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1921 Vol. 3. Novembre-Décembre.

LES BASES LOGIQUES

DE 1A

THEORIE DE RELATIVITE GENERALISEE

" PAR

A. SCHIDLOF
(Suite et fin).

IV. — LA THEORIE DE RELATIVITE GENERALISEE.

Il est facile & voir que sous son nouvel aspect la conception
relativiste est en contradiction avec le point de départ de la
théorie restreinte.

Si la vitesse de la lumiere est constante dans un systeme
galiléen, elle ne le sera plus dans un systéeme de référence qui
effectue, par rapport au systeme galiléen, un mouvement quel-
conque, car si les rayons lumineux ont des trajets rectilignes
dans un systeme galiléen, ces trajets seront, en général, curvi-
lignes dans un systéeme de référence animé d’'un mouvement
tournant. Du point de vue actuel, nous pouvons remplacer le
mouvement curviligne d’un systéme par un certain champ de
gravitation physiquement équivalent & ce mouvement. Il en
résulte que la vitesse de la lumicre peut varier sous Uinfluence
d'un champ de gravitation'.

' La courbure du rayon lumineux indigue, selon le principe de
Huyhens, une vitesse de propagation variable d’'un point du champ a
Pautre. '

Arcuives, Vol. 3. — Novembre-Décembre 1921. i
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La vitesse de la lumiere est toutefois constante dans tous les
cas ou l'action de la gravitation est négligeable. Dans I'état
actuel de la physique, le principe de la constance de la vi-
tesse de la lumiére doit étre considéré comme un prin-
cipe expérimental tres précis. 11 est au moins aussi exact
que Tindiquent les limites de précision de I'expérience
de Michelson et Morley. Il n’est cependant pas d’une pré-
cision absolue, car les observations faites, au cours de I’éclipse
totale de soleil du 29 mai 1919, ont mis en évidence la
courbure des rayons lumineux produite par le champ de
gravitation du soleil. La prévision théorique d’Einstein a
été vérifide quantitativement, et c’est 1a évidemment un ar-
eument expérimental décisif en faveur d’une conception fran-
chement relativiste. '

Si Pon abandonne le postulat d’une vitesse constante de la
Jumieére, le continu chrono-spatial perd, en principe, toute pro-
priété métrique. Cette indétermination est d’ailleurs nécessaire,
car sous l'influence d’'un mouvement curviligne, soit d'un champ
de gravitation équivalent, la matiere prend des propriétés
métriques incompatibles avec celles du continu de Minkowski.
On peut s’en convaincre a l'aide de 'exemple suivant donné
par Kinstein :

Considérons un systeme matériel tournant autour d'un cer-
tain axe avec une vitesse angulaire constante. Supposons des
montres tdentiques disposées a des distances différentes de I'axe
de rotation. Il résulte alors des conventions métriques de la
théorie restreinte, applicables, de notre point de vue actuel, a
la matiére, mais non pas a 'espace, que les montres marchent
d’autant plus lentement qu’elles sont plus éloignéesde I'axe. La
vitesse circonférencielle des montres est, en effet, d’autant plus
grande que leur distance a I'axe est plus grande. D’apreés
I'hypothese chronométrique fondamentale de lathéorie restreinte
le retard dépend du carré de la vitesse, soit de 1'énergie du
champ de la force centrifuge. Si I'on attribue & ce résultat une
signification générale pour un champ de gravitation quelcon-
que, on peut calculer, d’apres le méme principe, le retard que
subit une montre, soit la période des oscillations d’un électron
émettant une raie spectrale, dans le champ de gravitation du
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soleil’. C’est ce qu'a fait Einstein. Il a pu ainsi prévoir, quanti-
tativement, le déplacement vers le rouge que doivent subir les
raies spectrales solaires. Cette seconde prévision semble actuel-
lement aussi vérifiée avec une exactitude suffisante.

En ce qui concerne le principe métrique selon lequel la lon-
gueur d’un étalon dépend de sa vitesse, on obtient un résultat
assez surprenant a premiere vue, en 'appliquant a4 'exemple
du corps tournant. Mesurons la circonférence d’un cercle, tracé
dans un plan perpendiculaire & I'axe de rotation et centré sur
cet axe, puis, avec la méme échelle, le diametre de cette circon-
férence. Nous trouverons alors que le rapport entre la longueur
de la circonférence et celle du diamétre est en tous cas inférieur
amw = 3,14..., parce que la contraction de Lorentz intervient
dans la premiére mesure, et non pas dans la seconde. L’écart
sera d’autant plus grand que le carré de la vitesse, respective-
ment I’énergie du champ de gravitation, est plus grand. Il en
découle la conséquence que, dans un champ de gravitation, la
matiere prend une métrique non-euclidienne.

La métrique de la matiére est ainsi en général variable d’un
point du continu chrono-spatial & I'autre, et si 'on impose & ce
continu une métrique fixe, toute théorie physique devient
impossible. Pour satisfaire au postulat fondamental de la rela-
tivité, il est donc nécessaire de renoncer & foufe convention
métrique imposée au continu chrono-spatial a priori, ¢’est-a-dire
indépendamment des propriétés métriques de la matiére.

! D’aprés la théorie restreinte la période T’ d’une montre animée
p p

d’une vitesse v est :

T
= ,,v/"i e

17

T étant la période de la méme montre a Pétat de repos. Si la montre se
trouve a la distance r de ’axe du systéme tournant, et si » est la vitesse
angulaire, on a: v* = w?r?*=— — 2U. U est I'énergie potentielle du champ
de la force centrifuge & une distance » de 'axe. Dans le champ de gravi-

tation d’un astre on a approximativement: U — — ; , o étant une gran-
deur proportionnelle 4 la masse de l'astre et r la distance entre le
point considéré et le centre de ’astre. On obtient ainsi’ 1" = 7771#7 .
Vi E
.

tformule qui indique nn déplacement vers le rouge des raies spectrales.
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Ceci dit, le postulat de relativité peut étre énoncé mathéma-
tiquement comme suit :

Les lois physiques doivent avoir une forme covariante, vis-d-
vis d'une transformation quelconqute des coordonudes auzquelles
on les rapporte.

Mettre les lois physiques sous une forme covariante vis-a-vis
d’une transformation quelconque des coordonnées, est un pro-
bléme purement mathématique qu'Einstein a eu la chance de
trouver tout résolu au moment ot il voulait achever sa théorie:

Dans un but d’analyse mathématique pure Gauss s’était posé le
méme probléme ; sa théorie des surfaces en donne la solution.
Une surface quelconque est un continu non-euclidien & deux
dimensions. On peut tracer sur la surface deux familles de
courbes quelconques. A chaque courbe de la premiere famille
correspond une valeur constante d'un certain parametre u,
variant d’une facon continue entre cette courbe et les portions
voisines de la surface. Il en est de méme du parameétre u, attri-
bué aux courbes de la seconde famille. Les courbes sont tracées
de telle facon que chaque point P du continu est traversé par
une seule courbe u, et par une seule courbe w, (voir la figure 2).
La position d’'un point quelconque du continu peut alors étre



THEORIE DE RELATIVITE GENERALISEE 573

caractérisée par les valeurs numeériques des parametres u, et
i, quon appelle les coordonnées de Gauss.

Soient alors denx points infiniment voisins, le point P avec les
coordonnées u, et u, et le point P’ avec les coordonnées

ui = u, + du, et u; = w, + du, .
Le carré de la distance ds des points P et P’ est défini par:
(1) O du? + 28, du, day + gy, dit’

Les coefficients g,,, 4,5, 4., sont certaines fonctions de u, et
de u,. La forme de ces fonctions dépend évidemment des coor-
données choisies. |

La proposition (1) n’est pas vraie d’'une fa¢on générale, mais
seulement dans le cas olt une portion infiniment petite de la
surface se comporte comme un élément plan, en d’autres termes
si la géométrie euclidienne est applicable dans I'infiniment
petit.

En maintenant cette méme restriction on peut utiliser les
coordonnées de Gauss pour étudier la géométrie d'un continu
quelconque & » dimensions. Le carré de la distance entre deux
points infiniment voisins est exprimé par la formule :

(2) ds® = N gy dugduy .

14

L2, 3., n)

I

(e, k

La somme Z renferme les #* produits du,diu,. On peut en

i . n(n + 1
réduire le nombre de termes a —(—2——)

la condition de symétrie des coefficients : g,, — ¢,,. Pour n = 4,
il y a dix coefficients distincts. Ces coefficients sont des fonetions
des » coordonnées u;. On lesappelle les composantes covariantes
dun «tenseur métrique ». B. Riemann a pris la formule (2)
comme point de départ de ses recherches sur les propriétés des
continus non-euclidiens & » dimensions. La théorie de Gauss
conduit au résultat important que la métrique d’une surface,
dans le voisinage d’'un point donné, est caractérisée, indépen-
damment des coordonnées choisies, par une seule grandeur que
Gauss appelle la courbure. La courbure de Gauss se détermine

en tenant compte de
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par des mesures faites uniquement sur la surface méme. Elle
devient nulle pour une surface plane.

Riemann (14) a trouvé que la courbure de Gauss peut servir i
I'étude des propriétés métriques générales des continus i n dimen-

sions. Les mailles des réseaux des coordonnées de Gaussdéfinissent

nin—1) . G : :
———— surfaces infiniment petites qui se rencontrent en un
point du continu. L’invariant de courbure d’une surface quel-

conque passant par le point considéré s’obtient sous forme d’une

nin—1 5 .
2—) variables superficielles.

Cette expression est la somme des produits des variables men-
tionnées, prises deux a deux et multipliées: par des coefficients

qui satisfont a certaines conditions de symétrie. Les coefficients
n? (n? — 1)
—5—— sont les composantes

d’un tenseur appelé¢ le tenseur de Riemann-Christoffel. Ce ten-
seur a 6 composantes pour » — 3. et 20 pour » — 4, fonctions
des g, et de leurs dérivées premiéres et secondes. Si les g,
sont des constantes, toutes leurs dérivées sont nulles, et alors
toutes les composantes du tenseur de Riemann-Christoffel sont
également nulles; la géométrie du continu est euclidienne. Si
la courbure est constante dans toutes les directions autour d'un
point donné, elle est aussi la méme pour tous les points du
continu, et la géométric est alors, ou bien la géométrie
« hyperbolique » de Lobatchewski, ou hien la géométrie «ellip-
tique » de Riemann.

L’emploi des coordonnées de Gauss permettant de s’aftranchir
de toute restriction métrique, Einstein a pu éprouver la valeur
de sa théorie en abordant le probleme capital de la gravitation
universelle. Pour trouver la loi générale de la gravitation, il
faut, avant tout, mettre les lois empiriques sous une forme
satisfaisant au postulat fondamental: de la théorie de relativité
généralisée (15).

Par rapport & un systéme galiléen. le mouvement d'un point
matériel libre est rectiligne et uniforme. Dans la géométrie
générale de Riemann il n’existe pas de ligne droite, mais elle
a son équivalent dans la ligne géodésique qui joue un role
important dans les recherches analytiques de Gauss, de Riemann
et des continuateurs de leurs théories. La ligne géodésique est

expression quadrvatique de

distinets dont le nombre est
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la ligne la plus courte, ou plus exactement; la ligne dont la
longueur entre deux points donnés est un extrémum. Expri-
mee au moyen des coordonnées de Gauss, 'équation d’une
géodésique peut aussi étre interprétée comme I'équation du
mouvement d’un point matériel sous 'influence d’un champ
de gravitation. Cette équation n’a pas une forme covariante, et
elle ne doit pas l'avoir, car, par un choix approprié des coor-
données, on doit pouvoir attribuer au mouvement d’un point
un caractere cinématique quelconque.

Désignons par ds U'élément d’arc de la courbe géodésique.
Celle-ci est alors caractérisée dans un continu riemannien &
quatre dimensions par quatre équations différentielles de la
forme suivante:

: d*u - du, du,
) S B

(ttl' . . fa 1. - ’ ” ’ -
Les dérivées -d—‘ signifient la direction de I'élément d’arc
.S

d*u
par rapport aux coordonnées, et Ej est, par conséquent, le
changement de direction. Les coefficients 1';, sont des fonc-

- . r « s ’ L3 ag.k
tions linéaires homogénes des dérivées premiéres }-’5— Pour
i 4

n—=—4 le membre droit des équations (3) renferme dix coefficients

distinets 1%, . Si Pon attribue & ds la signification 'de la di-ée
2

T”l sont les compo-

d’un déplacement infiniment petit*, les

. . du, ) ;
santes de Vaccélération et les d—_‘ celles de la vitesse (& quatre di-

mensions) du mouvement. Les coefficients I';, sont alors les conipro-
santes du champ de gravitation. 11 y en a 40 en tout.

Ces 40 coefficients 1, et leurs dérivées premiéres par rapport
aux coordonnées 2, interviennent dans les composantes du ten-
seur de Riemann-Chrvistotfel qui s’expriment complétement au

' Dans la théorie de Minkowski, 1’élément d’arc ds dont les composantes
spatiales sont dz, dy, dz signifie la « durée propre » du déplacement infi-
niment petit en question, c’est-d-dire la durée qui serait marquée par une
montre accompagnant la matiére qui se déplace.
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moyen de ces grandeurs. Les composantes du champ de gravi-
tation satisfont donc & certaines relations covariantes parmi
lesquelles doit se trouver la loi cherchée de la gravitation uni-
verselle. Toutefois cette loi elle-méme est d’abord indéterminée,
car ¢tant donnée une relation covariante on peut en déduire une
infinité d’autres. Comment savoir laquelle de toutes les relations
possibles exprime la loi cherchée? Voici de quelle facon Einstein
a pu résoudre ce probleme : Au postulat de relativité généra-
lisée il adjoint :

1. Le principe de Uégalité de la masse inerte et de la masse
pondérable ; cela veut dire que la métrique du continu ne doit
dépendre que de la répartition des masses inertes, le champ de
aravitation n’étant autre chose que le « champ métrique ».

2. Les principes de conservation de ['énergie et de la quantité
de mouvement qui dowvent s’ appliquer non seulement ar « champ
matériel » mars ausst au champ de gravitation.

3. Le postulut purement mathématique que les équations aux
dérivées partielles exprimant la loi de gravitation en fonction
des U, et de leurs dérivées ne doivent pas étre dun ordre
supérienr au deuwxiéme par rapport aur (,,.

Drapreés la théorie restreinte, les principes de conservation
indiquent que la divergence du « tenseur d’énergie» T,, doit
étre nulle. Il faut d’abord adapter ces formules au postulat
de covariance des lois physiques en y introduisant les coor-
données de GGauss. Sous cette nouvelle forme, qui fait intervenir
dans les équations les g, et leurs dérivées, elles n'indiquent
plus que la divergence des T,, est nulle. Cette loi ne serait satis-
faite que si toutes les composantes I'Y, du champ de gravitation
étaient nulles. :

Le principe 1 suggere I'idée de former des sommes des compo-
santes du tenseur de Riemann-Christoffel constituant les compo-
santes d'un tenseursymétrique (5,,. Cetenseur,qu’on peut appeler
le « tenseur réduit » de Riemann-Christoffel, a autant de compo-
santes que le tenseur T,,. La plus simple des relations possibles
entre les deux tenseurs G, et T, s’obtient de la facon suivante:
En multipliant T,, par le facteur constant =, jouant ici le méme
role que la constante de la loi de Newton, on peut supposer que
la somme tensorielle G, 4 2 T, esttoujoursnulle. Onobtient
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ainsi dix équations du deuxiéme ordre qui satisfont au principe
de relativité généralisée.

Cependant Einstein n’a pas admis ces équations parce qu’eclles
ne satisfont pas a la condition 2, & savoir aux principes de con-
servation. Il suffit du reste d’ajouter a la somme tensorielle
précédente le tenseur g,, multiplié par un facteur invariant
pour obtenir des équations remplissant toutes les conditions
voulues et exprimant, par conséquent, la loi générale de la
gravitation.

Cette loi doit fournir et fournit en effet, en premiere appro-
ximation, la loi de Newton suivant laquelle Dattraction des
masses est inversement proportionnelle au carré de la distance :
elle interpréte done, aussi bien que la loi de Newton, les mou-
vements planétaires. Mais, ce qui est bien plus remarquable, en
effectuant le calcul d'une fagon rigoureuse, on trouve que les
orbites des planétes sont des cllipses qui tournent lentement
dans leur propre plan suivant le sens du mouvement. L’effet en
question n’est appréciable que pour la planéte Mercure, et on
trouve qu’il doit étre, pour cette planete, de 43 secondes par
siecle, ce qui concorde exactement avee le résultat des observa-
tions astronomiques.

On est rempli d’admiration en constatant qu'une théorie tel-
lement parfaite a pu étre construite en s’appuyant sur des
hypotheéses si peu nombreuses. Indépendamment de sa vérifica-
tion expérimentale, qui dans I'état actuel des sciences physiques
peut étre considérée comme parfaite, la théorie donne a 'esprit
une satisfaction rare. Son mérite intrinseque est salogiqueirré-
prochable, la beauté et la simplicité des idées étant le seul signe
permettant de distinguer le chemin de la vérité des sentiers
embroussaillés de 'erreur.

Disons encore quelques mots sur les écarts que présente effec-
tivement le continu physique, selon Einstein, vis-a-vis d’'un
continu euclidien. Les orbites elliptiques des planetes sont les
projections des courbes géodésiques du champ de gravitation
du soleil. On pourrait penser que la courbhure du continu doit
ctre énorme, et on est tenté de se demander comment, dans ces
conditions, on ne s’est pas apercu depuis longtemps déja que la
métrique de I'univers est non-euclidienne. En fait, si nous uti-
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lisons les coordonnées habituelles de la théorie restreinte, la
trajectoire tétradimensionnelle d’'une planéte est approxima-
tivement une courbe hélicoidale, & peine différente d’une droite.
Dans le cas de la terre, par exemple, le rayon de la spire est
parcouru par la lumiére en 8 minutes; le pas de la vis, par
contre est le temps que met la terre pour décrire une spire,
soit une année. Il est donc environ 65500 fois plus grand que le
rayon de la spire.

Dans le vide, oui la densité de I'énergie est pratiquement
nulle, la courbure du continu chrono-spatial est partout extré-
mement petite, comme l'indique aussi la petitesse des effets
métriques signalés par Einstein. Des écarts plus considérables
vis-a-vis de la géométrie euclidienne ne sont possibles qu'a
I'intérieur de la matiére, et 1a seulement par endroits.

Pour ce qui concerne la géométrie de 'espace, considéré en
grand, Einstein admet que l'espace physique présente en
moyenne une courbure constante. Ce serait un espace rieman-
nien sphérique ou elliptique, mais il est certain que son « rayon
de courbure » dépasse considérablement les plus grandes dis-
tances dont se préoccupent les astronomes?.

V. -— LES GEROMETRIES RIEMANNIENNES PEUVENT-ELLES SERVIR
DE BASE A UNE THEORIE PHYSIQUE ?

Nous ne voulons pas terminer cette étude des bases logiques
de la théorie d'Einstein sans consacrer quelques réflexions a
des doutes qui ont pu se former dans 'esprit du lecteur. Oui,
dira-t-on peut-étre, la théorie d’Einstein est admirable aussi
bien pour ses résultats que pour I'énorme effort de pensée
auquel elle doit son éclosion. Nous concédons aussi qu’en elle-
meéme cette théorie est, les points de départ du raisonnement
admis, d’une logique impeccable; mais cette logique ne nous
donnerait aucune satisfaction si, parmi les hypothéses de la
théorie, 1l y en avait qui soient inconcevables.

1 On admet actuellement que ce « rayon » est de 16 millions d’années
de lumiére. La lumiére mettrait donc environ 100 millions d’années pour
faire le tour du monde, :
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Il v a un demi-siécle ou quelques dizaines d’années, heaucoup
d’idées, quine soulevent actuellement aucune difficulté, auraient
pu paraitre inconcevables. Heureusement on a bien déblayé le
terrain sur lequel peuvent maintenant se développer les théories
physiques. Combien de préjugés enracinés n’'ont-ils pas ¢été
détruits par Henri Poincaré ; pour combien d’axiomes admis
comme vérités transcendantes, n’a-t-il su démontrer qu’ils ne
sont que des conventions commodes !

Grace a ce travail préparatoire la théorie de relativité res-
treinte a pu étre assez facilement assimilée. Personne, ou presque
personne, ne voyait un inconvénient & l'introduction d’une
quatrieme dimension représentant le temps. On se rendait bien
compte qu’on peut concevoir des continus physiques ayant plus
de trois dimensions. Du reste, Poincaré (16) a écrit cette phrase
remarquable: «C’est la répétition qui a donné a I'espace ses
caractéres essentiels; or la répétition suppose le temps; cest
assez dire que le temps est antérieur logiquement a I'espace ».
‘Au fond cela signifie que I'espace et le temps sont dans une
liaison étroite et que le continu & quatre dimensions, espace-
temps préexiste logiquement a ’espace pur et simple.

Pour autant qu’on attribue au continu physique, avec Min-
kowski, une métrique euclidienne on sera assuré de ne pas ren-
contrer d’objections.

Une difficulté plus sérieuse résulte de I'abandon de la géomé-
trie euclidienne. Poincaré (17) a bien dit: « La géométrie n’est
pas vraie, elle est avantageuse » ; mais & son point de vue toutes
les géométries ne sont pas également avantageuses. Ne dit-il
pas ailleurs: « Une géométrie ne peut pas étre plus vraie qu’une
autre, elle peut seulement étre plus commode. Or la géométrie
euclidienne est et restera la plus commode. » Nous trouvons
aussi ces lignes: « La géométrie euclidienne n’arien a craindre
d’expériences nouvelles ». Cela semble étre assez en opposition
avec les idées d’Einstein.

[itant donnée l'autorité incontestable de Poincaré, son opi-
nion pourrait former un obstacle sérieux a la diffusion de la
théorie d’Einstein. Aussi croyons-nous nécessaire d’analyser ici .
cette opinion. .

Notons d’abord qu’en parlant de continug non-euclidiens,
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Poincaré ne prend pas méme en considération la géométrie
générale, ou comme il dit, les géométries, de Riemann. Ces géo-
métries sont incompatibles avec le mouvement d’une figure
invariable : elles « ne ponrraient done jamais étre que purement
analytiques et ne se preteraient pas a des démonstrations ana-
fogues & celles d’Euclide. »

Helmholtz et S. Lie (18) ont, en effet. établi un théoreme
important, en partant du postulat que des figures infiniment
petites & 1, 2, 3, » — 1 dimensions placées en un point du con-
tinu a » dimensions puissent tourner sans déformation autour
(l'un centre fixe. Ce postulat détermine la métrique du continu ;
il n’est compatible qu'avec des continus a courbure invariable.
Drapreés celailn’yaurait que trois genres degéométrie: celle d’Eu-
clide, celle de Lobatchewski, et la géométrie sphérique de Rie-
mann (19). De ces trois, Poincaré préfere, pour des raisons qu’il
expose, la géométrie d’Euclide. Il est cependant peu probable
qu'en déclarant sa prédilection pour les raisonnements d’Ku-
clide, Poincaré ait voulu prescrire pour toujours aux théories
physiques la base mathématique sur laquelle elles doivent éle-
ver leurs constructions.

Dans un continu & courbure variable tout déplacement d’un
corps solide est impossible. Einstein a reconnu qu’une nécessité
logique inéluctable impose 'abandon de la notion du corps
solide. Cela résulte de la mécanique de relativité élaborée par la
théorie restreinte. Dans un champ de gravitation il ne peut y
avoir ni d'étalons de longueur rigides, ni de montres rigides.
Des lors en explorant le champ au moyen d'un systeme de réfé-
rence matériel on se heurte a cette difficulté que le systéme
subit en chaque point du champ et & chaque instant des défor-
mations absolument inconnues; il en est de méme pour la mar-
che des montres. Comment étudier le champ chrono-spatial a
I'aide d'un pareil « mollusque de référence» ¥ L'emploi des coor-
données de Gauss est imposé par les circonstances.

Einstein insiste particulierement sur le fait que les lois de la
physique se rapportent uniquement a des coincidences qui ont
lieu dans certains points du continu chrono-spatial. La coinci-
dence qui a lieu en un point donné est, dans une certaine
mesure, indépendante de ce qui se passe ailleurs. Les différents
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points sont cependant, d’apres la théorie, reliés par la condition
de continuité, mais il n’y a plus de métrique a priori.

Quant & une géométrie, dans le sens attribué par Poincaré a
ce terme, elle n'existe évidemment plus si 'on rapporte les ob--
servations aux « mollusques de référence » d’Kinstein. Aussi
I'idée de ’homogénéité de espace opposée par Helmholtz et par
S. Lieaux conceptions riemanniennes perd ici toute signification.
Dans un continu dont les propriétés métriques non homogeénes
seraient données d’avance aucun déplacement de la matiere ne
serait possible, mais il n’en est plus de méme si le « champ
métrique » est déterminé par la répartition de la matiere. C'est
alors la matiere elle-méme qui en se déplacant et en se défor-
mant emporte son propre champ métrique.

Dapreéslesidées de Riemann la seule chose qu’on sait avec certi-
tudesurlanature de’espace physiquec’est qu’il forme une variété
a trois dimensions. On peut méme se demander s'il est continu
ou non.

A cette question qu'il souleve, Ricmann ne donne point de
réponse, mais dans les conclusions de son mémoire «sur les
hypothéses qui se trouvent & la base de la géométrie, » (1854) il
fait la remarque suivante: Une variété discréte porte en soi-
méme ses principes métriques, mais pour une variété continue
la métrique ne peut étre due qu’a des causes extérieures. Rie-
mann suppose gue les rapports métriques sont imposés a 'espace
physique par des forces de liaison. Ainsi le probléeme des pro-
priétés métriques de P'espace se rattache a la physique.

Cette idée dont on ne semble pas avoir saisi la portée a été
reprise par Einstein au bout de 70 ans. Notons du reste que
parmi les idées suggérées par Riemann, Kinstein a utilisé celles
qui se rapprochent le plus des conceptions antérieures. La géo-
métrie euclidienne reste vraie dans l'infiniment petit, provi-
soirement au moins, car on ne peut pas encore prévoir les
surprises que nous réserve la théorie des quanta.

Poincaré a affirmé que la géométrie d’Euclide est a I'abri des
vérifications expérimentales. Cette opinion peut étre soutenue
car la valeur d’une théorie mathématique est indépendante de
son utilité pour la physique. Peut-on dire que les faits expéri-
mentaux dont la découverte est due an génic d’Kinstein, par
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exemple la courbure des rayons lumineux, enlévent & la géo-
métrie d’Fuclide sa raison d'étre? Cela serait absurde. Kt
d’abord il sera toujours impossible d’exposer, au début des
lecons de géométrie, les théories de Gauss et de Riemann. Ces
théories sont du reste, nous I’avons vu, basées sur celle d’Eu-
clide. Un euclidien acharné d’autre part pourrait tenter d’inter-
préter les résultats de la théorie de relativité généralisée d’un
point de vue euclidien, et peut-étre méme cette entreprise
pourrait-elle réussir. Cet effort inutile ne serait pas moins
absurde; car si 'on renonce a définir la droite par le rayon
lumineux, la longueur par la distance de deux repéres tracés
sur un corps rigide, le temps par l'indication d'une moutre a
~ marche uniforme, quel sens attribuera-t-on aux notions fonda-
mentales de la cinématique euclidienne ?

Chercher 2 maintenir par des complications infinies des idées
dépourvues de toute réalité physique serait certainement -
contraire a la pensée de H. Poincaré pour lequel les théories
avaient de la valeur seulement en raison de leur clarté et de
leur simplicité. '

Si Einstein ne nous avait pas donné a temps sa théorie, les
progres de la science expérimentale auraient fini par placer les
savants dans une situation bien embarrassante. Onn’aurait pas
eu d’explication satisfaisante pour 1'absence de toute influence
du mouvement de la terre sur les phénomeénes optiques, sans
parler d’autres faits de la cinématique et de la mécanique de
relativité. Au déplacement du périhélie de Mercure se serait
ajouté, au bout d'nn certain temps, la découverte de la cour-
bure des rayons lumineux. Peut-étre méme aurait-on constaté
la trop petite fréquence des raies solaires. Pour tout cela on
aurait donné des explications «euclidiennes», mais un jour,
inévitablement, un savant aurait dit: Il est bien plus simple
d’abandonner la notion des étalons invariables et d’admettre
que la matiére elle-méme détermine son champ métrique. Et il
n'aurait plus été question désormais d’hypothéses contradic-
toires et d’'interprétations embrouillées.

Quel que soit le regret qu’en puissent éprouver les géometres
qui, avee raison, admirent la beauté de Pédifice euclidien, il est
peu probable qu’a 1'avenir la théorie physique se soumette de
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nouveau a ce schéma rigide, qui a guidé ses pas pendant l'en-
fance, I’a protégée contre les égarements de I'adolescence, mais
qui est devenu trop étroit pour son ige mur.
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