Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 5 (1923)

Artikel: Le champ électromagnétique d'un électron en mouvement

Autor: Wisniewski, Félix-Joachim de

DOI: https://doi.org/10.5169/seals-741338

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

LE CHAMP ÉLECTROMAGNÉTIQUE

D'UN

ÉLECTRON EN MOUVEMENT

PAR

Félix-Joachim de WISNIEWSKI

Le but que je me propose ici est la solution des équations du champ électromagnétique d'un électron en mouvement par un procédé qui n'utilise pas les potentiels retardés.

Comme la solution obtenue au moyen des potentiels retardés conduit à des résultats qui ne s'accordent pas avec la stabilité des systèmes construits avec des électrons en mouvement, base des nouvelles théories de la structure des atomes, notre recherche d'une solution nouvelle est justifiée.

Désignons par ξ , η , ζ les coordonnées de l'électron, par x, y, z les coordonnées d'un point de l'espace et par R la distance entre l'électron et le point de l'espace.

$$\mathbf{R}^{2} = (x - \xi)^{2} + (y - \eta)^{2} + (z - \zeta)^{2}.$$

Si $\Phi(x, y, z \xi, \eta, \zeta)$ désigne le potentiel scalaire et A $(x, y, z \xi, \eta, \zeta)$ le potentiel vecteur on a pour l'intensité électrique E et magnétique H du champ de l'électron les expressions:

$$\mathbf{E} = -\nabla \Phi - \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \; ; \quad \mathbf{H} = \text{rot } \mathbf{A} \; .$$

A et Φ sont déterminées par les équations suivantes:

$$\frac{1}{c^2} \frac{\delta^2 \Phi}{\delta t^2} - \nabla^2 \Phi = 4\pi \rho \; ; \; \frac{1}{c^2} \frac{\delta^2 A}{\delta t^2} - \nabla^2 A = 4\pi \frac{\rho \nu}{c} \; ; \; \frac{1}{c} \frac{\delta \Phi}{\delta t} + \text{div } A = 0$$

où

$$\nabla^2 = \frac{\delta^2}{\delta x^2} + \frac{\delta^2}{\delta y^2} + \frac{\delta^2}{\delta z^2}$$

et ϱ signifie la densité de l'électricité au point x, y, z; ϱ la vitesse de l'électron.

$$v^2 = \dot{\xi}^2 + \dot{\eta}^2 + \dot{\zeta}^2 .$$

J'admets ici que Φ et A sont des fonctions du temps uniquement par l'intermédiaire des coordonnées ξ , η , ζ de l'électron de sorte que:

$$\frac{1}{c} \frac{\delta}{\delta t} = \frac{\xi}{c} \frac{\delta}{\delta \xi} + \frac{\dot{\eta}}{c} \frac{\delta}{\delta \eta} + \frac{\dot{\zeta}}{c} \frac{\delta}{\delta \zeta}$$

$$\frac{1}{c^2} \frac{\delta^2}{\delta t^2} = \frac{\dot{\xi}^2}{c^2} \frac{\delta^2}{\delta \xi^2} + \frac{\dot{\eta}^2}{c^2} \frac{\delta^2}{\delta \eta^2} + \frac{\dot{\zeta}^2}{c^2} \frac{\delta^2}{\delta \zeta^2} + \frac{\ddot{\xi}}{c^2} \frac{\delta}{\delta \xi} + \frac{\ddot{\eta}}{c^2} \frac{\delta}{\delta \eta} + \frac{\ddot{\zeta}}{c^2} \frac{\delta}{\delta \zeta}$$

$$+ 2 \frac{\dot{\xi}}{c} \frac{\dot{\eta}}{c} \frac{\delta^2}{\delta \xi \delta \eta} + 2 \frac{\dot{\xi}}{c} \frac{\dot{\zeta}}{c} \cdot \frac{\delta^2}{\delta \xi \delta \zeta} + 2 \frac{\dot{\eta}}{c} \frac{\dot{\zeta}}{c} \frac{\delta^2}{\delta \eta \delta \zeta}.$$

En tenant compte des relations:

$$\frac{\delta}{\delta(x,y,z)} = -\frac{\delta}{\delta(\xi,\eta,\zeta)}; \quad \frac{\delta^2}{[\delta(x,y,z)]^2} = \frac{\delta^2}{[\delta(\xi,\eta,\zeta)]^2}$$

on obtient l'équation différentielle de •:

$$\frac{\partial^{2} \Phi}{\partial x^{2}} \left(1 - \frac{\dot{\xi}^{2}}{c^{2}} \right) + \frac{\partial^{2} \Phi}{\partial y^{2}} \left(1 - \frac{\dot{\eta}^{2}}{c^{2}} \right) + \frac{\partial^{2} \Phi}{\partial z^{2}} \left(1 - \frac{\dot{\zeta}^{2}}{c^{2}} \right)$$

$$+ \frac{\ddot{\xi}}{c^{2}} \frac{\partial \Phi}{\partial x} + \frac{\ddot{\eta}}{c^{2}} \frac{\partial \Phi}{\partial y} + \frac{\ddot{\zeta}}{c^{2}} \frac{\partial \Phi}{\partial z}$$

$$- 2 \frac{\dot{\xi}}{c} \frac{\dot{\eta}}{c} \frac{\partial^{2} \Phi}{\partial x \partial y} - 2 \frac{\dot{\xi}}{c} \frac{\dot{\zeta}}{c} \frac{\partial^{2} \Phi}{\partial x \partial z} - 2 \frac{\dot{\eta}}{c} \frac{\dot{\zeta}}{c} \frac{\partial^{2} \Phi}{\partial y \partial z} = -4\pi\rho$$

et une équation analogue pour A.

Posons:

$$\begin{split} (u\,,\,u_0) \, &= \frac{(x\,,\,\xi)}{\sqrt{1\,-\,\dot{\xi}^2/c^2}}\;; \quad (v\,,\,v_0) \, &= \frac{(y\,,\,\eta)}{\sqrt{1\,-\,\dot{\gamma}^2/c^2}}\;; \\ (w\,,\,w_0) \, &= \frac{(z\,,\,\zeta)}{\sqrt{1\,-\,\dot{\zeta}^2/c^2}} \end{split}$$

$$a = \frac{\frac{\ddot{\xi}}{\sqrt{1 - \dot{\xi}^2/c^2}}}{\sqrt{1 - \dot{\xi}^2/c^2}}; \quad b = \frac{\frac{\ddot{\eta}}{c^2}}{\sqrt{1 - \dot{\eta}^2/c^2}}; \quad c = \frac{\frac{\ddot{\zeta}}{c^2}}{\sqrt{1 - \dot{\zeta}^2/c^2}}$$

$$\alpha = \frac{\frac{\dot{\xi}}{c} \frac{\dot{\eta}}{c}}{\sqrt{\left(1 - \frac{\dot{\xi}^2}{c^2}\right)\left(1 - \frac{\dot{\eta}^2}{c^2}\right)}}; \quad \beta = \frac{\frac{\ddot{\xi}}{c} \cdot \frac{\dot{\zeta}}{c}}{\sqrt{\left(1 - \frac{\dot{\xi}^2}{c^2}\right)\left(1 - \frac{\dot{\eta}^2}{c^2}\right)}};$$

$$\gamma = \frac{\frac{\dot{\eta}}{c} \cdot \frac{\dot{\zeta}}{c}}{\sqrt{\left(1 - \frac{\dot{\eta}^2}{c^2}\right)\left(1 - \frac{\dot{\zeta}^2}{c^2}\right)}}.$$

L'équation différentielle de Φ s'écrit alors en fonction des nouvelles variables u, v, w.

$$\nabla^2 \Phi + a \frac{\partial \Phi}{\partial u} + b \frac{\partial \Phi}{\partial v} + c \frac{\partial \Phi}{\partial w} - 2\alpha \frac{\partial^2 \Phi}{\partial u \partial v} - 2\beta \frac{\partial^2 \Phi}{\partial u \partial w} - 2\gamma \frac{\partial^2 \Phi}{\partial v \partial w} = -4\pi \rho$$

Orientons les axes des x, y, z dans l'espace de telle manière que l'axe des x soit parallèle à la direction instantanée de la vitesse v de l'électron.

Alors, on a:

$$\dot{\xi} = v \; ; \quad \dot{\eta} = \dot{\zeta} = 0 \; ; \quad \alpha = \beta = \gamma = 0 \; ; \quad dv = dy \; ; \quad dw = dz$$

$$a = \frac{\frac{\ddot{\xi}}{c^2}}{\sqrt{1 - v^2/c^2}} \; ; \quad b = \frac{\ddot{\eta}}{c^2} \; ; \quad c = \frac{\ddot{\zeta}}{c^2} \; ;$$

$$(du \; , \; du_0 =) \; \frac{(dx \; , \; d\xi)}{\sqrt{1 - v^2/c^2}} \; ; \quad dv_0 = d\eta \; ; \quad dw_0 = d\zeta \; .$$

Pour • et A on obtient ainsi les équations suivantes:

$$\nabla^{2}\Phi + a\frac{\partial\Phi}{\partial u} + b\frac{\partial\Phi}{\partial v} + c\frac{\partial\Phi}{\partial w} = -4\pi\rho$$

$$\nabla^{2}A + a\frac{\partial A}{\partial u} + b\frac{\partial A}{\partial v} + c\frac{\partial A}{\partial w} = -4\pi\frac{\rho \cdot v}{c}$$

οù

$$\nabla^2 = \frac{\delta^2}{\delta u^2} + \frac{\delta^2}{\delta v^2} + \frac{\delta^2}{\delta w^2} .$$

En tenant compte des relations:

$$\frac{\delta}{[\delta(u,v,w)]} = -\frac{\delta}{[\delta(u_0v_0w_0)]}; \quad \frac{\delta^2}{[\delta(u,v,w)]^2} = \frac{\delta^2}{[\delta(u_0v_0w_0)]^2}$$

on peut écrire les mêmes équations sous la forme suivante:

$$\nabla_0^2 \Phi - a \frac{\partial \Phi}{\partial u_0} - b \frac{\partial \Phi}{\partial v_0} - c \frac{\partial \Phi}{\partial w_0} = -4\pi \rho$$

$$\nabla_0^2 A - a \frac{\partial A}{\partial u_0} - b \frac{\partial A}{\partial v_0} - c \frac{\partial A}{\partial w_0} = -4\pi \frac{\rho v}{c} ;$$

$$\nabla_0^2 = \frac{\partial^2}{\partial u_0^2} + \frac{\partial^2}{\partial v_0^2} + \frac{\partial^2}{\partial w_0^2} .$$

οù

Le mouvement uniforme.

Nous passons maintenant à l'étude du champ électromagnétique d'un électron en mouvement uniforme.

Dans ce cas, on a:

$$a = b = c = 0$$
; $\ddot{\xi} = \ddot{\eta} = \ddot{\zeta} = 0$.

Les équations de Φ et de A deviennent alors:

$$\frac{\partial^2 \Phi}{\partial u^2} + \frac{\partial^2 \Phi}{\partial v^2} + \frac{\partial^2 \Phi}{\partial w^2} = -4\pi\rho$$

$$\frac{\partial^2 A}{\partial u^2} + \frac{\partial^2 A}{\partial v^2} + \frac{\partial^2 A}{\partial w^2} = -4\pi \frac{\rho v}{c}.$$

Les solutions de ces équations sont:

$$\Phi = \int \int \int \cdot \frac{\rho \cdot du_0 \, dv_0 \, dw_0}{\sqrt{(u - u_0)^2 + (v - v_0)^2 + (\omega - w_0)^2}}$$

$$A = \frac{v}{c} \cdot \Phi .$$

Si l'on considère l'électron comme un point mathématique, on trouve pour Φ et A les expressions:

$$\Phi = \frac{\varepsilon}{\sqrt{\overline{X}^2 + \left(1 - \frac{v^2}{c^2}\right)(\overline{Y}^2 + Z^2)}}$$

$$A = \frac{v}{c} \cdot \Phi$$

car

$$\varepsilon \,=\, \int\!\!\int\!\!\int\, \rho\,\,.\,\,d\xi,\,d\eta,\,d\zeta$$

$$\overline{\mathbf{X}}\,=\,x\,-\,\xi\,\,;\,\,\,\overline{\mathbf{Y}}\,=\,y\,-\,\eta\,\,;\,\,\,\mathbf{Z}\,=\,z\,-\,\zeta\,\,.$$

Si l'on pose

$$R^2 = \overline{X}^2 + \overline{Y}^2 + Z^2$$

on obtient:

$$\Phi = \frac{\varepsilon}{R} \cdot \frac{1}{\sqrt{1 - \frac{v^2}{c^2} \sin^2(Rv)}}$$

$$A = \frac{v}{c} \cdot \frac{\varepsilon}{R} \frac{1}{\sqrt{1 - \frac{v^2}{c^2} \sin^2(Rv)}}$$

Si l'on admet que la trajectoire de l'électron est une droite parallèle à l'axe des x, on a pour les composantes de E et de H, en remarquant que:

$$\frac{\partial \mathbf{A}_{x}}{c \partial t} = -\frac{\partial \mathbf{A}_{x}}{\partial \xi} \frac{d\xi}{c dt} = \frac{v^{2}}{c^{2}} \cdot \frac{\varepsilon \cdot \overline{\mathbf{X}}}{\left[\sqrt{\overline{\mathbf{X}}^{2} + \left(1 - \frac{v^{2}}{c^{2}}\right)(\overline{\mathbf{Y}}^{2} + \mathbf{Z}^{2})}\right]^{3}}$$

les expressions suivantes:

$$(\mathbf{E}_x, \mathbf{E}_y, \mathbf{E}_z) = -\frac{\varepsilon}{\mathbf{R}^3} \cdot \frac{1 - v^2/c^2}{\left[\sqrt{1 - \frac{v^2}{c^2}} \sin^2{(\mathbf{R}v)}\right]^3} \cdot (\overline{\mathbf{X}}, \overline{\mathbf{Y}}, \mathbf{Z})$$

$$H_x = 0$$
; $H_y = +\frac{v}{c} E_z$; $H_z = -\frac{v}{c} E_y$.

Posons:

$$(E_u, E_v, E_w) = \frac{(u - u_0) (v - v_0) (w - w_0) \varepsilon}{r^3}$$

où

$$r^2 = (u - u_0)^2 + (v - v_0)^2 + (w - w_0)^2.$$

Il vient alors:

$$E_x = E_u \; ; \; E_y = \frac{E_v}{\sqrt{1 - v^2/c^2}} \; ; \; E_z = \frac{E_w}{\sqrt{1 - v^2/c^2}}$$

et

$$H_x = 0$$
; $H_y = \frac{-\frac{v}{c} E_w}{\sqrt{1 - v^2/c^2}}$; $H_z = \frac{v}{c} \cdot \frac{E_v}{\sqrt{1 - v^2/c^2}}$.

En comparant ces relations avec les équations de transformations déduites du principe de relativité, on voit que les axes u, v, w doivent être considérés comme liés à l'électron.

Cette solution des équations du champ électromagnétique fournit donc directement les relations de M. Einstein.

Le mouvement accéléré.

Dans le cas du mouvement accéléré de l'électron, nous allons calculer directement les intensités E et H du champ électromagnétique sans passer par l'intermédiaire des expressions de Φ et de A.

Les équations du champ électromagnétique sont:

rot H
$$-\frac{1}{c}\frac{\partial E}{\partial t} = 4\pi \frac{\rho v}{c}$$
; rot E $+\frac{1}{c}\frac{\partial H}{\partial t} = 0$; $\frac{\partial \rho}{\partial t} + \text{div}(\rho v) = 0$
div E $= 4\pi \rho$; div H $= 0$.

On déduit de ces équations

$$\nabla^{2}E - \frac{1}{c^{2}} \frac{\partial^{2}E}{\partial t^{2}} = 4\pi \left[\nabla \rho - \nu (\nu \nabla \rho)\right] + 4\pi \rho \left[\frac{d\nu}{dt} - \nu \cdot \operatorname{div} \nu\right]$$

$$\nabla^{2}H - \frac{1}{c^{2}} \frac{\partial^{2}H}{\partial t^{2}} = -\operatorname{rot} \frac{\rho \nu}{c} \cdot 4\pi .$$

Comme ces équations ont la même forme que les équations déterminant Φ et A, on peut leur appliquer les mêmes transformations

$$\nabla_0^2 \mathbf{E} - a \frac{\delta \mathbf{E}}{\delta u_0} - b \frac{\delta \mathbf{E}}{\delta v_0} - c \frac{\delta \mathbf{E}}{\delta w_0} = -4\pi [\nabla_1 \rho - v (v \nabla_1 \rho)]$$

$$\nabla_0^2 \mathbf{H} - a \frac{\delta \mathbf{H}}{\delta u_0} - b \frac{\delta \mathbf{H}}{\delta v_0} - c \frac{\delta \mathbf{H}}{\delta w_0} = \operatorname{rot}_1 \frac{\rho v}{c} \cdot 4\pi .$$

On a en effet

$$\frac{dv}{dt} - v \operatorname{div} \cdot v = 0 ,$$

vu que

$$\frac{dx}{dt} = v \; ; \quad \frac{dy}{dt} = \frac{dz}{dt} = 0 \; .$$

Posons:

$$\begin{split} \nabla_{\! 1} &= i \, \frac{\eth}{\eth \xi} + j \, \frac{\eth}{\eth \eta} + k \, \frac{\eth}{\eth \zeta} \\ \mathrm{rot}_{\! 1} \, \mathrm{S} &= i \left(\frac{\eth \mathrm{S}_z}{\eth \eta} - \frac{\eth \mathrm{S}_y}{\eth \zeta} \right) + j \left(\frac{\eth \mathrm{S}_x}{\eth \zeta} - \frac{\eth \mathrm{S}_z}{\eth \xi} \right) + k \left(\frac{\eth \mathrm{S}_y}{\eth \xi} - \frac{\eth \mathrm{S}_x}{\eth \eta} \right) \,. \end{split}$$

On a comme solutions de ces équations:

$$E(u, v, w) = \int \int \int [\nabla_1 \rho - v(v \nabla_1 \rho)] \varphi(u, v, w, u_0 v_0 w_0) du_0 dv_0 dw_0$$

$$H(u, v, w) = \int \int \int \operatorname{rot}_1 \frac{\rho v}{c} \cdot \varphi(u, v, w, u_0 v_0 w_0) du_0 dv_0 dw_0$$

où φ est l'intégrale particulière de l'équation adjointe.

(δ)
$$\nabla_0^2 \varphi + a \frac{\partial \varphi}{\partial u_0} + b \frac{\partial \varphi}{\partial v_0} + c \frac{\partial \varphi}{\partial w_0} = 0$$

 φ doit être une fonction régulière dans tout l'espace sauf au point (u, φ, φ) . Pour intégrer l'équation (δ) posons

$$\varphi(u, v, w, u_0 v_0 w_0) = \lambda(u, v, w, u_0 v_0 w_0) e^{+\frac{a}{2}(u - u_0) + \frac{b}{2}(v - v_0) + \frac{c}{2}(w - w_0)}$$

et introduisons cette expression dans l'équation (δ). On obtient alors une équation qui détermine λ .

$$\nabla_0^2 \lambda - \chi^2 \cdot \lambda = 0$$

où

$$z = \frac{1}{2} \sqrt{a^2 + b^2 + c^2} \ .$$

Nous allons nous servir des trois intégrales suivantes de cette équation:

$$(\lambda_u, \lambda_v, \lambda_w) = \left[\frac{1}{r^3} + z \frac{1}{r^2}\right] e^{-r} \cdot (u - u_0) , (v - v_0) , (w - w_0)$$

où

$$r^2 = (u - u_0)^2 + (v - v_0)^2 + (w - w_0)^2$$
.

Pour φ on obtient, par conséquent:

$$(\varphi_u, \varphi_v, \varphi_w) = \left[\frac{1}{r^3} + \varkappa \frac{1}{r^2}\right] e^{-\varkappa r[1 - \cos(\varkappa r)]} \cdot (u - u_0) (v - v_0) (w - w_0)$$

Mais

$$\begin{split} i_u[\bigtriangledown_1 \rho - v(v \bigtriangledown_1 \rho)] &= \left(1 - \frac{v^2}{c^2}\right)^{\!\!\!1/2} \frac{\delta \rho}{\delta \xi} \\ j_v[\bigtriangledown_1 \rho - v(v \bigtriangledown_1 \rho)] &= \frac{\delta \rho}{\delta \eta} \ ; \quad k_w[\bigtriangledown_1 \rho - v(v \bigtriangledown_1 \rho)] = \frac{\delta \rho}{\delta \zeta} \ , \end{split}$$

car

$$\begin{split} i_u &= \frac{i_x}{\sqrt{1 - v^2/e^2}} \; ; \quad j_v = j_y \; ; \quad k_w = k_z \\ i_u^2 &= j_u^2 = k_w^2 = 1 \qquad (i_u j_v) = i_u \, k_w) = (j_v \, k_w) = 0 \end{split}$$

et

$$j_{v} \operatorname{rot}_{1} \frac{\rho v}{c} = \frac{v}{c} \frac{\delta \rho}{\delta \zeta}; \quad k_{w} \operatorname{rot}_{1} \frac{\rho v}{c} = -\frac{v}{c} \frac{\delta \rho}{\delta \eta}; \quad i_{u} \operatorname{rot}_{1} \frac{\rho v}{c} = 0$$

parce qu'on a:

$$\label{eq:continuous_energy} \nu = - \bigtriangledown s \ ; \quad \dot{\xi} = \nu \ ; \quad \dot{\eta} = \dot{\zeta} = 0 \ .$$

Or, comme

$$\varepsilon = \int \int \int \rho \, d\xi \, . \, d\eta \, . \, d\zeta \, ,$$

et

$$\frac{\epsilon}{\sqrt{1-v^2/c^2}} = \int\!\int\!\int\!du \,.\,dv \,.\,dw \,.\,\rho \ .$$

il suit de la relation

$$\iint \int_{\nabla_1} \rho \, du_0 \, dv_0 \, dw_0 = \frac{n}{\sqrt{1 - v^2/c^2}} \iint \rho \, d\sigma = \frac{\mu \varepsilon}{\sqrt{1 - v^2/c^2}}$$

où

$$n = i_u + j_v + k_w ,$$

que

$$\int \int \int \frac{\partial \rho}{\partial \xi} du_0 dv_0 dw_0 = \int \int \int \frac{\partial \rho}{\partial \eta} du_0 dv_0 dw_0$$
$$= \int \int \int \frac{\partial \rho}{\partial \zeta} du_0 dv_0 dw_0 = \frac{\varepsilon}{\sqrt{1 - v^2/c^2}}$$

En tenant compte de toutes ces relations et en considérant l'électron comme un point mathématique, on obtient pour les

composantes de E et H les relations suivantes:

$$\begin{bmatrix} \mathbf{E}_{x}, \ \mathbf{E}_{y}, \ \mathbf{E}_{z}) = \mathbf{E}_{0x}, \ \mathbf{E}_{0y}, \ \mathbf{E}_{0z}) \\ \hline \begin{bmatrix} \mathbf{1} + \mathbf{z}\mathbf{R} \cdot \frac{\sqrt{1 - \frac{v^{2}}{c^{2}}\cos^{2}\left(\mathbf{R}_{v}\right)}}{\sqrt{1 - v^{2}/c^{2}}} \end{bmatrix} e^{-\mathbf{z}\mathbf{R} \cdot \frac{\sqrt{1 - \frac{v^{2}}{c^{2}}\sin^{2}\left(\mathbf{R}_{v}\right)}}{\sqrt{1 - v^{2}/c^{2}}} \begin{bmatrix} \mathbf{1} - \cos\left(\mathbf{z}, \mathbf{R} \cdot \frac{\sqrt{1 - \frac{v^{2}}{c^{2}}\sin^{2}\left(\mathbf{R}_{0}\right)}}{\sqrt{1 - v^{2}/c^{2}}}\right) \end{bmatrix}$$

 $H_r = 0$

$$(H_y, H_z) = \frac{v}{c} [E_z, -E_z]$$

où

$$(\mathbf{E_{0}}_{x}, \ \mathbf{E_{0}}_{y}, \ \mathbf{E_{0}}_{z}) = -\frac{\varepsilon}{\mathbf{R}^{3}} \frac{\left(1 - \frac{v^{2}}{c^{2}}\right)}{\left[\sqrt{1 - \frac{v^{2}}{c^{2}}\sin^{2}\left(\mathbf{R}_{v}\right)}\right]^{3}} . (\overline{\mathbf{X}}, \ \overline{\mathbf{Y}}, \ \mathbf{Z})$$

Posons

$$\left(\mathbf{E}_{u}\,,\,\,\mathbf{E}_{v}\,,\,\,\mathbf{E}_{w}\right)=-\left.\,\varepsilon\left[\frac{1}{r^{3}}+\,\varkappa\,\,\frac{1}{r^{2}}\right]e^{-\varkappa r\,\left(1-\cos\left(\varkappa r\right)\right)}\,.\,\left(u\,-\,u_{0}\right)\left(v\,-\,v_{0}\right)\left(w\,-\,w_{0}\right)$$

Alors on obtient

$$E_x = E_x$$
;

$$(E_y, E_z) = \frac{(E_v, E_w)}{\sqrt{1 - v^2/c^2}} \cdot (H_y, H_z) = \frac{v/c}{\sqrt{1 - v^2/c^2}} \cdot (E_w, -E_v)$$

Ce sont là les relations de M. Einstein.

Eu, Ev, Ew sont les composantes du champ électromagnétique de l'électron par rapport à un système d'axes (u, v, w) qui à l'instant considéré a la même vitesse v que l'électron. Par rapport au système de référence (u, v, w), l'électron est à cet instant en repos, mais il est accéléré.

Nous allons encore calculer l'énergie électrique μ et magnétique M de l'électron, rapportée au système d'axes (x, y, z).

On a

$$\mu = \frac{1}{8\pi} \int \int \int (E_x^2 + E_y^2 + E_z^2) \, dx \, dy \, dz$$

expression que l'on peut aussi mettre sous la forme:

$$\mu = \frac{\sqrt{1 - v^2/c^2}}{8\pi} \int \int \int E_u^2 du \, dv \, dw + \frac{1}{8\pi \sqrt{1 - v^2/c^2}} \cdot \int \int \int (E_v^2 + E_w^2) \, du \, dv \, dw .$$

En introduisant à la place de cos (xv) la valeur moyenne 0, on obtient:

$$\overline{\mathbf{E}_{u}^{2}} = \overline{\mathbf{E}_{v}^{2}} = \overline{\mathbf{E}_{w}^{2}} = \frac{1}{3} \frac{\varepsilon^{2}}{r^{4}} [1 + \varkappa r]^{2} e^{-\varkappa r}$$

car on a:

$$\overline{(u-u_0)^2} = \overline{(v-v_0)^2} = \overline{(w-w_0)^2} = \frac{1}{3} r^2$$

d'où l'on déduit:

$$\mu = \frac{\epsilon^2}{8\pi} \bigg[\sqrt{1-v^2/c^2} + \frac{2}{\sqrt{1-v^2/c^2}} \bigg] \frac{1}{3} \int \frac{[1+\varkappa r]^2}{r^2} \cdot 4\pi dr$$

parce que:

$$\iiint du \, dv \, dw = 4\pi \int r^2 \, dr .$$

Posons

$$\frac{\partial S(r)}{\partial r} = \frac{(1 + \kappa r)^2}{r^2} e^{-\kappa r}.$$

Alors il vient:

$$\mu = \frac{\epsilon^2}{6} \bigg[\sqrt{1-\nu^2/c^2} + \frac{2}{\sqrt{1-\nu^2/c^2}} \bigg] \left[S\left(\infty\right)^{\frac{1}{2}} - S\left(\sigma\right) \right] \; . \label{eq:mu_energy}$$

Or, dans le voisinage de r = 0, on a approximativement:

$$\frac{\partial \mathbf{S}(r)}{\partial r} = \frac{1}{r^2} \; ; \quad \mathbf{S}(r) = -\frac{1}{r} \; ,$$

done

$$S(\sigma) = \frac{-1}{\sigma}$$
 $(\sigma - rayon de l'electron)$.

Pour r très grand, on a

$$\frac{\partial S}{\partial r} = \varkappa e^{-\varkappa r} \qquad S(r) = -e^{-\varkappa r}$$

d'où

$$S(\infty) = 0 .$$

Il s'en suit que:

$$\mu = \frac{\varepsilon^2}{6\sigma} \left[\sqrt{1 - v^2 c/^2} + \frac{2}{\sqrt{1 - v^2/c^2}} \right] .$$

Pour l'énergie magnétique M, on obtient pareillement:

$$\label{eq:Mass} M \, = \frac{\varepsilon^2}{3\sigma} \left[\frac{1}{\sqrt{1 \, - \, v^2/c^2}} - \, 1 \right] \, - \, \frac{\varepsilon^2}{3\sigma} \left[\sqrt{1 \, - \, v^2/c^2} \, - \, 1 \right] \, \, .$$

Pour l'énergie totale, on trouve par conséquent:

$$\mu + M = \frac{2}{3} \frac{2^2}{\sigma} \left[\frac{1}{\sqrt{1 - v^2/c^2}} - 1 \right] - \frac{1}{6} \frac{\varepsilon^2}{\sigma} \left[\sqrt{1 - v^2/c^2} - 1 \right] + \frac{2}{3} \frac{\varepsilon^2}{\sigma} .$$

Cette expression présente exactement la même valeur que si l'électron n'était pas accéléré.