelles interieures et supposer, par consequent,

p 0

U vient alors, selon (16 a)

Tft 0 pour: i k — 1 2 3

La seule composante covariante du tenseur materiel differente
de zero est done:

II en resulte:
r44 fl'-O

T

Des equations (1 a) on deduit 1'equation scalaire:

R — i\ — -/.T

D'oü:

Ri* + Pik* ~ * Ti,

II vient done:

ik ") &ik

R J_ O- \ — y f2

,,T

Puisqu'on a, d'autre part:

R44 0 • Su — f'
on obtient la relation:

2A Xu» (27

Pour i, k 1, 2, 3 la condition: / const conduit ä la

consequence:

R« P,7, et : Vik - 2flkX 0
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2k
hr
2k'

Ed particulier on a, selon (13): PH -j—, et par consequent:

£ »
L'integrale de cette equation est:

1 — ~h-

puisque pour r — 0 on pose: h 1.

On trouve done:

h'2 (2U)
1 — t.r2

Selon (27) o'est la densite de la repartition materielle qui
determine la valeur de la constante cosmologique A.

En ce qui concerne le coefficient l de l'invariant quadra-
tique clff2 on trouve:

_ A- — i _
1

En comparant cette expression de I avec la formule (22).
donnant la valeur de ce coefficient pour un espace splierique
de rayon A, on reconnait que la solution consideree des equations

cosmologiques correspond ä l'idee suivante: L'espace est

spherique ou clliptique, et son rayon A est:

v/x- (28« i

On peut supposer que le champ de gravitation dans lequel
se trouvent les etoiles est statique, car les vitesses relatives de

ces corps sont petites en comparaison de la vitesse de la lu-
miere. Si, de plus, la repartition des etoiles est ä peu pres
homogene, l'espace doit etre spherique ou elliptique, done fini.
Dans ces conditions le potentiel de gravitation presente une
valeur constante partout. II n'existe. dans le cas considere,

aucun centre de la repartition materielle; la grandeur r signifie
done la distance comptee a. partir d'un point quelconque de

l'espace. Concernant r on peut se poser la question suivante:
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Quelle est la distance entre un point quelconque et les points
les plus eloignes de l'espace spherique L'analysis situs conduit
ä la distinction des deux cas suivants:

1° L'espace est spherique cela veut, dire que, s'il est represents

dans une multiplicite quadridimensionnelle' euclidienne,
deux points distincts correspondent aux points diametralement
opposes dont les coordonnees sont respectivement x,. x3, x,,
«4 et —xi, —x3, —x3, —x4. La plus grande distance est dans
ce cas jtA, et le point le plus eloigne d'un point donne est le

pöle diametralement oppose.
2° On peut aussi supposer que dans l'espace reel chaque

point et le point, diametralement oppose soient confondus. Les

points les plus eloignes de l'origine seraient alors ceux de la

plus grande sphere de l'espace, distants de l'origine de --. Un

pareil espace est appele elliptique.
Suivant le cas realise, le volume de l'espace serait 2^2A3 ou

jr2AJ et la masse totale qu'il contient serait:

M 2j;2A";j.(| ou M t:2A3u.0

Les equations (28) et (28 a) conduisent alors, suivant que 1'on

adopte l'une ou l'autre des deux conceptions, aux resulta+s1:

4-2
•/. M (espace spherique)

V X

ou:
2-2

xM =: (espaee elliplique)

De toute facon la constante cosmologique A et par suite le

rayon A de l'espace, sont determines par la masse totale des

corps contenus dans l'espace. Le principe de Mach, selon lequel
le champ de gravitation dans lequel se trouvent les etoiles,
doit etre determine par la masse du monde entier, est done

satisfait. La masse M est sans doute enorme. A est, par conse •

quent, d'une grandeur deconcertante qui semble etre de l'ordre
de 107 annees de lumiere. Pratiquement cela equivaut ä une

1 Cf. J. Becquerel. Le principe de relativite et la theorie de la
gravitation. Gauthier-Villars. 1922. A. S. Eddington. Espace,
Temps et Gravitation. J. Hermann. 1921. H. Weyl, I. c.
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grandeur inflnie. La eonstante Ä est de l'ordre de 10~5l; en
prenant comme unite de longueur le cm.

Les conclusions resultant des equations primitives d'Einstein
subsistent par consequent entierement, si Ton se borne ä consi-
derer une portion limitee de l'espace, et aucun argument tire
de la theorie de la gravitation elle-meme ne peut etre opposee
ä la theorie cosmologique d'Einstein.

II he faudrait cependant pas croire que cette conception soit
ä l'abri de toutes les difficultes.

L'objection suivante se presente immediatement ä 1'esprit:
On a bien sauve la relativite de l'espace, mais en sacrifiant en

quelque sorte la relativite du temps. Les generatrices recti-
lignes de 1'Univers cylindrique d'Einstein definissent, en effet,
un temps universel. Etant donnees les faibles vitesses relatives
des astres, les temps mesures dans les differents systemes
stellaires sont tres voisins les uns des autres. II existe done un
certain temps moyen qui est le temps de l'espace statique
theorique oü toute la matiere serait en repos. Une theorie
relativiste parfaite ne devrait-elle pas nier l'existence d'une

horloge privilegiee. de meme qu'elle nie le Systeme de reference

spatial privilegie
On pourrait repondre que dans certaines regions du Cosmos,

k l'interieur des etoiles par exemple dont la temperature est

tres elevee, peuvent exister des conditions oü la vitesse de la
matiere est plus ou moins rapprochee de celle de la lumiere.
Dans ce cas le principe de la relativite du temps rep rend pleine-
ment son role. II n'en est pas moins vrai que les horloges locales

n'ont pas la meme importance que l'horloge cosmique, et la

supposition d'une pareille horloge nuit k l'harmonie et ä la
beaute de la theorie.

Plus serieuses encore que cette objection de principe sont
certaines difficultes qui se presentent, lorsqu'on compare les

consequences de la theorie avec les faits observes. Dans l'Uni-
vers cylindrique les geodesiques de longueur nulle sont des

helices decrites sur la surface quadridimensionnelle du cylindre.
Les espaces coniques constitues par les geodesiques issues du

meme point doivent par consequent se contracter periodique-
ment en un seul point d'Univers, chaque fois que les rayons
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ont acheve un demi-tour. En d'autres termes, il existerait des

« anti-soleils » et des « anti-etoiles » qui seraient les images du
soleil et. des etoiles, produites au point diametralement oppose
de l'espace. A supposer que ces images, par suite de la deviation

et de Fabsorption de la lumiere sur son enorme parcours,
seraient trop faibles et trop pen nettes pour etre apercues, il
devrait en resulter cependant un eclairement diffus du ciel qui
n'a jamais ete remarque. Enfm, dans l'espace ferme il devrait
s'etablir un equilibre mobile du ravonnement, de meme qu'il
se produit dans une enceinte creuse ä parois reflechissantes.

On peut, il est. vrai, ecarter toutes ces difficultes en supposant
l'espace elliptique. L'anti-point coincide alors avec l'origine, et.

les rayons ne reviendraient jamais ä leur point de depart;
mais il faut alors se demander ce qu'il advient de toute cet.te

energie rayonnante qui s'en va. La supposition de l'espace

elliptique est du reste, a d'autres egards aussi, moins satis-
faisante que celle de l'espace spherique.

Aucune des objections qui viennent d'etre formulees n'est
d'ailleurs peremptoire, et la tbeorie cosmologique d'Einstein
s'imposeraiL semble-t-il, s'il etait prouve que le monde stellaire
est vraiment en equilibre statique. Mais ce fait meme n'est pas
certain. II se peut que la repartition des astres soit seulement

en apparence une repartition d'equilibre. Peut-etre v a-t-il
effectivement tendance vers une dissipation generale des corps.
Si l'espace qui nous entoure est rempli d'etoiles, cela tient
peut-etre ä ce que la dispersion des astres n'a pas encore pu
se produire vu l'äge peu avance des svstemes stellaires que
nous observons.

Notre experience trop restreinte dans l'espace et dans le

temps ne nous permet pas de trancber ces questions qui ont
une importance fondamentale pour le probleme cosmologique.

VI. LA THEORIE COSMOLOGIQUE DE DE SlTTER.

Etant donnees les difficultes qui resultent de la conception
de l'Univers cvlindrique, il est interessant d'envisager une
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seconde solution des equations cosmologiques d'Einstein qui a

ete donnee par De Sitter 1.

Cette solution, basee sur la supposition:

T£a- 0 ti, k 1, 2. 3, i)
est:

f,2 \
f* 1 — /

A" V' (29)

ds2 fdt2 — rfcr2

Pour trouver la solution de De Sitter il suflit de deduire
des equations:

Ri<t OI7,-R Sib'' 0

par contraction l'equation scalaire:

— R — 4X 0 (30)

Le probleme se ramene alors ä l'integration des equations:

R41 + 044'' 0

Rn + nil'' 0

bog 322 ^ 0

Si l'on pose:

Sn ~ f2 ' on =— h' ; g'gg — i"

les expressions (13) et (13 a) des conduisent aux formules
suivantes:

f" f' Ii' 2 f'I UL + - L + h"-\ — 0
f fk ^ rf^
f" f h' 2 A'

~ f + JiT + 7Ä ~ h'A ~ °

*' /' 1 h2
- 1 A2 r A 0
h f r v

1 De Sitter. On the relativity of inertia. Versl. d. Akad. Amsterdam,

19 (1917), p. 1217. On the curvature of space, ibid. 20 (1918),
p. 229. On Einstein's theory of gravitation and its astronomical
consequences. Monthly Notices. R. Astronom. Soc. London. Nov.
1917, p. 3. '
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Des deux premieres equations on tire:

D'oü:
fh 1 (31)

En eliminant de la troisieme equation la fonction — on obtient:

L'integrale de cette equation est:

II en resulte que l'Univers de De Sitter est une multiplicity
homogene de «rayon»:

Plus simplement on aurait pu trouver ce resultat selon

l'equation (30) en remarquant que l'invariant de courbure d'une
multiplicity homogene de 4 dimensions est:

De (31), (32), (33) on deduit encore:

et on retrouve ainsi l'expression (29) du ds- qui indique que la

multiplicity de De Sitter est pseudo-spherique. Si l'on considere

trois de ses dimensions comme positives, la quatrieme est

negative.
Pour nous rendre compte des proprietes metriques de cet

Univers, introduisons une coordonnee supplementaire et consi-
derons le ds comme l'element d'arc d'un hyperboloide ä 4

dimensions dans une multiplicity semi-euclidienne de 5 dimensions,

dont l'une est negative. L'hyperboloide est represente

(33)
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par ^equation:

x\ + j't + x\ + ./ — x] — A." (34)

et le carre de 1'element d'arc est:

— ds2 — dx' + dx' 4- dx + dx — dx.
1

1 2 3 ' 4 5

Etant donnee la symetrie spherique de cette multiplicite il
suffit d'etudier les conditions geometriques existant dans une
section chrono-spatiale qui comprend la dimension negative.
On peut done, suivant l'exemple de H. Wevl1, supprimer deux
des dimensions positives.

L'equation:
z

i
a 2 »•>x + x — x ~ A"

1
1

2 5

represente alors un hyperboloide de revolution ordinaire.
En faisant tourner deux des axes de l'hyperboloide autour

du troisieme axe, en designant les nouvelles coordonnees par
.t,, x.2, x3 et en posant A 1, on obtient l'equation de l'hyperboloide

sous la forme:

2J,/, + x\ 1 (35)

Le ds'2 correspondant ä cette nouvelleforme de l'equation est:

— ds2 — 2dxj dx2 -f- dx. (35a)

L'une des equations caracterisant les geodesiques de longueur
nulle est done:

2^1^ + 1 0
dxs ax.A

Puisque d'autre part toutes les geodesiques de l'hyperboloide

sont situees dans des plans qui passent par le centre
de l'hyperboloide on a une seconde equation de la forme:

c1dxl -f- c^dx., czdx? 0

ct, c2, c., signifiant des coefficients constants; et on voit que

et 'cfx ont c'es va^eurs constantes pour une geodesique

1 H. Weyl. Phys. Zeitschr. 24 (1923), p. 230 et I. c.
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determinee. Dans l'Univers quadridimensionnel ces lignes sont
done des droites. Selon (35) et (35a) deux de ces droites qui se

coupent en un point determine de la multiplicite satisfont

aux equations:

_£i_ ± et -*L_ ± (36)
x3 + 1 dx3 .r.j — 1 ax.,

Les equations (36) representent les intersections de l'espace
conique de la propagation de la lumiere avec la section consi-

deree de la multiplicite de De Sitter.
Les geodesiques des points materiels immobiles sont des

hyperboles. Considerons un observateur lie ä l'un de ces points,
en relation, grace ä la propagation de la lumiere, avec toute
la portion de l'hyperboloide qui est limitee par l'une des moities
du cone de lumiere. Supposons que, dans notre section tri-
dimensionnelle, le point d'Univers caracterisant la position de

1'observateur se trouve sur l'une des hyperboles a*3 0 dont

1'equation est:
2xt xt — I

La position actuelle de 1'observateur sur l'hyperbole L, qui
est sa « ligne d'Univers», soit representee par le sommet O de

l'hyperbole correspondantaux valeurs negatives des coordonnees

a, et x2.
Posons done:

l— a ; xs — — (37)

Une geodesique de longueur nulle passant par le point
d'Univers 0 est definie, selon (36), par les conditions:

« • (©. -' (S.= i;
En designant par g, |3 les coordonnees courantes de cette

droite, nous avons:

5, -«(?, +H ^(E,-l) (38)

Une etoile qui se trouve dans l'espace ä une certaine distance r
de 1'observateur decrit une ligne d'Univers A qui est egale-
ment une hyperbole. Supposons que la ligne A appartienne
au plan diametral

PS, • (39)

Archives. Vol. 6. — Janvier-Fevrier 1924. 3
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L'une des droites (36) joint la position actuelle de l'obser-
vateur O ä un point determine de la ligne A. Nous pouvons
done comparer la duree de la perception ds d'un evenement

par l'observateur 0, avec la duree propre ds' de l'evenement

qui a eu lieu sur l'etoile au moment de remission de la lu-
niiere. On deduit en effet des equations (37):

— ds2 Idx. dx„ — —1 i a2

et des equations (38) et (39):

Le rapport de ces deux durees est:

V + •?•

La distance r entre l'observateur et l'etoile peut etre trouvee
tres simplement ä l'aide de la construction suivante:

Soit C le centre de l'hyperbololde. Joignons le sommet 0
de l'hyperbole L avec le centre G par le segment CO qui est la
moitie du plus petit diametre de l'hyperbole. Dans le plan
defini par ce diametre et par l'axe des x3, qui est perpendicu-
laire au plan de l'hyperbole, nous tra^ons un cercle de rayon
CO 1. Ce cercle coupe la ligne d'Univers A de l'etoile au
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point marque M. La longueur CM etant 1, on voit que la
projection de CM sur l'axe des x3 est:

NM sin r

Projetant d'autre part CM sur le diametre CO de l'hyper-
bole on obtient:

CN cos r
La droite CO formant avec l'axe des xt un angle de 45°

dont le cosinus est:
1 _

y 2~
—

la position du point M est caracterisee par les coordonnees:

z: a cos r E2 — sin r

liees l'une ä l'autre par l'equation (39), qui definit le plan de

l'hyperbole A. On trouve done:

tg r a£

et, par consequent, selon (40):

£=1 + .S,. |iO«,

Si nous retablissons, pour designer le rayon de l'Univers, le

symbole A au lieu de 1, nous obtenons, ä la place de (40a)
la formule:

£ + *£. (40.)

U est peut-etre utile d'ajouter a ces considerations deux

remarques:
Notons d'abord que l'observateur ne peut etre en relation

avec 1'etoile, par la propagation de la lumiere, que si la ligne A
est situee sur l'une des moities de la surface de l'byperboloide,
et que, de toute fagon, le point M doit se trouver du meme c6te
de l'axe des x3 que le sommet 0.

II en resulte que l'angle doit etre compris entre les limites

0 etf dans une direction quelconque de l'espace autour du

point 0.
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D'autre part, la formule (40 b). exprimant le rapport entre
les indications de deux horloges installees dans deux points
d'Univers differents, montre que dans l'Univers de De Sitter le

temps statique est en realite une fonction de la distance r. En
ce qui concerne l'Univers dans son ensemble cette solution est

statique seulement en apparence, car on peut, au moyen de la
formule (40 b), etablir une relation entre les coordonnees r et

t d'un point de l'espace et considerer / comme une fonction
de t, au lieu de r.

Mais le fait le plus important est le suivant: Les equations
cosmologiques d'Einstein ont une solution compatible avec

l'hypothese d'un espace vide de matiere, done une solution

qui est en contradiction avec le principe de Mach.
En utilisant l'expression (35 a) de l'invariant quadratique et

en y eliminant dx3 au moyen de l'equation de l'hvperboloide
on obtient la forme quadratique suivante des differentielles
dxt et dx„:

2 ° t — x, a-, fx,\-, 2
ds2 — — " r/.r, — 2 —1—- dxt dx„ — —1 dx,

Si dans cette formule on pose: x3 ± 00 on passe aux limites
extremes de la portion de l'hyperbololde qui, par suite de la

propagation de la lumiere, est en relation avec un point d'Univers

determine. Dans ces points «les plus eloignes » de l'espace

pour lesquels r on a:

Sik — 0

Cette consequence, comme le fait observer J. Recquerel1,
est tres satisfaisante. Quoique l'espace de De Sitter soit sphe-

rique, i! se comporte comme un espace elliptique, puisque aux
t.PL

limites r la vitesse de la lumiere devient nulle; aussi

l'existence des anti-soleils et des anti-etoiles est-elle exclue

par la structure hyperbolique de l'Univers.
II n'en est pas moins vrai que cette conception est en contradiction

avec le principe de Mach postule par Einstein 2. Si

1 J. Becquerel, I. c.
2 A. Einstein, I. c.
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nous plac.oris dans l'Univers de De Sitter, completement vide
de matiere, un seul corps, celui-ci se trouvera soumis au champ
metrique de la multiplicity qui provient ici uniquement de la
constante cosmologique A; mais il n'y a plus de relation entre
cette constante et un contenu materiel quelconque de l'espace.

Cette contradiction est-elle irremediable Je ne puis le

croire.

La solution de De Sitter prouve en tout cas cette propriety
importante des equations cosmologiques de garantir l'existence
d'un espace ferme, meme si Ta- 0. La presence de la matiere
aurait alors pour effet de modifier la courbure primordiale, et,
de meme que dans la theorie primitive de Newton, il y aurait
deux causes differentes, dont l'une geometrique, l'autre materielle,

produisant des effets analogues.
Si l'on veut echapper a cette consequence difiicilement

conciliable avec l'idee fondamentale de la relativite, il ne

reste qu'un moyen: il faut supposer que la constante cosmologique

A n'est pas une grandeur de meme nature que les gn-

et les Hi/;. II n'est pas dit que la courbure ne puisse pas etre

un effet de la matiere, meme si, par hypothese, on a exclu la
matiere de l'espace. II ne faut pas oublier, en effet, que la

theorie de De Sitter moins encore que celle d'Einstein, ne peut
pretendre ä etre une theorie complete. Dans la theorie d'Einstein
on fait abstraction seulement du mouvement de la matiere,
dans celle de De Sitter on fait abstraction de la matiere
ehernem e.

La constante cosmologique A n'est done pas necessairement,
si l'on adopte la theorie de De Sitter, une simple grandeur
geometrique. Elle doit avoir une signification qui est en relation

avec la matiere, mais cette relation elle-meme est peut-
etre inaccessible aux theories actuelles.

Peut-etre est-ce trop de demander ä la theorie de la relativite
qu'elle fournisse ä eile seule non seulement les lois de la
gravitation qui determinent les courbures locales, mais aussi la
raison profonde de la courbure generale qui, dans la theorie de

De Sitter, n'est pas mise en relation avec la matiere presente.
L'observation pourrait, en principe, trancher entre les

theories de l'Univers cylindrique et hyperbolique. En effet, si
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nous appliquons les considerations donnees ä la fin du chapitre
II aux relations interieures de l'Univers hyperbolique, expri-
mees par la formule (40 b), nous constatons qu'une raie du

spectre d'une etoile doit etre deplacee vers le rouge vis-ä-vis
de la raie terrestre correspondante, et cela d'autant plus que
l'etoile est plus eloignee de la Terre.

Soit A0 la longueur d'onde correspondant ä la periode ds

observee sur la Terre, la longueur d'onde de la meme raie pro-
duite par une source terrestre, on a.:

Or il semble, selon les cbiffres cites par J. Becquerel1, que les

nebuleuses spirales les plus eloignees qui ont ete observees

fournissent, pour la plupart, des raies spectrales deplacees vers
le rouge. Dans deux cas ce displacement est meme tres
considerable.

Les donnees actuelles sont du reste trop incertaines, en ce

qui concerne les distances et les mouvements de ces corps,
pour qu'on puisse arriver ä une conclusion precise.

Comme nous venons de le voir, la theorie de la relativite
generale a apporte des idees nouvelles permettant d'aborder
d'un nouveau point de vue le probleme astronomique de la
structure du Cosmos. Elle a permis de formuler avec precision
des questions qui anterieurement n'ont pu etre posees que d'une
fa<jon tres vague. Si eile ne conduit pas ä une solution du pro-
bleme entierement satisfaisante, elle a tout au moins limite le
nombre des reponses possibles, et elle indique de plus un moyen
permettant de trancher, par l'observation, entre les theories

qui semblent le mieux repondre aux connaissances actuelle-
ment acquises.

X0 ds
X, ~ d?

ds r
dP ~ + tg Ä '

D'oü:
(41)

1 J. Becquerel, I. c.


	Les solutions cosmologiques des équations du champ de gravitation

