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46 SEANCE DU 17 MARS

- vérifier plus exactement le principe de l'inertie, il serait indi-
qué de remplacer le fil de suspension par un cordon sans fin-
tendu entre deux pouhes

Séance du 417 mars 1921.

D. Mirimanorr. — La tmﬁsformation de Lorenz-Einstein et le
temps universel de M. Ed. Guillaume. |

Dans une série de communications et d’articles, M. Ed. GurL-
LAUME a cherché & introduire dans la théorie de la relativité une
représentation monoparameétrique du temps. Il a réussi a don-
ner de ce probleme une solution intéressante dans le cas ou le
nombre des systemes de référence est égal a deux. Cette solu-
tion comporte, comme on sait, une interprétation géométrique
simple.

Je me propose d’en donner une interprétation nouvelle. Je
ferai voir que le parameétre ¢ de M. GuiLLaume ne difféere que.
par un facteur constant du temps z d'un systéme particulier
d’EinsteIN que jappelle systéme médian'. A chaque couple de
systémes de référence correspond un systéme médian et un para-
metre ¢ de M. GuiLoarMe. On se rend mieux comptealors pour-
quoi le procédé de M. GuiLLaume n’aboutit plus lorsque le nom-
bre » des systemes de référence est supérieur & deux. En effet,
pour z > 2 le nombre des systémes médians et par conséquent
celui des parameétres ¢ est supérieur & un et ces parameétres sont
en général distincts.

1. Systéme médian. Soient S, et S, deux systemes de I'eterence.
d’EinsTEIN animés I'un par rapport & I'autre d’un mouvement
de translation uniforme le long des axes o, x;, 0, x,. Je suppose .
“que la transformation de Lorenz-EinsTEIN soit applicable & ces
systémes et que par conséquent les coordonnées x,, x, et les
temps 7, , 7, soient liés par lesrelations
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! Ce terme m’a été suggéré par M. Plancherel.
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ou & — : y = 1—1p , v étant la vitesse de S, par rapport
as,.

Envisageons maintenant un 3™ systéme S parallele 2 S, et S,

et animé également d'un mouvement de translation le long de

. Soit v, sa vitesse par rapport i S,. La transformation de
LORENZ s’applique encore et 1'on a

= By (2 + apet) , = By (2, — oeery)
ety = By et + agz) , cv = B (eT, — a,x,) ,

(2)

ou x et v sont l'abscisse et le temp% conespondants dans S,

14

__o
ao_

, ete.

Supposons que la v1tesse de S, par rapport 4 S soit aussi égale
a v,. Je dirai que le systeme S est le systéme médian correspon-
dant. Comment s’expriment »,, &,, 8, en fonction de v, «, 8 ? Pour
le trouver il suffit d’exprimer x,, 7, en fonctions des para-
metres x, T (form. (2)) et ces derniers en fonction de x,, z,et
identifier les formules finales avec (1), ce qui donne

2a, L B—1 2 g4t
EEr e i i i

, (1‘faa0){3:_1. (3)

2. Contraction. Envisageons deux points P’ et P”. Soient
x,, %, 2 ; x ,, & leurs coordonnées dans S,,'S, et S au
méme moment z (temps d’Einsreiy du systéme médian). En
vertu de (2)

PV ’ ; "
x, =B lx + aet) , x, =B (v + 2 cT) .

Done

' s !
X, — X=X, — X, . o )

. Il n’y a donc pas de contraction, pourvu que P’ et P”soient
envisagés au méme moment z. -

La réciproque est vraie, en d’autres termes: Si la contraction
n’a pas lieu en adoptant le temps z d’un systéme d’ EINSTEIN ce.
systeme est le.systéme médian,

3. Autre relation. Soit P un point. d’abscisses x, et i dans‘
S,etS,. On a, en 1empla(;ant dans la 1" formule (1) le para-
metre 7, par son expresswn en, fonction de z, et T .
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@ =0 (1—0{&0]12-{—%61 :xzw}-;@-vr, (99

20 (i}

en vertu de (3).

4, L’heure universelle de M. Guillaume. Soit k une fonction
quelconque de v. Comme v est const., & est constant. Supposons
k>0 et posons £ = kz. Si au lieu du temps d’EixsTEIN 7, On
adopte le temps ¢, la simultanéité n’est pas troublée. L’égalité
(4) reste vraie, donc pas de contraction, I'égalité (5) s’écrit

1 ‘
=%y + g (sE vi. Supposons en particulier que k — g , d’oir
6 ° °
§= ('— z. L’équation (5) s’éerit
(1]
&y ==ty = vt . : (6)
Multiplions la 2™ équation du second groupe (2) par k — g , il

. : &
vient, en vertu de (3), 0

¢ g —1
Cfl_gt—}—- FJ&-

On tombe, comme on voit, sur 'équation qui définit le temps
universel ¢ de M. GuiLLaume'. Par conséquent le temps ¢ défini

. il
par { = @5 7 est bien le paramétre de M. GuiLrAuME. Il ne differe
S .

du temps ¢ du systéme médian que par le facteur constant

g

5. Cas de trois systémes. Envisageons trois systemes S,, S,,

S, paralléles animés d’'un mouvement de translation uniforme

- parallélement aux axes des x. Soient v,,, v, Uy, les vitesses

relatives de S, par rapport a S,, de S, par rapport 4 8,, de S;

par rapport & S, et ¢,,, t,5, ¢,; les paramétres de M. GUILLAUME.
On aura alors en vertu de (6). |

Xy = vy by 5 X =X v by Xy = Xy - Vg lag

par exemple l'abscisse x, de O, est donnée par x, = v, {,,,
celle de O, par &, = v,, t,,. Les paramétres t,,, t,,, ¢,, ne doi-
vent pas étre confondus entre eux.

¢ GUIL'LAUME, Ed. La théorie de la relativité en fonction du temps
universel. Arch Sc. phys. et nat. (4), 46, p. 309.
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