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1924 ' Vol. 6 Janvier-Février.

LES SOLUTIONS COSMOLOGIQUES

DES

EQUATIONS DU CHAMP DE GRAVITATION

PAR

A, SCHIDLOF
(Avec 1 fig.).

I. PRELIMINAIRES.

Les équations tensorielles covariantes du champ de gravi-
tation ont été établies par Einstein* d’abord sous la forme
suivante:

1 - :
Ry = "'(Tik — 3 8k 1) (1)

Les Rir sont les composantes d’un tenseur symétrique du
deuxiéme rang obtenu par contraction & partir du tenseur
de courbure du quatriéme rang de Riemann-Christoffel. Ce
sont des fonctions connues des composantes gi du tenseur
métrique de la multiplicité, ainsi que des dérivées premiéres
et secondes des giz.

Les Ti sont les composantes covariantes du tensear matériel,
tenseur symétrique, dont les 10 composantes ont la signifi-
cation de I’énergie et de la quantité de mouvement attachées
au point d’Univers considéré. T = T, signifie I'invariant du
tenseur matériel, et x la constante de la gravitation universelle
- de Newton-Einstein.

" A. EINsTEIN. Ber. d. Berl. Akad. 1915, p. 844.
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Les solutions des équations (1) ont la forme t:
ds? — gﬁcdxidxk fiy Be= 1y 2 B, ) (2)

oi do’. dz* signifient les accroissements des quatre coordonnées
d’un point d’Univers. ds® est I'invariant caractérisant la lon-
gueur de I'élément d’arc d’une ligne géodésique décrite, par
exemple, dans la multiplicité considérée, par un point matériel
libre.

Les équations différentielles d’une géodésique sont:

d?a’ ; dxt dav .
it Tlwgy s =0 (3

. dxt g 5 . ;

ol —— = u’ signifient les composantes de la «direction » ou
quadrivitesse du point matériel en question. Les I'y, dépendent
du systéme de référence choisi et jouent, selon Einstein, le
role des composantes du champ de gravitation. Ce sont des
fonctions linéraires des gix et de leurs dérivées:

i Lo 08 kp L 08k,  O3p,
# _ 2° 2’ ot dack

Les g* sont les composantes contre-variantes du tenseur
métrique. Le tenseur contracté Ru: s’exprime au moyen des

i PR =
I'u, et de leurs dérivées de ls facon suivante *:

Ny R S SN
R . oI ik F‘J wal 0° IOg‘ V"— 8. + FU 0 jog V—_ -1 (:.)
2 vy o ik ky T T ik ik v 3
ox dx” o _ ox
ou:
8§ = l8u,l

1 Suivant I'usage on supprime le symbole X correspondant a
I’opération de la contraction (fusion des indices co- et contre-
variants).

2 Cf. A. EinsTeIN. Die Grundlage der allgem. Relativitatstheorie
Ann. de Phys. 49 (1916), p. 769. Réimprimé dans le recueil « Das
Relativititsprinzip », 3me édit., Teubner 1920. Les grandeurs dé- -
signées ici par 1‘%,_,) sont les composantes du champ de gravitation
d’Einstein changées de signe.
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signifie le déterminant des composantes covariantes du tenseur
métrique. )

Supposons données les composantes T:x en un point P de
la multiplicité, alors les 10 équations (1) du champ de gravi-
tation fournissent les valeurs des 10 «potentiels de gravi-
tation » gix. Les gix interviennent de plus dans les 4 équations,
exprimant les principes de conservation de I'énergie et de la.
quantité de mouvement. qai, dans la théorie de la relativité
générale, ont la forme:

bxi 2 dxk

oTE Y/ — ¢ g,
_LI\_/_._D__lT-U'V z."LU‘\/—g:O, (6)

Les Tir étant données non seulement en P mais aussi ea tous
les points voisins de espace-temps, on aurait ainsi 14 équations
déterminant les gix, donc quatre de trop. En réalité, la forme
des équations (1) a été déterminée, précisément, par la condi-
tion de satisfaire identiquement, pour n’'importe quelle répar-
tition de la matiére, aux équations de conservation. Tl en résulte
que six seulement parmi les 10 équations (1) dépendent effec-
tivement de la répartition matérielle. Parmi les dix compo-
santes gi quatre restent, par conséquent, indéterminées.

Cette indétermination est d’ailleurs une conséquence essen-
tielle du priacipe de la relativité, qui exige la liberté du choix
du systéme de référence. .

On peut toujours introduire, en tout point de la multiplicité
quadridimensionnelle, un systéme de référence tel que l'in-
variant quadratique (2) prenne la forme:

ds® = f2di® — ds? . (7

\
]

L’élément linéaire ds est ainsi décomposé |en un élément
spatial do et encun temps df perpendiculaire 41'élément spatial.
Gréce au choix particulier du systéme de référence on a alors:

S = 8y =0 i=1,2 3.

Puisque de plus on doit choisir conventionnellement I'une
des unités, le nombre des inconnues est ramené & 6 et corres-
pond au nombre des équations indépendantes.

Selon la théorie de la relativité restreinte la propagamon de
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la lumiére a lieu suivant les géodésiques de longueur nulle.
Il résulte donc de (7) que:

d q
f=" (8)

est la vitesse de propagation de la lumiére dans le voisinage
du point P de la multiplicité. Le potentiel de gravitation g,,=f?
est en général une fonction du temps ¢ et des coordonnées
spatiales z' x* x°.

II. SOLUTIONS STATIQUES DES EQUATIONS D’EINSTEIN.

Un champ de gravitation est statique si les potentiels de
gravitation gix sont indépendants du temps i. Nous poserons
dans ce cas:

ds? = 'yikdxidxk (t, k=1, 2, 3), (9

de* signifiant l'invariant quadratique de l'espace tri-dimen-
sionnel. Les y;x ainsi que f sont alors fonctions des coordonnées
spatiales seules, et les équations (1) fournissent d’une part la
métrique de I'espace, les yi, et d’autre part le champ scalaire
de la fonction f (vitesse de la lumiére) dans 1’espace.

- En utilisant, a quelques modifications insignifiantes prés,
les symboles adoptés par H. Weyl dans son traité classique *
nous marquerons par un astérisque placé & droite du symbole
I;, celles des composantes du champ de gravitation qui ont
un caractére purement spatial:

Fg = ¥, pour : L, kov=1,23.

Les symboles astérisqués se rapportent done exclusivement
a l'invariant ternaire de.

On démontre facilement que, tous les gi: étapnt indépendants
du temps ?, on a les relations:

ik I, =0; 1‘,’:,+=02
=l rh=g 00
t, k=1, 2,3

' H WEeYL. Raum — Zeit — Materie. 5me édit., 1923, § 31
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Les f; signifiant les dérivées de f ‘par rapport aux z‘ sont les -
composantes covariantes du gradient tridimensionnel de la
fonction scalaire f. Les

') — Yikfk

sont les composantes contre-variantes correspondantes.
Désignons par y le déterminant des yix. On a selon (7) et (9)

V—g=1rVy .

Les produits f'}/7 ont la signification d’une densité vec-
torielle, celle du champ scalaire de la fonction f. Les régles
de I'analyse tensorielle! fournissent les expressions de la
dérivée co-variante f; du gradient f; et de la divergence de la
densité vectorielle f/\/y qui soit désignée par le symbole Af:

of; * o2 f « of
fip e T, L P (i, b, v=1, 2, 3)
T et ik Iy o ox’ *oa? (
;-
af= L AVY
VT da’

Ces formules permettent d’établir les relations suivantes
entre les composantes Ri; et P; des tenseurs de Riemann-
Christoffel contractés se rapportant respectivement aux in-
variants ds* et deo®:

fik
a = Py — 7
(11
= Ry =0 &4
Ruzfﬁf. /

Dans le cas statique, si I'on fait abstraction des tensions
s’exercant entre les éléments de la matiére, les composantes
covariantes du tenseur matériel sont nulles & la seule excep-
tion de la composante:

Ty = gup = pf?
# étant une fonction scalaire des variables spatiales signi-

fiant la densité de la matiére. L’équation qui détermine la

A. EiNsTEIN, L ¢ ).
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- fonction f prend alors la forme

Af
+ =

On peut au moyen de cette équation montrer que la solution
statique des équations d’Einstein conduit & la théorie bien
connue du potentiel newtonien.

Nous nous bornerons ici a signaler une seule des conséquences
tirées par Einstein de sa théorie de la gravitation, conséquence
résultant immédiatement de la forme (7) de la solution statique
et de la relation qui existe, selon la théorie de la relativité
restreinte, entre la mesure du temps et la vitesse de propaga-
tion f de la lumiére.

Supposons qu’une source de lumiére monochromatique, un
atome émettant une raie spectrale, soit en repos dans un champ
de gravitation statique en un point ol la fonction scalaire f
présente la valeur f,. ds signifie la « durée propre » de la période
optique de la lumiére émise. I’atome étant, par hypothése,
en repos on a: de = 0, et par conséquent:

ru .

bo| —-

ds = f,dt,

dt, signifie la durée de la période du phénoméne optique,
mesurée en unités de temps d’un systéme de référence local,
en un point quelconque de la multiplicité quadridimension-
nelle. I’observateur qui utilise ce systéme de référence peut
comparer la durée

__ds
‘TR
avec la durée dif, de la période du méme phénomeéne optique
produit par un atome identique au premier mais placé dans
une autre région de 'espace ou la fonction f a la valeur f,.
A cause de la signification invariante du ds? la durée propre
de la période optique est la méme pour les deux atomes iden-
tiques; il en résulte que la période observée, qui pour le second
atome est

dt

_ds

dtz_?;

présente une valeur différente de dt, si f, = f,.
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Puisque en physique on caractérige les raies spectrales par
leurs longueurs d’onde, nous introduirons & la place des périodes
dt, et dt, les longueurs d’onde 2, et 4,, proportionnelles, & I'en-
droit ou les raies sont observées simultanément, aux périodes
dt, et di,.

On trouve alors:

W _h
T A

Si la premiére raie spectrale a été produite au Soleil ou sur
une étoile, la seconde sur la Terre, on a f, < f, et, par consé-
quent 4, > 4,. Le phénoméne en question, signalé pour la
premiére fois par Einstein, et formant depuis lors le sujet d'un
nombre considérable de recherches exécutées suivant les
méthodes les plus perfectionnées, est, au point de vue spectros-
copique, un déplacement vers le rouge de la raie, d’autant plus
considérable que 'intensité du champ de gravitation est plus
grande. '

On peut calculer I'effet au moyen de la formule:

2‘1_)‘2_1{-2_701

A I

Malheureusement, dans le cas du champ de gravitation
solaire l'effet en question est extrémement faible. De plus,
d’autres causes multiples produisent des déplacements dans le
méme sens ou en sens contraire bien plus considérables. Il
n’est donc pas étonnant que les recherches spectro-héliosco-
piques, quoique poussées avec une persévérance et une ingé-
niosité admirables n’aient pas encore abouti & un résultat
déecisif 1.

>

11I. CHAMP DE GRAVITATION ENTOURANT UN CENTRE MATERIEL.

Considérons maintenant un champ de gravitation qui par
rapport & un point donné de l'espace présente une symétrie
sphérique. Les potentiels de gravitation, f* et y;x ne dépendent

L Cf. F. CrozE, Ann. de physique, t. 19, 1923, p. 93.
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alors que de la distance r entre le centre O et le point considéré,
et 'invariant de® prend la forme:

de® = k[(dx')? 4 (dx?)? + dx®)?] + l[x'dx’ + x?dx? 4 x3dx?)?

ou k et I sont des fonctions de r seul.

Etant donnée la « fluidité » du systéme de référence de la
théorie de la relativité générale, on peut, par une déformation
appropriée de la coordonnée r, rendre égal a 1 I'un des deux
coefficients & et [. Posons donc:

kA= 1.
Puisqu’on a:
(xl)ﬂ + (xﬂ)ﬂ + (..r3)2 —_— 7'2 .
Il vient: _
xldx! 4+ x?dx? + x*dx® = rdr

et par conséquent:
do® = (dx')? + (dx?)? 4 (dx%)? + lr2dr? .

Introduisons a la place des coordonnées cartésiennes z' x* z°
des coordonnées polaires r, &, ¢. On a dans ce cas:

(dx')? 4+ (dx?)? 4 (dx?)? = dr? 4+ r?d3® 4 r?sin’?3d¢? ,

et si nous posons:
1 4+ Irf = k%,
il vient:
da® = h%®dr? 4+ r2d3? 4 risin? Sdg? . (12)

I1 s’agit de trouver I’expression de % en fonction de la varia-
ble r. Dans ce but, pour pouvoir appliquer & I'expression (12)
les méthodes usuelles de I’analyse tensorielle, nous voulons
considérer r, 4 et ¢ comme des coordonnées de Gauss caracté-
risant les points d’une multiplicité 4 3 dimensions. Les coeffi-
cients /?, r* et r*sin* jouent alors, mais d’une facon purement
formelle, le role des composantes du tenseur métrique yu
représentées par le tableau suivant:
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Gréce a sa symétrie sphérique le champ varie de la méme
fagon dans n’importe quel plan passant par le centre. Il suffit
donc d’effectuer le calcul pour un seul de ces plans, défini par
la condition particuliére:

S = l;- 2 sing =1 .
Posons:
Y =T A]; yw =Wy ng =2ty = Psindd,

On en déduit:

1

- r2’ T = 2in? s -

En calculant selon (4) les composantes I';, on n’en trouve
que 10 dont les valeurs différent de zéro. En représentant par
le symbole A’ la dérivée de A par rapport a la variable r, on
obtient les expressions suivantes: '

R in? 3
1 .
[‘f::I‘i;l:-——?; I3 = cig 9 ; | I3 = — sinJcos 5 .

. Le déterminant des y; est:
Y = h?rtsin?$ .

Selon la théorie générale on utilisera pour le calcul des Pu
la formule (5). Il suffit d’y munir d’un astérisque les symboles
I, et d’y remplacer |/ —g par |y . Aprés avoir effectué les
dérivations par rapport a r et par rapport a <, indiquées dans
cette formule, il faut dans toutes les expressions remplacer
les fonctions trigonométriques de J par les valeurs qu’elles

r ™
prennent [pour J = 3 N
Ce calcul fait, on trouve, selon (11), les expressions suivantes

des composantes R,,, R,,, R,; du tenseur contracté de Rie-
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mann-Christoffel:

R _ P . f—il _I— hlf’ . 2hl . f" hrf’

A A T T A
N T
R, = R,

f':g; f":j—;r.

Dans le cas présent ou f est uniquement fonction de r et
ou: ¥y = h*r* on trouve pour Af I'expression suivante:
f" r'fhf Qfl

Af:ﬁ_ h3 +rh2 ’

La troisiéme des équations (11) donne par conséquent:
-hl ’ 2 ’
R, = h—’:(f" — Tf + Tf) : (13a)

Pour trouver les fonctions f et £ il suffit d’intégrer les équa-
tions R,, = 0 et R,, = 0. La seconde de ces équations peut
s’écrire, selon (13 a):

f;}t L klfl
r &

2f"

. F = 0.
tandis que la premiére est, selon (13):
hffl 2h’ L

if + = =0.

rh
2/h' "\ _
H(F+5) =0

équation dont l'intégrale est:

. f"

Lo

Il en résulte:

fh = const .

Si 'on admet qu’a une distance infiniment grande du centre
les deux fonctions f et & tendent vers 1, la constante d’inté-
gration prend la valeur 1. Nous pouvons alors, en posant

fh=1 (14)
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éliminer la fonction £ d’une des deux equatlons différentielles
simultanées. Nous obtenons ainsi:

() =0

L’intégrale de cette équation différentielle est:

2m
f? = — — + const
,,

m étant I'une des deux constantes d’intégration. Selon la
condition limite précédemment admise la seconde constante
d’intégration doit avoir la valeur 1. On trouve donc les deux
solutions suivantes:.

fP=1——; P = — (15)

La constante m est caractéristique pour I'intensité du champ
de gravitation a4 une distance donnée du centre. D’aprés
Newton cette intensité est proportionnelle & la masse attirante.
m a les dimensions d’une longueur. On appelle cette longueur
le rayon de gravitation de la masse placée au centre du champ.

Les solutions (15) dues a Schwarzschild* n’ont, du reste,
une signification que si 'on suppose r > 2m. Si, en partant de
cette limite, on fait croitre r, le potentiel f* augmente et le
potentiel 4? diminue. Les deux potentiels tendent vers la limite
commune 1 pour r = .

Cette supposition qui a été faite pour déterminer les cons-
tantes d’intégration devrait avoir une signification générale.
Dans ce cas, & une distance infiniment grande de toute matiére
les potentiels de gravitation devraient prendre les valeurs
galiléennes:

1(i = &)

e 0(‘;&]‘:) g4l=0(17&4) 5’44:1-

» K. ScuwaARzscHILD. Ber. d. Berl. Akad., 1916, p. 189.
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Si I'on cherche & appliquer cette hypothése au monde stel-
laire tout entier, on se heurte 4 un paradoxe assez grave.

Quoique la théorie de la relativité proclame en principe
Péquivalence de toute espéce de systéme de référence, les
conditions limites postulées pour les régions infiniment éloignées
permettent la distinction de certains systémes ayant une
importance particuliére, ceux pour lesquels les g+ prennent a
Iinfini les valeurs galiléennes.

Pour faire disparaitre cette difficulté, il faudrait introduire
dans la théorie des conditions limites qui ont le méme caractére
de covariance générale que les équations gravitationnelles elles-
mémes, ou bien il faudrait pouvoir se passer de toute espéce
de condition limite relative aux régions infiniment éloignées
de Pespace.

Dans un important mémoire consacré au probléme cosmo-
logique Einstein' a montré que des conditions limites satis-
faisant au postulat de covariance ne peuvent pas étre prises
en considération. Elles ne s’accorderaient pas avec les petites
vitesses stellaires observées par les astronomes. Pour échapper
a l'obligation d’introduire des conditions limites quelconques
on peut se représenter l'espace fini et entiérement rempli de
matiére. Avant d’aborder cette idée il est nécessaire d’examiner
le probléme de la répartition continue de la matiére dans une
portion limitée de I'espace.

1V. CHAMP DE GRAVITATION PRODUIT A L INTERIEUR
D’UNE MASSE FLUIDE.

Le probléme d’une répartition matérielle de symétrie sphé-
rique ol les deux potentiels f* et 2* sont des fonctions d’une
seule variable r a été également résolu par Schwarzschild *.

En tout point d’un fluide incompressible homogéne et iso-
trope en repos les composantes mixtes T% du tenseur matériel
ont les valeurs représentées dars le tableau suivant:

' A. EinsTEIN. Kosmologische Betrachtungen zur allgem. Rela-
tivitatstheorie. Ber. d. Berl. Akad., 1917, p. 142. « Das Relativitats-

-~ prinzip ¥ P 130. ;
% K, SchwaRzsCHILD. Ber. d. Berl. Akad. 18 (1916), p. 424.
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—p 0 00

| :

§ 0 —p 0 0 _
il o | e
S0 0 —p 0 (16)

0 o0 0 p

p signifie la pression statique régnant au point considéré du
fluide. Cette pression est une fonction de la distance r. u, est
la densité invariable du fluide incompressible.

Ak

;e . X v .
Désignons par u’ = —— les composantes de la direction

d’Univers (quadri-vitesse) d’'un point matériel. Si du systéme
de référence par rapport auquel la matiére est en repos nous
passons & un systéme de référence quelconque nous obtenons
les expressions suivantes pour les composantes covariantes
T du tenseur matériel:

Ty = — gup + (0 +pluu, - (16a)

Dans le probléme statique le vecteur de direction a une
seule composante telle que u, z* = 1. Le champ de gravitation
présentant la symétrie sphérique est fonction de- la seule
variable r et les seuls potentiels de gravitation différents de
zéro sont: g, = f* et g,, = — h*. Nous appliquerons toutefois
ici le méme mode de calcul que précédemment en utilisant des
coordonnées polaires et en posant:

g = B s _ — 2

T =— 7 % Yeg — VY33 — 1
w1

T = hE [ =7 — 2

On obtient alors les expressions suivantes des composantes
covariantes et du scalaire du tenseur Tu:

champ de gravitation existant & I'intérieur du fluid
alors la forme suivante:

\0
N\ oE

L'UNIVERSITE

s

NEUCGHATEL
s

ARcHIVES, Yol. 6. — Janvier-Février 1924,
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r

]I ! 2 '’ .
= B =5+ ) = S 3
R [ w2

iy, = — =5 +

r A
7 % = —fh‘(u —p) (17

Vo

r/h 1 %
o2 = Ry = Fz(z_f)_h_z‘l_ 1 = 5 (g, — p)

Des deux premiéres équations (17) on déduit:

2 /f 4 ik
—(fT + h) = zh?(gy + p) - (17a)

Si Pon met la troisiéme équation sous la forme:

2/ . 2 2 \

on peut éliminer entre les deux derniéres équations la fonction
")
~ et on obtient alors I'équation différentielle:

f

h’ 1
2—r —azripy, — 5+ 1 =20

h3 h2
dont l'intégrale est:

const

h2 . 78 r

h devant rester fini pour r = 0, la constante d’intégration
doit étre nulle et on trouve: '

1 . 2
== 18)

rd

La pression p du fluide doit étre une fonction de r satisfaisant
au principe de conservation exprimé par les équations (6). Si
nous y substituons les valeurs:

e . mpl 1
V—g—_'-hfrz; If=—=p; g":_—lﬁ

nous obtenons, aprés avoir simplifié I’expression, 1’équation:
ff
P'+(P+!*e)7 =0

dont l'intégrale est:

fp 4+ ) = const .
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. Supposons avec Schwarzschild que la masse fluide constitue
une sphere de rayon a et que la pression p, a la surface de la
sphére soit nulle. Puisque a la surface l'expression constante
f(p + m,) prend la valeur f,u, on doit avoir partout:

Flp+ %) = foix

Pour déterminer les constantes f, et %,, on admettra qu’a la
surface, les solutions f et & se raccordent d’une facon continue
a celles qui se rapportent au champ extérieur dans le vide. Ce
champ étant deﬁm par les équations (14) et (15) il vient:

f(!) + !"‘o\ —

P

(19)

Il reste alors uniquement a calculer la fonction f. ‘
Remplacons dans P’équation (17a) p, 4+ p, qui signifie la
densité matérielle totale en un point du fluide, par la valeur
tirée de (19). Eliminons-en encore » au moyen de ’équation (18),

nous obtenons:

2Ry " 2, P R’

W0 o

3 — 2h,f T 3 — up,r? b’

L’intégrale de cette équation est:
h(2h,f — 3) = const .

Puisque 2 la surfaee de la sphére les fonctions &, et f, doivent
remplir la condition:

hofy = 1 :
la constante d’intégration prend la valeur %, et on trouve:

) )h — k .
= e, (20)

La discussion de la formule (18) montre que le carré da
rayon de la sphére est nécessairement

[
(3]

= )

Hiky

car il est ev1dent que h doit rester fim 4 toute distance ﬁme
du centre.
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Pour r = a la condition de continuité imposée a la solution
indique qu’on doit avoir en tout cas:

m>%.

Pour 2m = a le potentiel #* deviendrait infiniment grand
a la surface du fluide.
L’invariant quadratique de ’espace rempli de fluide est:

ds? = (dx')? + (da?)? + (dad)? + [[x'da’ + x?da® + addad]? .

Le coefficient [ de cette expression a la valeur:

soit, selon (18),

Désignons par A la valeur extréme du rayon a de la sphére
fluide correspondant & la supposition 2, = co. Il vient, selon (18)

A = _3— ) 3 (21)

Zly

L’expression du coefficient [ peut donc étre mise sous la
forme:

| =~y (22)

et on a:

2R =141 = T

(23;

Le carré de I'élément linéaire de I'espace prend donc la

forme normale bien connue:
do® = X (de')? + o (Safdad)?
- AT 2T

qui est celle de I'invariant métrique d’une multiplicité homo-
géne sphérique ou elliptique.

Pour se rendre compte d’une facon intuitive des propriétés
géométriques d'un pareil espace, il est utile d’introduire une
coordonnée supplémentaire, et de considérer I'espace sphérique
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comme une des multiplicités tri-dimensionnelles d’une multi-
plicité euclidienne & 4 dimensions.

Soient z,, x,, x,, z des coordonnées cartésiennes rectangu-
laires. Posons:

n v 2

. 5 S |
X, 4 x, X S 1
et soit:
2 2 2 5
x + x, + x, + g% == AP

Péquation d’une multiplicité tridimensionnelle sphérique de
rayon A. Il suffit d’étudier les propriétés métriques d’un des
« plans » méridiens de cet espace sphérique. Nous poserons
done:

x, =0
et nous obtenons I'équation du plan méridien sous la forme:
x, 4 2, 4 3% = A? (24)
L+, 2= AT 2

La géométrie de ce plan méridien est donc la méme que celle
d’une sphére ordinaire de rayon A.

Supposons que le centre de la sphére fluide coincide avee
Pun des poles de la sphere euclidienne (z, = 0; 2, = 0; z = A).

Les équations (19) et (20) indiquent les valeurs de la pression
p & toute distance r du centre. On trouve:

hy — h
P= oy,

(29)

La sphére fluide re recouvre qu’une calotte de la surface (24)
et on a nécessairement @ < A. La coordonnée supplémentaire 5
signifie la « hauteur » comptée a partir de I'équateur de Pespace
sphérique. Selon (23) on a:

= 0

b= — h, —

et, par conséquent,

P =gt 250

Si I’on admet que /&, reste fini, la calotte recouverte de fluide
ne peut pas s’étendre jusqu'a I'équateur parce qu’on a néees-
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sairement z, > 0, mais en réalité le fluide s’étendra bien moins
loin. I1 est, en e'fet, indispensable que la condition

A :

soit respectée. Si I'on pouvalt attribuer a z, toutes les valeurs
positives inférieures 4 A, le numérateur de la fraction (25a)
resterait toujours positif, le dénominateur par contre changerait
de signe pour une certaine étendue r du fluide, qui d’ailleurs
pourrait étre aussi petite que I'on veut, pourvu que I'on suppose
z, suffisamment petit.

Cette circonstance est inadmissible, parce que p doit rester
fini pour toute valeur de z supérieure a z, et prendre la valeur
zéro pour z = z,. Pour exclure la possibilité que p devienne
infini et change ensuite de signe, nous devons admettre 1'iné-

galité (26). 1l en résulte pour le rayon a de la sphére fluide
la condition:

2\21‘\

a < - (26a)
Nous avons vu plus haut que a doit, selon I'équation (18),
rester nécessairement < A. La condition (26 @) est encore .un

peua plus restrictive car elle indique que a ne doit pas dépasser
la limite 0,9427A.

V. LE PRINCIPE DE MACH ET LES EQUATIONS COSMOLOGIQUES
' D’ EINSTEIN.

L’exemple qui vient d’étre traité met en évidence les diffi-
cultés auxquelles se heurte la théorie de la gravitation s'il
s'agit d’envisager de grandes étendues de I'espace remplies
de matiere.

D’autre part, des considérations statistiques, applicables aussi
bien a la théorie d’Finstein qu’a celle de Newton, conduisent
a la conclusion que les astres, concentrés i un instant donné
en une région limitée de 'espace, auraient la tendance de s’en
échapper et de se dissiper, ce qui semble &tre en contradiction
avec 'existence du ciel étoilé.
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L’objection la plus grave au point de vue épistémologique est
d’ailleurs celle qui vient d’étre signalée au chapitre ITI. Ein-
stein a donné A cette objection la forme d’un principe, appelé
« principe de Mach » *, qui peut étre énoncé de la facon suivante:

Désignons par Gi les composantes tensorielles qui, en vertu
des équations du champ de gravitation, doivent étre égalées
aux * Ty Le principe de Mach demande que la répartition de
la matiére a elle seule, représentée par les Tiur. doit suffire @ déter-
miner complétement et d’une fagon covariante le champ tensoriel
des Giy.

Le champ qui conduit la matiére, celui, par exemple, qui
maintient le plan des oscillations du pendule de Foucault ou
qui produit I'aplatissement d’une sphére fluide tournante, ne
peut étre di & une cause fictive telle que l'espace absolu de -
Newton ou la condition limite imposée aux gir. |

En particulier il faut demander que linertie d’un corps
soit entiérement définie par les masses qui Pentourent, de sorte
que cette inertie doit devenir nulle, si on éloigne toutes les
autres masses & une distance infinie (Principe de la relativité
de Pinertie). Or, les conditions limites qui s'accorderaient avec
le principe de la relativité de P'inertie sont incompatibles avec
les faits astronomiques. Einstein est done arrivé a la conclusion
suivante: La seule maniére de satisfaire au principe de Mach,
sans se heurter & d’autres difficultés, est de supposer I'espace
fini, quoique sans bornes, et entiérement rempli de matiere.
On remédie en méme temps au défaut de la théorie de la gravi-
tation de ne pas expliquer 'existence du systéme stellaire.

Cependant, 'exemple traité au chapitre IV démontre que la
matiére ne peut étre répartie dans I'espace entier, jusqu’a la
limite de la plus grande distance qui est supérieure a A, sous
forme d’un fluide continu. Il est du reste facile de voir que la
supposition de n’importe quelle répartition matérielle statique
est incompatible avec les équations (1) admises jusqu’ici. En
effet, dans un champ statique, la ligne d’Univers tracée par un
point matériel immobile, dont la direction d’Univers a la seule
composante u* (u,u* = 1), doit étre une géodésique.

' A. EINSTEIN. Ann. de Phys. 55 (1918), p. 241. Cf. aussi W.
PavuLl, Relativitatstheorie, (Teubner), 1921. R
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L’une des équations de cette géodésique ost:

dut

X — 0 .
Il en résulte, selon I’équation générale des géodésiques (3)

que

Iwi

A%

= 0.

La derniére des équations (10) entraine alors la conséquence:

’ of
j i O
ox
_pour z = 1, 2, 3, et on a par suite: f == const. = 1, en contra-

diction avee la derniére des équations {11) qui fait dépendre la
valeur variable de f de la répartition des masses.

Pour remédier a cette contradiction il faut généraliser I'ex-
pression du tenseur Gix. Si 'on ajoute au premier membre des
équations (1) le terme — 4 g, , ou 2 signifie une constante uni-
verselle — la constante «cosmologique» d’Einstein — les
équations de conservation du tenseur matériel Ti restent
satisfaites identiquement. Le tenseur:

Gy = Ry — 3 8uR — gy *

est « conservatif » au méme titre que le tenseur primitif
R, — % g, R, et il remplit en méme temps toutes les autres con-
ditions mathématiques qui, selon Einstein, doivent étre imposées
aux composantes tensorielles (!, mais de plus les équations
du champ de gravitation complétées par le terme cosmole-
gique sont compatibles avec des répartitions statiques de masses
immobiles dans un espace sphérique ou elliptique.

1 Les composantes du tenseur en question doivent étre des fonc-
tions lineraires des dérivées secondes des g, et ne dépendre d’ail-
leurs que des g, ainsi que de leurs dérivées premiéres et secondes.
Ces conditions doivent étre remplies pour que la théorie se confonde

en premiére approximation avec celle de D’attraction newtonienne
des masses. :
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‘En effet, les nouvelles équations du champ de gravitation

sont:
l .

Ry — 58, R — g+ =21

ik 2 ok ('la‘)

ik -

Dans les conditions cosmiques ou la densité moyenne de la
matiére est extrémement petite, on peut négliger les actions
mutuelles intérieures et supposer, par conséquent,

p=0:
Il vient alors, selon (16 a)
Tik:()’ pour: i, hkh—1,2,3.

La seule composante covariante du tenseur matériel différente
de zéro est done:

T, = fgi"o ’
Il en résulte:

T= 9, .
Des équations {1 a) on déduit ’équation scalaire:

— R — 4 — 27T

D’ou:
R - o L4 b 1' VI‘
i+ &ar = A\ Ty — 5 8al) -
Il vient done:
N 1.
Ry + guh = #f? “22' .

Puisqu’on a, d’autre part:

B =

Ry =20,

on obtient la relation:

Bk == wmpy w (27)

Pour 7, k == 1, 2, 3 la condition: f = const conduit a la
conséquence:

RM_ = Pl.k et : P, — 275!:7‘ = 0.
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5 !

' . 2h ;
En particulier on a, selon (13): P;; = 5—, et par conséquent:

2h 5
?3"—‘ = 2/\ .

L’intégrale de cette équation est:

1
1 — — = APr?,
R .
puisque pour 7 = 0 on pose: 7 = 1.
On trouve donc:
1

h2 o= essse s |
1 — hr?

Selon (27) c'est la densité de la répartition matérielle qui
détermine la valeur de la constante cosmologique %.

En ce qui concerne le coefficient [ de I'invariant quadra-
tique do® on trouve:

En comparant cette expression de ! avec la formule (22).
donnant la valeur de ce coefficient pour un espace sphérique
de rayon A, on reconnait que la solution considérée des équa-
tions cosmologiques correspond a I'idée suivante: L’espace est
sphérique ou elliptique, et son rayon A est:

K. oo \/1 (28a)
A

On peut supposer que le champ de gravitation dans lequel
se trouvent lés étoiles est statique, car les vitesses relatives de
ces corps sont petites en comparaison de la vitesse de la lu-
miére. Si, de plus, la répartition des étoiles est & peu preés
homogéne, I'espace doit étre sphérique ou elliptique, done fini.
Dans ces conditions le potentiel de gravitation présente une
valeur constante partout. Il n’existe, dans le cas considéré,
aucun centre de la répartition matérielle; la grandeur 7 signifie
donc la distance comptée & partir d’'un point quelconque de
I’espace. Concernant r on peut se poser la question suivante:
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Quelle est la distance entre un point quelconque et les points
les plus éloignés de I'espace sphérique ? L’analysis situs conduit
& la distinction des deux cas suivants:

10 L’espace est sphérigue cela veut dire que, §il est repré-

senté dans une multiplicité quadridimensionnelle euclidienne,
deux points distincts correspondent saux points diamétralement
onposés dont les coordonnées sont respectivement z,, x,, Z.,
zZ, et —z,, —x,,—ux,,—ux,. La plus grande distance est dans
ce cas wA, et le point le plus éloigné d’un point donné est le
pdle diamétralement opposé. , -
- 2° On peut aussi supposer que dans l'espace réel chaque
point et le point diamétralement opposé soient confondus. Les
points les plus éloignés de origine seraient alors ceux de la
plus grande sphére de Pespace, distants de l'origine de % Un
pareil espace est appelé elliptique. :

Suivant le cas réalisé, le volume de 'espace serait- 27*A® ou
w* A’ et la masse totale qu’il contient serait: '

M = 2z2A3y, ou M = x7A%

0

- Les équations (28) et (28 ) condwisent alors, suivant que 1'on
adopte I'une ou I'autre des deux conceptions, aux résultats’:

_i?\'l = {espace sphérique)
V3 F I q
ou:
: e :
M = —— (espace elliptique)
. VI i

De toute facon la. constémt_e cosmologique 4 et par suite le
rayon A de -1’espace, sont déterminés par la masse totale des
corps contenus dans I'espace. Le principe de Mach, selon lequel
le champ de gravitation dans lequel se trouvent les étoiles,
doit &tre déterminé par la masse du monde entier, est donc
satisfait. La masse M est sans doute énorme. A est, par consé-
quent, d’'une grandeur déconcertante qui semble étre de I'ordre
de 107 années de lumiére. Pratiquement cela équivaut & une

' CI. J. BecquereL. Leé principe de relativité et la’théorie de la
gravitation. Gauthier-Villars. 1922.. A. S." EppincTon. Espace,
Temps et Gravitation.. J. Hermann. 1921. H. Wevyi, [. c.
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grandeur infinie. La constante 4 est de l'ordre de 10— op
prenant comme unité de longueur le cm. '

Les conclusions résultant des équations primitives d’Einstein
subsistent par conséquent entiérement, si I’on se borne a consi-
dérer une portion limitée de I’espace, et aucun argument tiré
de la théorie de la gravitation elle-méme ne peut étre opposée
a la théorie cosmologique d’Einstein.

11 ne faudrait cependant pas croire que cette conception soit
a I'abri de toutes les difficultés.

L’objection suivante se présente immeédiatement a lesprit:
On a bien sauvé la relativité de I'espace, mais en sacrifiant en
quelque sorte la relativité du temps. Les génératrices recti-
lignes de I’'Univers cylindrique d’Einstein définissent, en effet,
un temps universel. Etant données les faibles vitesses relatives
des astres, les temps mesurés dans les diflérents systémes
stellaires sont trés voisins les uns des autres. 1l existe donc un
certain temps moyen qui est le temps de Pespace statique
théorique ou toute la matiére serait en repos. Une théorie
~relativiste parfaite ne devrait-elle pas nier l'existence d’une
horloge privilégiée, de méme qu’elle nie le systéme de référence
spatial privilégié

On pourrait répondre que dans certaines régions du Cosmos,
a Pintérieur des étoiles par exemple dont la température est
trés élevée, peuvent exister des conditions o la vitesse de la
matiére est plus ou moins rapprochée de celle de la lumiére.
Dans ce cas le principe de la relativité du temps reprend pleine-
ment son role. Il n’en est pas moins vrai que les horloges locales
n’ont pas la méme importance que I’horloge cosmique, et la
supposition d’'une pareille horloge nuit & I’harmonie et a la
beauté de la théorie.

Plus sérieuses encore que cette objection de principe sont
certaines difficultés qui se présentent, lorsqu’on compare les
conséquences de la théorie avec les faits observés. Dans I'Uni-
vers cylindrique les géodésiques de longueur nulle sont des
hélices décrites sur la surface quadridimensionnelle du cylindre.
Les espaces coniques constitués par les géodésiques issues du
méme point doivent par conséquent se contracter périodique-
ment en an seul point d’Uaivers, chague fois que les rayons
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ont achevé un demi-tour. En d’autres termes, il existerait des
« anti-soleils » et des « anti-étoiles » qui seraient les images du
soleil et des étoiles, produites au point diamétralement opposé
de I'espace. A supposer que ces images, par suite de la dévia-
tion et de I'absorption de la lumiére sur son énorme parcours,
seralent trop faibles et trop peu nettes pour étre apercues, il
devrait en résulter cependant un éclairement diffus du ciel qui
n’a jamais été remarqué. Enfin, dans I'espace fermé il devrait
s’établir un équilibre mobile du rayonnement, de méme qu’il
se produit dans une enceinte creuse a parois réfléchissantes.

" On peut, il est vrai, écarter toutes ces difficultés en supposant
Pespace elliptique. L’anti-point coincide alors avec I'origine, et
les rayons ne reviendraient jamais & leur point de départ;
mais il faut alors se demander ce qu’il advient de toute cette
énergie rayonnante qui s’en va. La supposition de Despace
elliptique est du reste, & d’autres égards aussi, moins satis-
faisante que celle de 'espace sphérique.

~ Aucune des objections qui viennent d’étre formulées n’est
d’ailleurs péremptoire, et la théorie cosmologique d’Einstein
s’'imposerait, semble-t-il, s’il était prouvé que le monde stellaire
est vraiment en équilibre statique. Mais ce fait méme n’est pas
certain. I1 se peut que la répartition des astres soit seulement
en apparence une répartition d’équilibre. Peut-étre y a-t-il
effectivement tendance vers une dissipation générale des corps.
Si I'espace qui nous entoure est rempli d’étoiles, cela tient
peut-étre a ce que la dispersion des astres n’a pas encore pu
se produire vu I'dge peu avancé des systémes stellaires que
nous observons.

Notre expérience trop restreinte dans I’espace et dans le
temps ne nous permet pas de trancher ces questions qui ont
une importance fondamentale pour le probléme cosmologique.

VI. LA THEORIE COSMOLOGIQUE DE DE SITTER.

Etant données les difficultés qui résultent de la conception
de I'Univers cylindrique, il est intéressant d’envisager une
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seconde solution des équations cosmologiques d’Einstein qui a
été donnée par De Sitter .
Cette solution, basée sur la supposition:

Ty =0 (4, k=1,2,3,4

y

est:

A? : (29)
ds? = f2dif — ds?

Pour trouver la solution de De Sitter il suffit de déduire
des équations:

par contraction I'équation scalaire:
— R —4A =10." ~ {30)
Le probléme se raméne alors a 'intégration des équations:

Ry + 8uh 0
Ry + 8,4 =0
Ray + gaoh 0.

|

Si l'on pose:

2 9

"o —— 2 . L . — 2
8u = I &y = —0*; 8g0 = — 1

les expressions (13) et (13 a) des R;x conduisent aux formules
suivantes:

LNV

Foom gt e=e
) n hr th
_f +Ifk+77L—Wh =0
,];:_.if"_wf_—k—?—-k?”\:ﬂ

! De S1TTER. On the relativity of inertia. Versl. d. Akad. Amster-
dam, 19 (1917), p. 1217. On the curvature of space. ibid. 20 (1918),
p. 229. On Einstein’s theory of gravitation and its astronomical

consequences. Monthly Notices. R Astronom Soc. London. Nov.
1917, p. 3.
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Des deux premiéres équations on tire:
2 /1 W
H

fh=1. (31)

!
En éliminant de la troisiéme équation la fonction ’; on obtient:

h 4 )
2@;-—(’1——1)—)\1'2:0 :

D’ou:

(32)

Il en résulte que I'Univers de De Sitter est une multiplicité

homogeéne de «rayon »:
3
A= \/T (33)

Plus simplement on aurait pu trouver ce résultat selon
I’équation (30) en remarquant que l'invariant de courbure d’une
multiplicité homogéne de 4 dimensions est:

De (31), (32), (33) on déduit encore:

1
r2
A%

' 1
/2:’72:#
1 i

et on retrouve ainsi 'expression (29) du ds® qui indique que la
multiplicité de De Sitter est pseudo-sphérique. Si I'on considére
trois de ses dimensions comme positives, la quatriéme’ est
négative. : g

Pour nous rendre compte des propriétés métriques de cet
Univers, introduisons une coordonnée supplémentaire et consi-
dérons le ds comme I'élément d’arc d’'un hyperboloide a 4
dimensions dans une multiplicité semi-euclidienne de 5 dimen-
sions, dont 1'une est négative. L’hyperboloide est représenté
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par lléquation:
.T: = ;1': + .r: + .'1’: — x: = A*® (34)
et le carré de ’élément d’arc est:
— ds* = dx} 4 dx, 4 da, + dx, — da) .

Etant donnée la symétrie sphérique de cette multiplicité il
suffit d’étudier les conditions géométriques existant dans une
section chrono-spatiale qui comprend la dimension négative.
On peut done, suivant 'exemple de H. Weyl!, supprimer deux
des dimensions positives.

L’équation:

2 3 2 o
x4 ax, —ax, = A

représente alors un hyperboloide de révolution ordinaire.

En faisant tourner deux des axes de I’hyperboloide autour
du troisieme axe, en désignant les nouvelles coordonnées par
x,, %,, 7, et en posant A = 1, on obtient ’équation de ’hyper-
boloide sous la forme:

Pa oy 42, = 1 (35)

Le ds? correspondant a cette nouvelle forme de I'équation est:
— ds? = 2dx,dx, + dx, (35a)

I’une des équations caractérisant les géodésiques de longueur
nulle est donc:

da, dx, 1 —
2 Bt 1=0.
Puisque d’autre part toutes les géodésiques de I'hyper-
boloide sont situées dans des plans qui passent par le centre

de I'hyperboloide on a une seconde équation de la forme:
¢ dx; 4+ cydr, + cyda, = 0,

¢, Cy, ¢, signifiant des coefficients constants; et on voit que

dx r TE e
et I—2 ont des valeurs constantes pour une géodésique

Xy

' H. WEvL. Phys. Zeitschr. 24 (1923), p. 230 et L c.
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déterminée. Dans I'Univers quadridimensionnel ces lignes sont
done des droites. Selon (35) et (35a) deux de ces droites qui se
coupent en un point déterminé de la multiplicité satisfont
aux équations:

oy

&2, x x dx
=+ 1t - = + -2
x, + 1 —dx, el x, — 1 — dx, (86)

Les équations (36) représentent les intersections de I'espace
conique de la propagation de la lumiére avec la section consi-
dérée de la multiplicité de De Sitter.

Les géodésiques des points matériels immobiles sont des
hyperboles. Considérons un observateur lié a I'un de ces points,
en relation, grice a la propagation de la lumiére, avec toute
la portion de I’hyperboloide qui est limitée par 'une des moitiés
du cdéne de lumiére. Supposons que, dans notre section tri-
dimensionnelle, le point d’Univers caractérisant la position de
I'observateur se trouve sur I'une des hyperboles x, = 0 dont
Péquation est:

2wy =14

La position actuelle de ’observateur sur 'hyperbole L, qui
est sa «ligne d’Univers », soit représentée par le sommet O de
I'hyperbole correspondant aux valeurs négatives des coordonnées
x, et x,.

Posons done:

x :‘———a; Xy mmo— — (37)

Une géodésique de longueur nulle passant par le point
d’Univers O est définie, selon (36), par les conditions:

xy == 0 (%):—a; (%)21—
dx,/, dx,/, 2a

En désignant par &, &, &, les coordonnées courantes de cette
droite, nous avons:

1
s g, = —alf + 1) £ = ﬂ(gs — 1) (38)

Une étoile qui se trouve dans I’espace & une certaine distance »
de I'observateur décrit une ligne d’Univers A qui est égale-
ment une hyperbole. Supposons que la ligne A appartienne
au plan diamétral

o

5, = Bt

(39)
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L’une des droites (36) joint la position actuelle de 1’obser-
vateur O & un point déterminé de la ligne A. Nous pouvons
donc comparer la durée de la perception ds d’un événement
par I'observateur O, avec la durée propre ds’ de I’événement
qui a eu lieu sur 'étoile au moment de I’émission de la lu-
miére. On déduit en effet des équations (37):

2
— ds? = 2dx,dx, = —‘%— ,
et des équations (38) et (39):
5 P da?
__.dS :2d$1d52+d58:—-m-
Le rapport de ces deux durées est:
ds
S =1+aB. (40)

La distance r entre I'observateur et I’étoile peut étre trouvée
trés simplement a 'aide de la construction suivante:

N M

0
Y
Fig. 1.

Soit C le centre de I’hyperboloide. Joignons le sommet O
de I’hyperbole L. avec le centre C par le segment CO qui est la
moitié du plus petit diamétre de I’hyperbole. Dans le plan
défini par ce diamétre et par I'axe des z,, qui est perpendicu-
laire au plan de 'hyperbole, nous tracons un cercle de rayon
CO = 1. Ce cercle coupe la ligne d’Univers A de P’étoile au
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point marqué M. La longueur CM étant = 1, on voit que la
projection de CM sur 'axe des z, est:

NM =— sinr .

Projetant d’autre part CM sur le diamétre CO de I’hyper-

bole on obtient:
CN — cos r .

La droite CO formant avec I'axe des z, un angle de 45°

dont le cosinus est:
1

vz

la position du point M est caractérisée par les coordonnées:

= &,

§, = acosr, £ = sinr ,

liées I'une & I'autre par 'équation (39), qui définit le plan de
Ihyperbole A. On trouve done:

g r= af
et, par conséquent, selon (40):

ds

R—;:i—[—tgr. (40a)

Si nous rétablissons, pour désigner le rayon de I'Univers, le
symbole A au lieu de 1, nous obtenons, & la place de (40«)

la formule:
ds

—ij-zi—]—tg% ; (400)

Il est peut-étre utile d’ajouter 4 ces considérations deux
remarques:

Notons d’abord que l’observateur ne peut étre en relation
avec I'étoile, par la propagation de la lumiére, que si la ligne A
est située sur I'une des moitiés de la surface de I’hyperboloide,
et que, de toute fagon, le point M doit se trouver du méme coté
de 'axe des x, que le sommet O.

I1 en résulte que I'angle -i— doit étre compris entre les limites

0 et % dans une direction quelconque de V'espace autour du

point O.
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D’autre part, la formule (40 b). exprimant le rapport entre
les indications de deux horloges installées dans deux points
d’Univers différents, montre que dans I'Univers de De Sitter le
temps statique est en réalité une fonction de la distance r. En
ce qui concerne I’Univers dans son ensemble cette solution est
statique seulement en apparence, car on peut, au moyen de la
formule (40 &), établir une relation entre les coordonnées r et
t d'un point de 1'espace et considérer f comme une fonction
de ¢, au lieu de r.

Mais le fait le plus important est le suivant: Les équations
cosmologiques d’Einstein ont une solution compatible avec
I'hypothése d’un espace vide de matiére, donc une solution
qui est en contradiction avec le principe de Mach.

En utilisant expression (35 @) de I'invariant quadratique et
en y éliminant dz, au moyen de I'équation de I’hyperboloide
on obtient la forme quadratique suivante des différentielles
dz, et dz,:

ds® = — (ﬁ)gd.ri — '2“1;5':l T2 dx, dx, — (5)2dx: .

2
Xy X g

Si dans cette formule on pose: x; = == o on passe aux limites
extrémes de la portion de I'hyperboloide qui, par suite de la
propagation de la lumiére, est en relation avec un point d’Uni-
vers déterminé. Dans ces points « les plus éloignés » de I'espace

wA
pour lesquels 7 = —- on a:

8 = 0.

Cette conséquence, comme le fait observer J. Becquerel’,
est trés satisfaisante. Quoique 'espace de De Sitter soit sphé-
rique, i! se comporte comme un espace elliptique, puisque aux

.. =A . . . .
limites r = 5 la vitesse de la lumiére devient nulle; aussi

Pexistence des anti-soleils et des anti-étoiles est-elle exclue
par la structure hyperbolique de 1I'Univers.

Il n’en est pas moins vrai que cette conception est en contra-
diction avec le principe de Mach postulé par Einstein . Si

* J. BECQUEREL, [. c.
2 A. EinsTEIN, L e
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nous placons dans I’Univers de De Sitter, complétement vide
de matiére, un seul corps, celui-¢i se trouvera soumis au champ
métrique de la multiplicité qui provient ici uniquement de la
constante cosmologique 4; mais il n’y a plus de relation entre
cette constante et un contenu matériel quelconque de I'espace.

Cette contradiction est-elle irrémédiable ? Je ne puis le
croire.

La solution de De Sitter prouve en tout cas cette propriété
mmportante des équations cosmologiques de garantir I’existence
d’un espace fermé, méme si Ty = 0. La présence de la matiére
aurait alors pour effet de modifier la courbure primordiale, et,
de méme que dans la théorie primitive de Newton, il y aurait
deux causes différentes, dont 'une géométrique, 'autre maté-
rielle, produisant des effets analogues. |

Si Pon veut échapper a cette conséquence difficilement
conciliable avec l'idée fondamentale de la relativité, il ne
reste qu'un moyen: il faut supposer que la constante cosmolo-
gique 42 n’est pas une grandeur de méme nature que les gix
et les Ry. Il n’est pas dit que la courbure ne puisse pas étre
un effet de la matiére, méme si, par hypothése, on a exclu la
matiére de I'espace. Il ne faut pas oublier, en effet, que la
théorie de De Sitter moins encore que celle d’Einstein, ne peut
prétendre a étre une théorie compléte. Dans la théorie d’Einstein
on fait abstraction seulement du mouvement de la matiére,
dans celle de De Sitter on fait abstraction de la matiére elle-
méme.

La constante cosmologique 4 n’est donc pas nécessairement,
si Pon adopte la théorie de De Sitter, une simple grandeur
géométrique. Elle doit avoir une signification qui est en rela-
tion avec la matiére, mais cette relation elle-méme est peut-
¢tre naccessible aux théories actuelles.

Peut-étre est-ce trop de demander a la théorie de la relativité
qu’elle fournisse a elle seule non seulement les lois de la gravi-
tation qui déterminent les courbures locales, mais aussi la
raison profonde de la courbure générale qui, dans la théorie de
De Sitter, n’est pas mise en relation avec la matiére présente.

L’observation pourrait, en principe, trancher entre les
théories de I'Univers cylindrique et hyperbolique. En effet, si
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nous appliquons les considérations données a la fin du chapitre
IT aux relations intérieures de I’Univers hyperbolique, expri-
mées par la formule (40 b), nous constatons qu’une raie du
spectre d’une étoile doit étre déplacée vers le rouge vis-a-vis
de la raie terrestre correspondante, et cela d’autant plus que
I'étoile est plus éloignée de la Terre.

Soit 4, la longueur d’onde correspondant a la période ds
observée sur la Terre, la longueur d’onde de la méme raie pro-
duite par une source terrestre, on a:

A ds r
D’ou:
N— AN ! /
'—’i—- —_ tgi— . (11)

Or il semble, selon les chiffres cités par J. Becquerel ', que les
nébuleuses spirales les plus éloignées qui ont été observées
fournissent, pour la plupart, des raies spectrales déplacées vers
le rouge. Dans deux cas ce déplacement est méme trés consi-
dérable.

Les données actuelles sont du reste trop incertaines, en ce
qui concerne les distances et les mouvements de ces corps,
pour qu’on puisse arriver a ane conclusion précise.

Comme nous venons de le voir, la théorie de la relativité
générale a apporté des idées nouvelles permettant d’aborder
d’un nouveau point de vue le probléme astronomique de la
structure du Cosmos. Elle a permis de formuler avec précision
des questions qui antérieurement n’ont pu étre posées que d’une
facon trés vague. Si elle ne conduit pas 4 une solution du pro-
bléme entiérement satisfaisante, elle a tout au moins limité le
nombre des réponses possibles, et elle indique de plus un moyen
permettant de trancher, par 'observation, entre les théories
qui semblent le mieux répondre aux connaissances actuelle-
ment acquises. '

1 J. BECQUEREL, [. ¢.
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