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1921 Vol. 3. Novembre-Decembre.

LES BASES LOGIQUES

DE J.A

THEORIE DE RELATIVITE GEKERALISEE

PAR

A. SCHIDLOF
(Suite et fin).

J V. — La thkorie de relativite generalises.

II est facile ä voir que sous son nouvel aspect la conception
relativiste est en contradiction avec le point de depart de la

theorie restreinte.
Si la vitesse de la lumiere est constante dans un Systeme

galileen, eile ne le sera plus dans un systeme de reference qui
effectue, par rapport au systeme galileen, un mouvement quel-

conque, car si les rayons lumineux ont des trajets rectilignes
dans un systeme galileen, ces trajets seront, en general, curvi-
lignes dans un systeme de reference anime d'un mouvement

tournant. Du point de vue actuel, nous pouvons remplacer le

mouvement curviligne d'un systeme par un certain champ de

gravitation physiquement equivalent a ce mouvement. II en

resulte que la vitesse de la lumiere peut varier sous Vinflitence
d'un champ de gravitation11.

1 La courbure du rayon lumineux indique, selou le principe de

Huyhens. une vitesse de propagation variable d'un point du champ ä

l'autre.
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570 THKOKIE DE RELAT1VITE GENERALISES

La vitesse do la lumiere est toutefois constante dans tous les

ras oü Taction de la gravitation est negligeable. Dans l'etat
actuel de la physique, le principe de la Constance de la
vitesse de la lumiere doit etre considere comme un principe

experimental tres precis. 11 est au moins aussi exact

que Tindiquent les limites de precision de Texperience
de Michelson et Morley. II n'est cependant pas d'une
precision absolue, car les observations faites, au cours de Teclipse
totale de soleil du 29 mai 1919, ont mis en evidence la
rourbure des rayons lumineux produite par le champ de

gravitation du soleil. La prevision theorique d'Einstein a
ete verifiee quantitativement, et c'est lb dvidemment un
argument experimental decisif en faveur d'une conception fran-
chement relativiste.

Si Ton abandonne le postulat d'une vitesse constante de la
lumiere. le continu chrono-spatia! perd, en principe, toute pro-
priete metrique. Cette indetermination estd'ailleursnecessaire,
car sous l'influence d'un mouvementcurviligne,soitd'un champ
de gravitation equivalent, la matiere prend des proprietes
metriques incompatibles avec Celles du continu do Minkowski.
On peut s'en convaincre b Taide de l'exemple suivant donne

par Einstein:
Considerons un Systeme materiel tournant autour d'un

certain axe avec une vitesse angulaire constante. Supposons des

niontres identiques disposees k des distances diflerentes de Taxe
de rotation. II resulte alors des conventions metriques de la
theorie restreinte, applicables, de notre point de vue actuel, a

la matiere, mais non pas b l'espace, que les montres marchent
d'autant plus lentement qu'elles sont plus eloigneesdel'axe. La
vitesse circonferencielle des montres est, en effet, d'autant plus
grande que leur distance b Taxe est plus grande. D'apres
Thypothese chronometrique fondamentale de la theorie restreinte
le retard depend du carre de la vitesse. soit de Yenergie du

champ de la force centrifuge. Si Ton attribue a ce resultat une

signification generale pour un champ de gravitation quelcon-

que, on peut calculer, d'apres le meme principe, le retard que
subit une montre, soit laperiode des oscillations d'un Electron

emettant une raie spectrale, dans le champ de gravitation du



THEORIE DE RKLATIVITE GENKRALISEE 571

soleilh C'est ce qua fait Einstein. II a pu ainsi prevoir, quanti-
tativement. lo deplacement vers le rouge que doivent subir les

raies spectrales solaires. Cette seconde prevision semble actuel-
lement aussi verifiee avec une exactitude süffisante.

En ce qui concerne le principe metrique selon lequel la
longueur d'un etalon depend de sa vitesse, on obtient un resultat
assez surprenant ä premiere vue, en l'appliquant ä l'exemple
du corps tournant. Mesurons la circonference d'un cercle, trace
dans un plan perpendiculaire ä l'axe de rotation et centre sur
cet axe, puis, avec la meine echelle, le diametre de cette
circonference. Nous trouverons alors que le rapport entre la longueur
de la circonference et celle du diametre est en tous cas inferieur
ä TT 3,14..., parce que la contraction de Lorentz intervient
dans la premiere mesure, et non pas dans la seconde. L'ecart
sera d'autant plus grand que le carre de la vitesse, respective-
ment 1'energie du champ de gravitation, est plus grand. II en
decoule la consequence que, dans un champ de gravitation, la
matiere prend une metrique non-euclidienne.

La metrique de la matiere est ainsi en general variable d'un
point du continu chrono-spatial ä l'autre, et si l'on impose ä ce

continu une metrique fixe, toute theorie physique devient

impossible. Pour satisfaire au postulat fondamental de la rela-
tivite, il est done necessaire de renoncer ä toute convention

metrique imposee au continu chrono-spatial a priori, e'est-a-dire

independamment des proprietes nietriques de la matiere.

1 D'apres la theorie restreinte la periode T' d'une montre animee
d'une vitesse v est :

T
T' - -

V I - .•*

T etant la periode de la meme montre ä l'etat de repos. Si la montre se

trouve ä la distance r de l'axe du Systeme tournant, et si <o est la vitesse

an gulaire, on a : v'J or' r2 — 2U. U est l'energie potentielle du champ
de la force centrifuge ä une distance r de l'axe. Dans le champ de gravi-

%

tation d'un astre on a approximativement: U x etant une grandeur

proportionnelle ä la masse de l'astre et r la distance entre le

point considere et le centre de l'astre. On obtient ainsi' T' —
A 2a

V •'

formule qui indique un deplacement vers le rouge des raies spectrales.
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Ceci dit, le postulat de relativite peut etre enonce mathema-

tiquement eomme suit:
Les lois physiques doirent avoir wie forme covariaute, vis-a-

vis d'une transformation queleonque des coordonnees auxqnelles
on les rapporte.

Mettre les lois physiques sous une forme covariante vis-ä-vis
d'une transformation queleonque des coordonnees. est un
Probleme purement mathematique qu'Einstein a eu la chance de

trouver tout resolu au moment oh il voulait achever sa theorie:

Fig 2

Dans un but d'analyse mathematique pure Gauss s'etait pose le

memo probleme; sa theorie des surfaces en donne la solution.
Une surface queleonque est un continu non-euclidien ä deux
dimensions. On peut tracer sur la surface deux families de

courbes quelconques. A chaque courbe de la premiere famille
correspond une valeur constante d'un certain parametre «,
variant d'une facon continue entre cette courbe et les portions
voisines de la surface. II en est de meme du parametre u„ attri-
bue aux courbes de la seconde famille. Les courbes sont tracees
de telle fa(;on que chaque point P du continu est traverse par
une seule courbe ut et par une seule courbe u., (voir la figure 2).

La position d'un point queleonque du continu peut alors etre
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caracterisee par les valeurs numeriques dos parametres i«, et

Mä qu'on appelle les coordonnees de Gauss.

Soient alors deux points infiniment voisins, le point P avec les

coordonnees ui et iu et le point P' avec les coordonnees

u1 -f- dnx et — u» -j- du»

Le carre de la distance eis des points P et P' est defini par:

(I| dt,2 o-n da 2g12 dur da, «,2 dir

Les coefficients#,,, #,2, g.2.2 sont certaines fonetions de w, et
de nä. La forme de ces fonetions depend evidemment des
coordonnees choisies.

La proposition (1) n'est pas vraie d'une fac;on generale, inais
seulement dans le cas oü une portion infiniment petite de la
surface se comporte comme un element plan, end'autres termes
si la geometrie euclidienne est applicable dans l'infiniment
petit.

En maintenant cette meme restriction on peut utiliser les

coordonnees de Gauss pour etudier la geometrie d'un continu
quelconque ä u dimensions. Le carre de la distance entre deux

points infiniment voisins est exprime par la formule :

(2) d»2 12 daid"k
i.k

u', k — i, 2, 3... //)

La somme 2 renfenne les n'2 produits dutduk. On peut en

reduire le nombre de termes ä '''
en tenant compte de

la condition de syinetrie des coefficients: gki — gik. Pour n 4,

il y a dix coefficients distinets. Ces coefficients sont des fonetions
des n coordonnees Mi. On les appelle les composantes covariantes
du «tenseur metrique». B. Riemann a pris la formule (2)

comme point de depart de ses recherches sur les proprietes des

Continus non-euclidiens ä n dimensions. La theorie de Gauss

conduit au resultat important que la metrique d'une surface,
dans le voisinage d'un point donne. est caracterisee, indepen-
damment des coordonnees choisies. par une seule grandeur que
Gauss appelle la courbure. La courbure de Gauss se determine
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par des mesures faites uniquement sur la surface meme. Elle
devient nulle pour une surface plane.

Riemann (14) a trouve que la courbure de Gauss peut servir a

l'etude des proprietes metriques generates des Continus ä n dimensions.

Les mailies des reseauxdes coordonnees de Gauss definissent
" "9—-surfaces infiniment petites qui se rencontrent en un

point du continu. L'invariant de courbure d'une surface quel-

conque passant par le point considere s'obtient sous forme d'une

expression quadratique de "
2—- variables superficielles.

Cette expression est la somme des produits des variables men-
tionnees. prises deux k deux et multipliees-par des coefficients

qui satisfont ä certaines conditions de symetrie. Les coefficients
fl* (71^ 1

distincts dont le nombre est ^ sont les composantes

d'un tenseur appele le tenseur de Riemann-Christoffel. Ce ten-
seur k G composantes pour n 3. et 20 pour n — 4, fonctions
des g.k et de leurs derivees premieres et secondes. 8i les gik
sont des constantes, toutes leurs derivees sont nulles, et alors
toutes les composantes du tenseur de Riemann-Christoff'el sont

egalement nulles; la geometrie du continu est euclidienne. Si

la courbure est constante dans toutes les directions autour d'un
point donne. eile est aussi la meme pour tous les points du

continu, et la geometric est alors. ou bien la geometric
« hyperbolique » de Lobatchewski. ou bien la geometrie « ellip-
tique» de Riemann.

L'emploi des coordonnees de Gauss permettant de s'aftranchir
de toute restriction metrique, Einstein a pu eprouver la valeur
de sa theorie en abordant le probleme capital de la gravitation
universelle. Pour trouver la loi generale de la gravitation, il
faut, avant tout, mettre les lois empiriques sous une forme
satisfaisant au postulat fondamentab de la theorie de relativite
generalisee (15).

Par rapport ä un Systeme galileen. le mouvement d'un point
materiel libre est rectiligne et uniforme. Dans la geometrie
generale de Riemann il n'existe pas de ligne droite, mais eile

a son equivalent dans la ligne geodesique qui joue un role

important dans les recherches analytiques de Gauss, de Riemann
et des continuateurs de leurs theories. La ligne geodesique est
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la ligne la plus courte, ou plus exactement,' la ligne dont la
longueur entre deux points donnes est un extremum. Expri-
mee au moyen des coordonnees de Gauss, l'equation d'une
geodesique peut aussi etre interpretee comme l'equation du
mouvement d'un point materiel sous l'influence d'un champ
de gravitation. Cette equation n'a pas une forme covariante, et
eile ne doit pas l'avoir, car, par un choix approprie des

coordonnees, on doit pouvoir attribuer au .mouvement d'un point
un caractere cinematique quelconque.

Designons par ds l'element d'arc de la courbe geodesique.
Celle-ci est alors caracterisee dans un continu riemannien ä

quatre dimensions par quatre equations differentielles de la
forme suivante:

du. du
,3) ~d? ~ ^ ~d» ~ds

[I 1, 2. 3, 4|

du.
Les derivees — signitient la direction de l'element d'arc

da
d^u.

par rapport aux coordonnees. et ^ est, par consequent, le

changement de direction. Les coefficients 1'-,. sont des fonc-

tions lineaires homogenes des derivees premieres Pour

n 4 le membre droit des equations (3) renferme dix coefficients

distincts vlik Si l'on attribue k ds la signification de la duree
d2ut

d'un deplacement infiniment petit *, les ^ sont les compo-

dU;
1 • /santes de Vacceleration et les -r- Celles de la iwfesse (ä quatre cli-

ds

mensions) du mouvement. Les coefficients Ylik sont alors les compo-'

santes du chcimp de gravitation. II y en a 40 en tout.

Ces40 coefficients Ylik et leurs derivees premieres par rapport
aux coordonnees ut interviennent dans les composantes du ten-

seur de Riemann-Christoffel qui s'expriment completement au

1 Dans la theorie de Minkowski, l'element d'arc ds dont les composantes

spatiales sont dx, äy, dz signifie la « duree propre » du deplacement
infiniment petit en question, e'est-ä-dire la duree qui serait marquee par une
montre accompagnant la matiere qui se deplace.
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moyen do ces grandeurs. Les composantes du champ de gravitation

satisfont done ä certaines relations covariantes parmi
lesquelles doit se trouver la loi cherchee de la gravitation
universelle. Toutefois cetteloi elle-ineme estd'abord indeterminee,
ear etant donnee une relation covariante on peut en deduire une
infinite d'autres. Comment savoir laquelle de toutes les relations
possibles exprime la loi cherchee V Voici de quelle facon Einstein
a pu resoudre ce probleme : Au postulat de relativite genera-
lisee il adjoint :

1. Le principe de l'egalite de la masse inerte et de la masse

ponderable; cela veut dire que la nietrique du continu ne doit
dependre que de la repartition des masses inertes, le champ de

gravitation n'etant autre chose que le « champ metrique ».

2. Les priucipes de conservation de l'energie et de la quantite
de mouvement qui doivent s'appliquer nou seulement au « champ
materiel» mais aussi au champ de gravitation.

Le postulat purement mathematique que les equations anx
derivees partielles exprimant la loi de gravitation en foaction
des ^lik et de leiirs derivees ne doivent pas etre d'un ordre

snperieur au deuxieme par rapport aux gik.
D'apres la theoric restreinte, les principes de conservation

indiquent que la divergence du «tenseur d'energie » '\\k doit
etre nulle. II laut d'abord adapter ces formules au postulat
de covariance des lois physiques en y introduisant les coor-
donnees de Gauss. Sous cette nouvelle forme, qui fait intervenir
dans les equations les gik et leurs derivees, elles n'indiquent
plus que la divergence des Tw. est nulle. Cette loi ne serait satis-
faite quo si toutes les composantes r[k du champ de gravitation
etaient nulles.

Le principe 1 suggere l'idee de former des sommes des composantes

du tenseur de Riemann-Christoffel constituant les composantes

d'un tenseur symetrique Gti.. Ce tenseur, qu'on peut appeler
le «tenseur reduit» de Riemann-Christoffel, a autant de composantes

que le tenseur Tir La plus simple des relations possibles

entre les deux tenseurs Gw et 'Yik s'obtient de la faqon suivante:
En multipliant T^. par le facteur constant jouant ici le meme
role que la constante de la loi de Newton, on peut supposer que
la somine tensorielle G;i. + z Tjt esttoujours nulle. On obtient
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ainsi dix equations du deuxieme ordre qui satisfont au principe
de relativite generalisee.

Cependant Einstein n'a pas admis ces equations parce qu'elles
ne satisfont pas ä la condition 2, ä savoir aux principes de
conservation. II suffit du reste d'ajouter ä la somme tensorielle
precedente le tenseur gik multiplie par un facteur invariant
pour obtenir des equations remplissant toutes les conditions
voulues et exprimant. par consequent, la loi generale de la
gravitation.

Cette loi doit fournir et fournit en effet, en premiere
approximation, la loi de Newton suivant laquelle l'attraction des

masses est inversement proportionnelle au carre de la distance:
eile interprete done, aussi bien que la loi de Newton, les mou-
vements planetaires. Mais, ce qui est bien plus remarquable, en
effectuant le calcul d'une faqon rigoureuse, on trouve que les

orbites des planetes sont des ellipses qui tournent lentement
dans leur propre plan suivant le sens du mouvement. L'effet en

question n'est appreciable que pour la planete Mercure, et on
trouve qu'il doit etre, pour cette planete, de 43 secondes par
siecle, ce qui Concorde exactement avec le resultat des observations

astronomiques.
On est rempli d'admiration en constatant qu'une theorie tel-

lenient parfaite a pu etre construite en s'appuyant sur des

hypotheses si peu nombreuses. Independamment de sa verification

experimentale, qui dans l'etat actuel des sciences physiques

peut etre consideree comme parfaite, la theorie donne ä Fesprit
une satisfaction rare. Son merite intrinseque est salogiqueirre-
prochable. la beaute et la simplicity des idees etant leseulsigne
permettant de distinguer le chemin de la verite des sentiers
einbroussailles de 1'erreur.

Disons encore quelques mots sur les ecarts que presente effec-

tivement le continu physique, selon Einstein, vis-ä-vis d'un
continu euclidien. Les orbites elliptiques des planetes sont les

projections des courbes geodesiques du champ de gravitation
du soleil. On pourrait penser que la courbure du continu doit
etre enorme, et on est tente de se demander comment, dans ces

conditions, on ne s'est pas aperqu depuis longtemps dejä que la
metrique de l'univers est non-euclidienne. En fait, si nous uti-
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lisons les coordonnees habituelles de la theorie restreinte, la

trajectoire tetradimensionnelle d'une planete est approxima-
tivement une courbe helicoi'dale, ä peine differente d'uno droite.
Dans le cas de la terre, par exemple, le rayon de la spire est

parcouru par la lumiere en 8 minutes; le pas de la vis, par
contre est le temps que met la terre pour decrire une spire,
soit une annee. II est done environ 65500 fois plus grand que le

rayon de la spire.
Dans le vide, oh la densite de l'energie est pratiquement

nulle, la courbure du continu chrono-spatial est partout extre-
mement petite, comme l'indique aussi la petitesse des effets

metriques signales par Einstein. Des ecarts plus considerables
vis-ä-vis de la geometrie euclidienne ne sont possibles qua
l'interieur de la matiere, et la seulement par endroits.

Pour ce qui concerne la geometrie de l'espace, considere en

grand, Einstein admet que l'espace physique presente en

moyenne une courbure constante. Ce serait un espace rieman-
nien spherique ou elliptique, mais il est certain que son «rayon
de courbure » depasse considerablement les plus grandes
distances dont se preoccupent les astronomes1.

Y. — Les geometries riemanniennes pecvent-elles servir
DE BASE A ÜNE THEORIE PHYSIQUE?

Nous ne voulons pas terminer cette etude des bases logiques
do la theorie d'Einstein sans consacrer quelques reflexions a

des doutes qui ont pu se former dans l'esprit du lecteur. Oui,
dira-t-on peut-etro, la theorie d'Einstein est admirable aussi

bien pour ses resultats que pour 1'enorme effort de pensee

auquel eile doit son eclosion. Nous concedons aussi qu'en ellc-
meme cette theorie est, les points de depart du raisonnement
admis, d'une logique impeccable; mais cette logique ne nous
donnerait aucune satisfaction si, parmi les hypotheses de la

theorie, il y en avait qui soient inconcevables.

1 On admet actuellement que ce « rayon » est de 16 millions d'annees
de lumiere. La lumiere mettrait done environ 100 millions d'annees pour
faire le tour du monde.
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II y a un demi-siecle ou quelques dizaines d'annees, beaucoup

d'idees, quine soulevent actuellement aucune difficulty auraient

pu paraltre inconcevables. Heureusement on a bien deblaye le

terrain surlequelpeuvent maintenant se developper les theories

physiques. Combien de prejuges enracines n'ont-ils pas ete

detruits par Henri Poincare; pour combien d'axiomes admis

comme verites transcendantes, n'a-t-ii su demontrer qu'ils ne

sont que des conventions commodes
Grace ä ce travail preparatoire la theorie de relativite res-

treinte a pu etreassez facilementassimilee. Personne, oupresque
personne, ne voyait un inconvenient ä l'introduction d'une

quatrieme dimension representant le temps. On se rendait bien

compte qu'on peut concevoir des Continus physiques ayant plus
de trois dimensions. Du reste, Poincare (16) a ecrit cette phrase

remarquable: «C'est la repetition qui a donne a l'espace ses

«aracteres essentiels; or la repetition suppose Ie temps; c'est

assez dire que le temps est anterieur logiquement ä l'espace».
Au fond cela signifie que l'espace et le temps sont dans une
liaison etroite et que le continu ä quatre dimensions, espace-

temps preexiste logiquement ä l'espace pur et simple.
Pour autant qu'on attribue au continu physique, avec Min-

kowski. une metrique euclidienne on sera assure de ne pas ren-
contrer d'objections.

Une difficulte plus serieuse resulte de l'abandon de la geome-
trie euclidienne. Poincare (17) a bien dit: « La geometrie n'est

pas vraie. eile est avantageuse »; mais ä son point de vue toutes
les geometries ne sont pas egalement avantageuses. Ne dit-il
pas ailleurs: « Une geometrie ne peut pas etre plus vraie qu'une
autre, elle peut seulement etre plus commode. Or la geometrie
euclidienue est et restera la plus cominode. » Nous trouvons
aussi ces lignes: « La geometrie euclidienne n'a rien ä craindre
d'experiences nouvelles». Cela semble etre assez en opposition
avec les idees d'Einstein.

Etant donnee l'autorite incontestable de Poincare. son
opinion pourrait former un obstacle serieux ä la diffusion de la

theorie d'Einstein. Anssi croyons-nous necessaire d'analyser ici
cette opinion.

Notons d'abord qu'on parlant de Continus non-euclidiens,
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Poincare ne prend pas meine en consideration la geonietrie
generale, on comine il dit, les geometries, de Kiemann. Ces

geometries sont incompatibles avec le mouvement d'une figure
invariable ; elles « ne pourraient done jamais etre que purement
analytiques et ne se preteraient pas k des demonstrations
analogues ä celles d'Euclide.»

Ilelmholtz et S. Lie (18) ont, en effet. etabli un theoreme

important, en partant du postulat que des figures infiniment
petites ä 1, 2, 3. n — 1 dimensions placees en un point du con-
tinu ä n dimensions puissent tourner sans deformation autour
d'un centre fixe. Ce postulat determine la metrique du continu;
il n'est compatible qu'avec des Continus ä courbure invariable.
I i'apres cela il n'y aurait que trois genres de geometrie: celle d'Eu-
clide, celle de Lobatcbewski, et la geometrie spherique de

Riemann (19t. De ces trois, Poincare prefere. pour des raisonsqu'il
expose, la geonietrie d'Euclide. II est cependant peu probable
qu'en declarant sa predilection pour les raisonnements d'Euclide,

Poincare ait voulu prescrire pour toujours aux theories

physiques la base mathematique sur laquelle elles doivent ele-

ver leurs constructions.
Dans un continu ä courbure variable tout deplacement d'un

corps solide est impossible. Einstein a reconnu qu'une necessite

Iogique ineluctable impose l'abandon de la notion du corps
solide. Cela resulte de la mecanique de relativite elaboree par la

theorie restreinte. Dans un champ de gravitation il ne peut y
avoir ni d etalons de longueur rigides, ni de montres rigides.
Des lors en explorant le champ au moyen d'un Systeme de

reference materiel on se heurte a cette difficulte que le systeme
subit en chaque point du champ et ä chaque instant des

deformations absolument inconnues; il en est de meme pour la mar-
che des montres. Comment etudier le champ chrono-spatial a

l'aide d'un pareil «niollusque de reference» V L'emploi des coor-
donnees de Gauss est impose par les circonstances.

Einstein insiste particulierement sur le fait que les lois de la
physique se rapportent uniquement ä des coincidences qui ont
lieu dans certains points du continu chrono-spatial. La coincidence

qui a lieu en un point donne est, dans une certaine

mesure, independante de ce qui se passe ailleurs. Les different»
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points sont cependant, d'apres la theorie, relies par la condition
de continuity mais il n'y a plus de metrique a priori.

Quant a une geometrie, dans le sens attribue par Poincare ii

ce terrae, eile n'existc evidemrnent plus si l'on rapporte les

observations aux « raollusques de reference » d'Einstein. Aussi
l'idee de l'homogeneite de l'espace opposee par Helmholtz et par
S. Lie aux conceptions riemanniennes perd ici toute signification.
Dans un continu dont les proprietes metriques non homogenes
seraient donnees d'avance aucun deplacement de la matiere lie
serait possible, raais il n'en est plus de meme si le «champ
metrique » est determine par la repartition de la matiere. Cost
alors la matiere elle-meme qui en sc deplaqant et en se defor-
mant empörte son propre champ metrique.

D'apres les idees de Riemann la seule chose qu'onsaitavec certitude

sur la nature dc l'espace physiquec'estqu'il forme unevariete
a trois dimensions. On peut meme se demander s'ilest continu
ou non.

A cette question qu'il souleve, Riemann ne donne point de

reponse, mais dans les conclusions de son memoire «sur les

hypotheses qui se trouvent ä la base de la geometrie, » (1854) il
fait la remarque suivante: Une variete discrete porte en soi-

meme ses principes metriques. mais pour une variete continue
la metrique ne peut etre due qu'ä des causes exterieures.
Riemann suppose que les rapports metriques sont imposes ä l'espace

physique par des forces de liaison. Ainsi le probleme des

proprietes metriques de l'espace so rattache ä la physique.
Cette idee dont on ne semble pas avoir saisi la portee a ete

reprise par Einstein au bout de 70 ans. Notons du reste que
parmi les idees suggerees par Riemann, Einstein a utilise celles

qui se rapprochent le plus des conceptions anterieures. La
geometrie euclidienne reste vraie dans l'infiniment petit, provi-
soirement au moins. car on ne peut pas encore prevoir les

surprises que nous reserve la theorie des quanta.
Poincare a affirme que la geometrie d'Euclide est ä l'abri des

verifications experimentales. Cette opinion peut etre soutenue

car la valeur d'une theorie mathematique est independante de

son utilite pour la physique. Peut-on dire que les faits experi-
mentaux dont la decouverte est due au genie d'Einstein, par
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exemple la courbure des rayons lumineux. enlevont ä la geo-
metrie d'Euclide sa raison d'etre? Cela serait absurde. Et
d'abord il sera toujours impossible d'exposer, au debut des

logons de geometrie, les theories de Gauss et de Riemann. Oes

theories sont du reste, nous l'avons vu, basees sur celle d'Euclide.

Un euclidien acharne d'autre part pourraittenter d'inter-
preter les resultats de la theorie de relativite generalisee d'un
point de vue euclidien, et peut-etre inerne cette entreprise
pourrait-elle reussir. Cet effort inutile ne serait pas moins

absurde; car si Ton renonce ä definir la droite par le rayon
lumineux, la longueur par la distance de deux reperes traces

sur un corps rigide, le temps par l'indication dune montre ä

marche uniforme, quel sens attribuera-t-on aux notions fonda-
mentales de la cinematique euclidienne?

Chercher ä maintenir par des complications inffnies des idees

depourvues de toute realite physique serait certainement
contraire ä la pensee de H. Poincare pour lequel les theories
avaient de la valeur seulement en raison de leur clarte et do

leur simplieite.
Si Einstein ne nous avait pas donne ä temps sa theorie. les

progres de la science cxperimentale auraient fini par placer les

savants dans une situation bien embarrassante. Onn'aurait pas
en d'explication satisfaisante pour l'absence de toute influence
du mouvement de la terre sur les phenomenes optiques, sans

parier d'autres faits de la cinematique et de la mecanique de

relativite. Au deplacement du perihelie de Mercure se serait
ajoute. au bout d'un certain temps, la decouverte de la cour-
bure des rayons lumineux. Peut-etre meme aurait-on constate
la trop petite frequence des raies solaires. Pour tout cela on
aurait donne des explications «euclidiennes», mais un jour,
inyvitablement. un savant aurait dit: II est bien plus simple
d'abandonner la notion des etalons invariables et d'admettre

que la matierc elle-meme determine son champ metrique. Et il
n aurait plus ete question desormais d'hypotheses contradic-
toires et d'interpretations embi-ouillees.

Quel que soit le regret qu'en puissent eprouver les geometres
qui, avec raison, admirent la beaute de l'edifice euclidien, il est

peu probable qu'ä l'avenir la theorie physique se soumette de
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nouveau ä ce schema rigide, qui a guide ses pas pendant l'en-
fance, l'a protegee contre les egarements de 1'adolescence, mais

qui est devenu trop etroit pour son ftge nnir.
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