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19219 Vol. 3 R Mai—Juin.

Recherches théoriques et expérimentales

Mesure de Iamortissement d’un circuit & étincelle

Paul LAMBOSSY
(Avee 25 fig.)

(Suite et fin).

DEUXIEME PARTIE

L’objet de cette deuxieme partie est :

1° d’établir I'équation de la courbe de résonance, en partant
de I’hypothése que la courbe des amplitudes du courant dans le
primaire a une forme intermédiaire entre celle d’'une exponen-
tielle et celle d’une droite. | -

2° d’exposer les mesures destinées a vérifier la théorie.

§ 13. — Nowuvelle hypothese.

Les recherches théoriques d’Heydweiller?, et les résultats
expérimentaux de Zenneck?, Roschansky?® ont montré que la
-courbe de décroissance de I'amplitude du courant dans un cir-

! HEYDWEILLER, A; Amn. d. Phys., 19, p. 649, 1906.
? ZuNNECK, J. Ann. d. Phys., 13, p. 822, 1904.
3 RoscHANsky, D. Ann. d. Phys., 36, p. 281 1911.
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214 AMORTISSEMENT D'UN CIROUIT A ETINCELLE

cuit & étincelle ressemble beaucoup plus & une droite qu’a une
exponentielle. Cela nous conduit & poser I = I,(1 — af) pour
'équation- de la courbe des amplitudes, et & désigner par a
I'amortissement linéaire. On pourrait aussi, comme I’a pro-
posé Zenneck, approcher de la vraie droite par I’équation
[ =I,e* . Dans ce cas le phénoméne de 'amortissement
serait caractérisé par deux constantes « et .

Et alors le probléme se pose: trouver dans les hypothéses pré-
cédentes la forme de la courbe de résonance. La forme du courant
dans le secondaire a moins d’intérét.

J M C

Fig. 12.

Cependant les difficultés mathématiques sont trés considéra-
bles avec des hypothéses de la forme indiquée. J’en propose une
autre.

La courbe représentée dans la fig. 12 est une exponentielle
y = e *. Quelle modification faut-il apporter a chaque ordon-
née MA pour la réduire 4 ordonnée correspondante MB de la
droite? Il faut la multiplier par un certain facteur plus petit
que l'unité. Ce facteur, égal & 1 pour 'abscisse zéro, décroft
d’abord lentement, ensuite plus vite et devient nul pour le
point C. Or un tel facteur est fourni par

cos nt

ou # est une constante dont la signification sera donnée par les
résultats de 'intégration.
11 est donc probable que la courbe

y = e *%'cosnt

se rapproche d’une droite, au moins dans un certain intervalle.
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216 AMORTISSEMENT D’UN CIRCUIT A ETINCELLE

On peut s’inquiéter de voir la périodicité de cos #¢ se communi-
quer a la courbe ; mais si # n’est pas trop grand, aux instants
Aui suivent celui déterminé par I’équation cos nt =0, e"** est
assez réduite pour que e *‘ cos nf n’ait plus une valeur appré-
ciable. ‘

La fig. 13 représente la courbe y — e *‘cosnt. J’aiadjoint
I'exponentielle ¥ = e ®* afin qu’on puisse comparer la forme
des deux courbes, La premiere atteint 'axe, dans I'exemple
choisi, au bout d’une soixantaine de périodes. Dés cet instant &
peu preés, la courbe ne représente plus le phénomeéne réel, ni
plus ni moins d’ailleurs que I'exponentielle simple. Comme on
le voit, on ne peut préciser d’avance le degré de légitimité de
I’hypothése; 'expérience seule en est capable. On notera cepen-
dant que les parties de la courbe appartenant aux premiers mo-
ments ont une importance prépondérante, et que pour celles-la
I'allure, sans étre tout & fait linéaire, se rapproche quand
méme de celle qu'on trouve expérimentalement.

La nouvelle hypothése consiste & admettre que la force élec-
tromotrice extérieure qui agit sur le secondaire est de la forme

E cos nt cos m,1
Par conséquent I'équation de Bjerknes modifiée est
V" + 20!2\'; + miV = miEe~%' cos nt cos m, ¢

C’est ’équation de départ pour le calcul de I’effet thermique.

Les deux paragraphes qui suivent contiennent I’ensemble des
calculs qui conduisent ‘& 1I'équation de la courbe de résonance
sous sa forme la plus simplifiée. |

¥ 14. — Calenl de Ueffet thermique.
On traite 'équation

V" 4 2,V 4 m:\" = m:Ee'alt cos nt cos mt (1%4)

comme dans la premiere partie. Mais auparavant on décom-
pose le second membre comme suit:
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‘ e B '
cos nt cos m;t = g[cos (m, + n)t 4 cos (m, — n){]
1 Y "
= E[cosm t -+ cos m"t]

en posant m' = m, + n et m' =m, — n.

V" 4+ 20,V + mlV = Afe %® cos m’t 4 e~ %? cos m"t] (14%)

En écrivant P, — e %* cosm’t et Q, = e *’ sinm'?, on con-
trole facilement qu’on a:

P, = e~%! cos m’t 0, == ¢~%* gin At
P ’ . ’
Pl_——clel—mQt Ql_—a1Q1+m P,

P:: (a: — m'?) P, 4 2m’a, Q, Q = (af — m')Q, — 2m’a, P

De méme

P, = e~%! cos m"t Q, = e %! sinm"t
’ ’
—_—— . " —_— "
P= a, P, m"Q, Q,= @, Q, + m"P,

” 14

P = (af — m"?) P, + 2m"a Q, Q, = (¢ — m"%)Q, — 2m"a, P,

On introduit les inconnues

fv'zdz =V,
5

I}
€ 2]

f VP, dt = R, t /Oqul dt
0

~
-t
“"U
&
Il
“Ud

'fVdet _ S,
J
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et les constantes

fPl(Pl + P,)dt = C, [QP, + Pyt =g,
0 0

fp_g(P1 + B,)di = C, [ (P, + Pdt=C,
0 0 :

En multipliant 'équation (14") successivement par V', P,, Q,,
P,, Q,, et en la traitant comme dans la premiére partie (voir
§ b), on trouve :

2¢,V, = A, R, + m’S, + o, R, 4 m''S,]
(a:' — m'3 R, + 2m'a S, + 2¢,(2, R, 4+ m’S) 4+ m:R1 = AL,
(af == m’?) 8, — 2m’ay R, + 2¢,(a, 5, — m’R)) + m}S, = AC,
(2 — m™) R, + 2m"a, S, + 20, (2, R, + m’S,) + m'R, = AC,

(¢, — m") S, — 2m"a Ry + 2a,(x, S, — m"R,) + m]S, = AC, .
On tire R, et S, de la 2™ et de la 3™° équation. En posant

g ’2 P
hl_ms—m +a1+2a1a2

hy = 2m'(a;, + a,)
on trouve

_ A(Ch, —Cyhy) g — A(Cyhy + Cihy)

K RY 4 B? . RS L A2
L+ 2 1+ 2

1

On tire R, et S, de la 4™ et de la 5™ équation. En posant
h; — m: — m" 4 oc: + 20, a

h; = 2m" (a, + a,)
on trouve
A(Cyh, — C.h) q A(C,h + C,h)

Rl = ] '3 2 - e ]
hl + h! h.l + hi
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On substitue R,, S,, R,, S, dans la 1 équation.

A2 g ’ : !
‘21,\71 = ;l}-l-—h: [(¢,C; + m’Cyi by + (m'Cy — o Cy) by
A [(2,C; + m"Ch, + (m"Cy — 2,Cy) by
T LSRN 4 d 3 T %y ¢
hl + ha 1 2

On introduit les nouvelles constantes
p=aoC, + m'C, p' = «,C, + m"C,
gq=m'C, —¢,C;, ¢ =m"C; —«,C,.
On a en outre

= ]

=]
dV\?
2 —_— 2 — (2 .
B/'z dt_fc (dt)dt_(‘ v,

0

E?
AT e
CA_4L2‘

On arrive a la formule finale

?’ - fkf + fh! y
% B4 R K R,

0

Il reste a caleuler les constantes C, , C,, C,, C,, puis p, ¢, p’,
q’. On trouve sans difficulté

1 a 1 1 1
C,=—+2 + +
! ha, 4 [a: + m? o+ m a: + n?

C m m, 4 n
b(a} + m’?) T blad + mi)  &(a] + n?)

1 1 1
+ + -
P b 4 [a: + m" ol 4 m} ol 4
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g = %[’"1 + n i mya, i na, ]

1 1
fem g M n
¥ 4 of + m} ol + n?

b A[m —n + myo,  na
q = 4 2 2 2 2
' oy o + n o + m;

§ 15, — Courbe de résonance.

En notant

@

» E? 1
flzdt:.}‘, WZK, (16)

0
I'équation (15) peﬁt s’écrire
Ky (B + B) (b’ + b)) — (phy + qhy) (k) + £
— (PR, R ) =0
La variable est contenue dans /, et #/; il faut I'expliciter.
hy=m? — m'?+ & 4+ 200, .00 ' =m +n.

On peut écrire

hy = (m} — m] — n? 4+ of + 2a,0,) — 2m;n
de méme '
h: = (m) — m] — n* + o + 2a; ) + 2myn
" En posant

h=ml—m!—n?+ o] + 20,0, (17)
on pourra écrire

hy = h — 2mn
h; =h -+ 2mn . (179

La substitution (17'), apres des calculs assez longs, conduit &
une équation du 4™ degré en A qui peut s’écrire

Kyh* — 2k% 4+ (AKy — B)h? + (EKy — F)h + CKy — D = 0 - (18)
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en posant
A= h: -+ h:— Smi.'t”
B=2mn(p —p') + qhy + g’k
E=2m, n(h: s k;a)
F = 4m n(gh, — q’h;) — (ph;’+ pR}) — 8min'2
C = (dmin® + B)) (&min* + h;’)
D = 4min?(qhy + q’h) + (qh, h;ﬂ + q’h b2 — 8min®(p — p’)
— 2mn (ph: — p'Rd) .
On ne peut pas aller plus loin sans introduire des simplifica-
tions. a, qui entre ici n’est pas identique au «, qui intervient
dans la formule de Bjerknes; cependant sa dimension est éga-
lement celle d’'un amortissement (inverse d’'un temps). = est une
grandeur de méme dimension. Quant & l'ordre de grandeur de
e, et de #, nous ne savons rien d'avance; mais il est plausible
de supposer que leurs valeurs numériques sont voisines de la

valeur numérique de «, qui figure dans la formule de Bjerknes.
Nous pouvons bhien admettre

of ol n?

, = g
. ; négligeables devant m? ;

c’est 14 une supposition simplifiante semblable & celle de Bjerk-
nes, qu’il sera nécessaire de controler plus tard d’apres les re-
sultats expérimentaux. Les mesures montreront que cette %up-
position est entiérement légitime.

Avec cette hypothése, les quantités A, B, etc., ont une forme
plus simple :

A = 8m][(a, + a,)® — n?]

-1 a \ n?
B = m? il 1
ni[(al + o) ( rr Y a J

E = 64m*n?(a, 4 ap)? | (19)
C = 16111:[(05 + a,) + :12]2‘

% . 1 - 2
D — !i,n:[(ax + q2)? -+ n2] Ii(a‘ + 012} (a‘ + ;‘:{?) _ o :_ nz]
1 i 1

F n’a pas été calculé, parce que cette quantité sera éliminée.
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Je rappelle que (17)
h=m]— m{—n®+ o + 20,0, .

Si 'on fait 2 =— 0, on retombe sur le z, ou  dont il était ques-
tion dans la 1™ partie [form. (5)]. Or la théorie de Bjerknes
généralisée, prévoit le maximum pour =02 une trés bonne
approximation®. Il est donc légitime d’admettre qu’ici encore

le maximum a lieu pour - = 0. Introduisons donec 2 =0 dans
I'équation (18).

CKy. —D=1, d’ou K= —. (20)

P pe——— U ]

— e ——— —— ] —

Fig. 14. Fig. 15.

Substituons cette valeur de K dans I’équation (18):

¥, 2C y  BC y FC
—ht— —p (A= - 2\ 4 (EL - h

< m

_c(a _L)zo (21
Ym

La présence des puissances impaires de % atteste la dissymé-

trie de la courbe par rapport & 'axe vertical passant par 1’ori-

gine des i Aux abscisses + h et — A, ou & est essentiellement

positif, égales en valeur absolue, correspondent des ordonnées

1 6t 22 En introduisant les couples de valeurs (+ h, f—’) et

Jﬂ! m -m

(-- h, le), et én additionnant les deux équations obtenues,

! On a montré qu’il est pratiquement équivalent de partir, soit de I’axe
de résonance, soit de I’axe d’isochronisme, soit de I’axe des k. Voir § 9.
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on arrive 3

Nt Yape g (A_J‘l + __*QBC)hz LE TN,
: T

m D m

_ c( _ “I‘Jz)_ 0.

Le terme EZ—22} peut étre supprimé, car il est toujours

~ m

trés petit, soit & cause de E, soit & cause de Z—I21,

m

Désormais je donnerai & ¥ la signification suivante:

_ Ly A
L

Voici la signification géométrique de y. La courbe réellement
observée est formée de deux versants I et II (fig. 14). Soit I
I'image de I par rapport 4 ’axe. La courbe III moyenne entre

I’ et II formée d'un seul versant, est celle dont les ordonnées
sont précisément y. Son équation est :

o yht 4 (AJ — 135—) h® — C(1 — 1) avec h positif.

Soit III' I'image de III par rapport & I'axe (fig. 15). Cette der-
niére courbe & deux versants est symétrique; son équation est

yh* 4+ (A) — -BE) h* — C(1 — y) avec h positif ou négatif (21’

Ainsi la transformation de l’équation (21) en cette derniére
qui est débarrassée des puissances impaires de A, est le paral-
! Ce terme apparaitrait dans I’équation finale sous la forme
2003, + % vy —

T -’-’ 'm

Le rapport de ce terme au terme P?(1 — ) est

E[ i3, + 8y ]2 X ¥ — s
{Bl + 82\2 + {32 . 1 = .T. ynz .

Pour la partie supérieure de la courbe, y, — ¥, est pratiquement nul.
Prenons maintenant deux points convenablement espacés de la courbe de
la fig. 17; et admettons 3, — 8, = . Pour ' = 0,1 ce rapport est 0,0006.
Pour x = 0,2 il est 0,0009. On a donc raison de négliger ce terme.
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lele de la transformation géométrique de la courbe observée en
une courbe symétrique. Il faudrait done, quand on est en pré-
sence d’un cas pratique, commencer par faire cette transforma-
tion géométrique; mais eette opération peut étre évitée, comme
on le verra bientot.

4
Multiplions I'équation (21") par =

[mh ‘+ Ar? ) BC =2\ /=nh\? 1:4(](1__ =0
J mt mt y A m’ U=
1 1 1 1 1

Or
H 2 2
—h w(md — m m
= - 2 1
e — =x|l——1)!
2 2 - 2
m
. m; m

Nous avons admis que la résonance a lieu pour 2 = 0 (voir
page 49). Si donc on appelle C; la capacité du secondaire a la
résonance, on a:

=h Cr )
—_— == —1)=2 22
e r(c 22)

O

Nous supposerons désormais les quantités x portées en
abscisses.
Les constantes contiennent les amortissements. Nous allons

introduire les décréments. T, = fTT est la période du primaire.
a,T,—4d,, «,T, =9, sont les d]écréments des deux circuits
pour la période T,. Introduisons par analogie le deuxiéme décré-
ment du primaire __ _
nT, = 8 (23)

" En réalité h = m; — m} + o + 22 2, — n®. Mais le rapport

3 2
a; + 20,0, — n

2 3
! s
nz n'l.‘1

] 2
m, —m,

est de Pordre de 0,0025 lorsque —’——;——— = 0.1,

ml
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On trouve
Anxt
— = 2[(3, + &) — ¥
m

1 5

=t C . R
— =[5, + 8,2 + B .
"11

BC =2 (B 8,) (28] 4+ 5) + @
e YT T ST+ 8+ )
D m: {8, + %) [28: + 5% — (28 _ _

En sorte que si 'on introduit les paramétres

P =5 + 3+ [ ,

M = (5 + 5,)2 — [2 - (24)
i (8, + Bzuzaf + % 4+ (%9,

N _ z y
(8, + 8;) (28] + (%) — 59,

Uéquation de la courbe de résonance, rendue symétrique, prend
la forme la plus simple qu’il soit possible d’obtenir :

aty + (2My — NPja? = P*(1 — »y) (25)

§ 16. — Courbe des décréments.

L’équation (25), que I'on pelit présenter sous la forme

NPx? 4- P2
at 4 2Max? 4 P2

y=

‘ne laisse pas aisément voir le caractére qui la distingue de
T'équation établie dans la premiére partie, -
. Le caractére distinctif d’'une courbe de Bjerknes normale est
la constance du décrément aux différentes hauteurs. Il vient
donc a I'idée d’examiner la loi suivant laquelle le décrément
varie, en se basant sur la nouvelle équation, autrement dit de
chercher Uéquation de la courbe des décréments.

Considérons la courbe de résonance transformée et son équa-
tion

xty + (2My — NPja? = P2{1 — ») .

Nous allons effectuer un changement de variable. A la place
~de x nous introduisons une nouvelle variable z reliée aux
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anciennes par la relation

z:x\/i—iy .
x:z\/i_}.,
¥

I’équation 'préce’denfe devient

Par la substitution

2t — y) 4+ (2My — NP)z? = P . (26)

Quelle est la signiﬁcatibn de z? En retournant a la significa-
tion de x donnée par (22), nous pouvons dire: z est le nombre

— e — —— ————— — — — e — . e —— — — — — —

Bjerknes Expérim.

Fig. 16.

trouvé a la hauteur y dans le procédé Bjerknes, sur la courbe
transformée, symétrique [dont I’équation est donnée par (25) ou
(21').] |

Or jaffirme que z est également le nombre trouvé a la hauteur
y dans le procédé Bjerknes, sur la courbe primitive, dissymé-
trique [dont ’équation est donnée par (21)]. Cela est un fait pra=
tique, observé, qui a sa raison dans la faible influence de la dis-
symétrie sur la valeur du décrément.

Par conséquent ’équation obtenue (26) est bien celle de la
courbe des décréments. Cest la courbe que nous envisagerons
désormais, et 'on comprend maintenant pourquoi la transfor-
mation dont parlait le paragraphe précédent n’est pas néces-
saire.

La forme de la courbe des décréments est celle d’une courbe
de résonance renversée, dont on n’utilise que la partie trés incli-
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née d'un des versants (fig. 16). En effet, par la substitution
¥’ = 1 — y on retombe sur une équation semblable & la préeé-
dente, sauf qu'au lieu de 2My on a 2M(1 — ¥), ce qui n’influe
pas sur lallure générale. |

La courbe des décréments prévue par la théorie de Bjerknes,
et constatée lorsque le primaire n’a pas d’étincelle, est une
droite. '

Le domaine de validité de I’équation (26) n’est limité que par
la grandeur des décréments. 11 est supposé '

Bf, 8:, (' négligeables devant 4x? .

Il n’y a pas de restriction relative a la dissonance.

§ 17. — Recherche d'une méthode pratique.

L’application & un cas concret a présenté de grandes difficul-
tés. Il faut en chercher la raison soit dans la forme compliquée
de I’équation du 5° degré, soit dans le fait que la théorie ne cor-
respond pas complétement & 'expérience. Les recherches que j’ai
faites de différents cotés pour trouver un procédé de calcul et
pour concilier la théorie et ’expérience, m’ont fait aboutir &
des conclusions que je suis forcé d’exposer avant le procédé de
calcul des décréments.

L’équation de la courbe des décréments est

#*(1 — y) + (2My — NP)z? = P¥ .

Les constantes sont au nombre de trois: M, N, P. Dés qu’on
connait ces derniéres, on calcule sans difficulté d,, d, et ¢
séparément. La premiére idée qui se présente a I'esprit est de
faire passer cette courbe par trois points convenablement espa-
cés. Le procédé, s’il était possible, serait long, mais présenterait
une haute valeur ; car une seule courbe suffirait & faire connai-
tre M, N, P, donc les trois décréments. On peut se rendre
compte & priori déja de cette impossibilité. On sait en effet que
d’'une courbe de résonance normale, on ne peut tirer que la
somme d, + 0, et point du tout les décréments séparés. Cela
ne provient point d'une impossibilité radicale, puisqu’on pourrait
avoir une deuxiéme relation entre 0, et d, en tirant parti de la-
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dissymétrie. Mais ’exactitude de cette deuxiéme relation serait
trés imparfaite. S '

Donc il est obligatoire de n’utiliser que deux points ou deux
données de la courbe. Si, & I'aide de ces deux données, il était
possible de tirer séparément M et P, tout irait bien; N ne nous
intéressant pas beaucoup. Si p. ex. on pouvait trouver la hau-
teur i qui annule la parenthése 2My — NP, on pourrait immeé-
diatement calculer P. Cette hauteur est voisine de 0,70; mais
elle est inconnue et d’ailleurs variable avec d,. Un procédé de
ce genre essayé sur la courbe des décréments ou sur une courbe
obtenue de celle-la par des transformations géométriques,
demeure sans succes.

Par conséquent d’une courbe unique on ne peut rien tirer.
Prenons alors deux courbes simultanément, la seconde corres-
pondant & un secondaire plus amorti. A I'aide de deux données
fournies par chacune d’elles on peut déterminer quatre incon-
nues 0,, d,, g et 'augmentation de J,. Mais quelles données
choisirons-nous? _ _

En choisissant deux points convenablement espacés sur cha-
que courbe des décréments, on peut effectivement déterminer
les quatre inconnues ; et connaissant par suite M, N, P, on péut
construire les deux courbes de résonance en entier. Ces deux
constructions se fondent avec les courbes expérimentales bien
mieux que les courbes de Bjerknes; mais on ne constate pas
I'identité entre la valeur observée et la valeur calculée pour
Iaccroissement du déerément. Ce n’est donc que la moitié du
probléme qui se trouve ainsi résolue. .

La raison intime de ce fait est la suivante : la nouvelle théorie
est adéquate a I'ancienne pour expliquer la moitié inférieure de
“la courbe, disons méme la partiecomprise entrey =0Oety =06+
c.-a-d. qu’il est possible de déterminer M, N, P (en choisissant.con-
venablement les deux données sur chaque courbe) et parsuite de
construire une courbe qui, dans cet intervalle, coincide assez bien
avec la courbe expérimentale. Le procédé, déerit plus loin, appli-
qué a deux courbes, fait effectivement apparaitre I'égalité entre
Uaceroissement du décrément observé et I accroissement calculé. La
partie supérieure de la courbe théorique diverge notablement
de la partie correspondante de la courbe expérimentale (fig. 17).
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On s’explique maintenant pourquoi j'ai choisi les deux don-
nées dans la partie inférieure, savoir: le point y — 0,4 et la
tangente en ce point. 11 est le centre de 'intervalle limité par les
points 0,2 et 0,6. J’abandonne le point 0,1 comme trop incertain
- par suite des erreurs de mesures ou de tracé.

Si les points 2, 3, 4, 5, 6 (fig. 18) étaient disposés sur une cir-
conférence et équidistants, la tangente au point 4 serait déter-
minée par une paralléle & AB; A et B étant les points milieux
de 23 et de 56. Or la courbe des décréments a dans cet inter-
‘valle une courbure assez faible pour que nous puissions ’assimi-

Fig. 18.

ler a une circonférence. Aussi c'est cette régle que j’ai adoptée
pour la construction de la tangente au point 4. Quelquefois,
dans la pratique, ces cing points sont alignés sur une droite ou
ont une distribution indécise; en pareil cas, on trace simple-
ment et aussi exactement que possible la droite qui passe par ces
points. Ce procédé n’est qu’approché ; mais ce que je recherche
c’est une reégle pratique, fixe, qui donne les résultats les meil-
leurs; et ces résultats en justifient ’application.

§ 18. — Talble des décréments et calcul des décréments.
La courbe des décréments a pour équation (26)
! 2.
22(1 — y) + 2My — NP = %;m . (26%)

Faisons y — 0, nous obtenons

g, = \/ﬁ . . - (27)
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C’est le décrément limite, intersection de la courbe avec I’axe

des abscisses'.
Différentions par rapport 3 ¥:

dz # y z — 2yz"
35‘ =% 222" (1 — y) — 2% + 2M = P2 . = (28)
Dans ces deux équations (26") et (28), faisons y = 0,4
332 4 4M — 5NP — 2_—P;
(29)

5z — &z’

3 ;

6zz" — bz + 10M —= P2,

Z

z est icl le décrément & la hauteur 0,4 ; 2" est la dérivée en ce
point. Rapportons toutes les constantes ¢ 2'; introduisons donc

les rapports:

R
01+3,: 1 . 2

= B

v

’ P sl N12 ’2

P _—_z—gz(oi—n}«ozj + B .

\ ,
M’__z—lz._—_(é + 32 — p?
N 5 4 5.)(25, + 8°) + 875

(5, -+ 8) (28, + §) — 875,

’ S SRRy
5, = J:\/N'P’. :
.3

Appelons z: la déformatioh et représentons-la par

4

L]

- u .

]

Cette déformation est une quantité calculable sur une courbe
donnée. Avec ces notations, les équations (29) deviennent

3 + 4M’ — BN/P’ = 2P o
61— 5 4 10M” = P'2(5 — hu) . =)

! On verra bientdt pourquoi ce décrément limite est utile & connaitre.
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25
30
35

.
"
L]

/

/

0
0
0
ue ordonnee ajouter 0.5

] inoon

\ /-

— ==
W .

acha

Courbe

Pour 5',,‘3‘;{ etZ,

]
=
Iy

Table des decrements

g

04
0.3
02
0.

N’ peut s'écrire
b

b
— en posant _t (30)
5 + 8, — pp’

P = AY:
“(é:)

p est une constante du primaire. Les résultats exposés plus loin

NI
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montrent que d, et § ont des valeurs numériques voisines.
Méme lorsqu’on varie sur une grande échelle les conditions du
primaire, le rapport E n’est jamais trés éloigné de I'unité. Or p

{}
varie tres peu avec = 5 , et pratiquement sa valeur reste comprise

entre % et % C’est pourquoi il est avantageux de choisir p
comme parameétre des courbes que nous allons construire; le
nombre de ces courbes sera fort heureusement treés limité:

Il s’agit maintenant, en regardant » comme variable indé-
pendante, de construire des courbes représentatives de d, 4 a
g et 2. Pour voir la possibilité de ce probléme, admettons que
p garde la valeur fize 0,30. Les équations (29') et (30) peuvent
étre présentées comme suit :

i, 45, B, N) =0

NG Br‘
e

g (w)
B=J,(u)
N = F, (u)

Je rapelle que 2 = \/N’P’, de sorte qu'au lieu de cette
3° équation, nous avons la suivante

:; = @, (] -

Il n’est pas possible de donner I’expression algébrique de ces
fonctions &,, &F,, &F,. Néanmoins les courbes qu’elles repré-
sentent peuvent étre construites par un procédé semblable a
celui de la résolution des équations numériques. Ces courbes,
construites pour diverses valeurs de p, constituent la Table des
décréments.

La fig. 19 repr esente cette table faite pour les diverses valeurs

de p
0,25 0,30 0,35

’

: v 3 u k-4
Les abscisses sont les déformations ¥ = .
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Comme exemple je vais appliquer la méthode aux courbes de
la fig. 2 (Voir aussi fig. 3).
Sur la fig. 20 CA est la tangente & la courbe des décréments

A B

Fig. 20.

au point M. Pour la courbe I (sans résistance), on a les cotes
suivantes: '
DM = z = 0,0910

AB _ds .,
Eﬁﬂd—.‘}'éz‘ _0,0455 .

La déformation est z; = 0,500.

En premiére approximation, nous pouvons supposer p =10,30;
et par suite nous aurons & utiliser les trois courbes de la Table
des décréments marquées I1.

A l'abscisse 0,500 correspondent

54+ 5, =10631 ' =0,343 z =087 .
En multipliant par z on obtient les décréments
5, + 8, = 10,0574 5=10,0312 3, = 0,0771 .

2, sera utilisé dans le calcul des décréments séparés.
Faisons de méme pour la seconde courbe

z — 0,1160
/= 0,0247

La déformation est — = 0,213. A cette abscisse correspondent

by

’ r r - ~/ -
5 4 5 =0,806 [ =0,256 =z = 0,930 .
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En multipliant par 2z on obtient les décréments
8, + 8, = 0,09385  §=10,0297 z, = 0,1079 .

On observe que la valeur numérique de J, —|— d, est plus petite
que dans la méthode Bjerknes. Il ne faut pas oublier que la
signification de d,, ¢’est-a-dire 52%‘ n’est plus ici la méme.
Si I'on fait la différence entre les valeurs de d, + d, pour les
deux courbes, on trouve ° -
0,0361 .

Sa valeur prévue était 0,0376.

On remarque que la différence observée est légerement infé-
rieure 2 la différence calculée. Cette erreur se retrouvera avec
* le méme signe dans la plupart des exemples que je citerai. Pour
voir jusqu'ou va l’exactitude de la méthode, il faut porter son
attention sur la diftérence des décréments et sur la valeur de 8
qui doit se retrouver égale dans la seconde courbe. Dans cet
exemple on trouve pour 3, successivement,

0,0312 et  0,0297 .
d

. . . 8 .
Cependant j’avais supposé p — —ﬁ = 0,30. Pour voir si
:+ ()
1
cette condition est bien réalisée, il faut connaitre d, séparément.

§ 19. — Décréments séparés.

Si I’on se reporte aux formules (16) et (20), on a

_ 8(12 [12

CKyn —D =0 o K=-2".

En substituant & C et & D leurs expressions (19), et en passant
des amortissements aux décréments, on trouve:

32L (3, + 3,128, + B2 — §%,
Trapg - Ym = - l £
L 3,813 + EN(0, + 8" + B

By
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On a aussi (24)

(3, + &) (28] + B¥) — 8%,
(3, + 3,) (28] + B?) + B2,

1
_.._N.

Le terme 82d, est toujours assez petit pour qu’on puisse négliger
son carré devant le carré du premier terme'. En multipliant
numérateur et dénominateur par la conjuguée du dénomina-
teur et extrayant la racine carrée, on obtient :

(3, + 3025, + B) — %, 4

3, 4+ 8,) (28 + 8 VN

L’équation (31) peut s'écrire :

321, 2, + 6 5 45, 1
e .')‘rn = ¥ =
ToES ,+6 % PVN

Si Pon introduit dans le secondaire une résistance addition-
nelle qui ne change pas la self-induction, d, devient d,*, et ¥
devient 7™,

2 9
2L L A A
5

1
5,3 + ) ;" PN

Divisons ces deux équations membre & membre :

Ym 62

5
ymt T % B+ 8 PN

Soit d I'accroissement de décrément produit par la résistance
additionnelle

5,* d
5 =ty
1+i~—l’f_’. 0 + 8’ PV'N
5 ymt o+ pe/ N

! L’erreur maximum est 3 °/,. Mais elle apparaitra en numérateur et
en dénominateur dans la formule finale, ce qui la rend insignifiante.
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Enfin puisque 2, = NP, la formule qui fournit le décrément
d, est:

d ")"”1 8] "‘I“ 82* ZU P

o . —= £, 32
By rm® . 8, + 9 o P 5%

Appliquons cette formule 2 'exemple précédent

d=100376 yn =889 3 43 = 00574 =z, =0,0771
ym* =26 3 4+ 3,=0,0935  z* = 01079
| 8 = 0,030% .

* N . . .2
(ym et y* sont des valeurs proportionnelles & 7 ).
On trouve!*

8, = 0,0231 .
On déduit
5, = 0,0343 .

On peut alors calculer p:
p= 0,304 .

J'avais supposé p = 0,30. On voit done qu’il n’est pas nécessaire
de recommencer les calculs avee cette nouvelle valeur de p. '

§ 20. — Exemples.

Exemple 2. — Self-induction du secondaire constituée par un
carré de 1 meétre (fil 3mm) avec une bobine de 22 spires (fil 3 mm;
diamétre d’une spire 10 em). L = 37.160 CGS. T = 1,606.10°
Résistance additionnelle 1,596 ohm. (fig. 3)

0798 g ’

z2 = 3 '
F— 00641 T = 0,553 Courbe I (sans résistance)
7 = 0,04 z
5,4+ 5, = 0599  B’'=10353 = =032
9, + 8, = 0,0478 B = 0,0282 z, = 0,0664
:; — g(i]ggg g == 0.,229 Courbe II (averc résistance)
5" 220, \ 2

! Self-ind. du secondaire constituée par un earré de 1 m; fil 3 mm;
L = 6380 CGS. T = 0,60.10-%. Résistance additionnelle 0,798 ohm.
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5 4 5, =079 " =0263 - s =0925
3, + 8, =0,0825 5 =00273 g, = 0,0958

On calcule d, par la formule (32) ou 'on fait :

d = 0,0345 (caleulé) 3, + 3,* = 0,0825 =z, = 0,0664

ym = 39,2 5, 4 8, =0,0478  z* = 0,0958
Yo = 11,3 B moy. = 0,0278
On trouve
5, =.0,0211 .
On déduit
5, = 0,0267 .

1

Et 'on calcule p = 0,338. Comme il a été supposé p = 0,30 une
9¢ approximation est nécessaire. On utilise les deux courbes II
et II1 de la Table des décréments et I’on interpole. On obtient
finalement :

0665
0958

0,0671 §=0,0275 =
— 0,0816 §=0,0265 =

Courbe I (sans résist.) o
=0,

v
HO’I 7
+ +

Courbe II (avec »

D’ou 'on calcule

ty = 0,0211° 3, = 0,0260 f moy. = 0,0270 .

1
(calculée 0,0345) .

-
<

Différence observée 0,03

Exemple 3. — Self-induction du secondaire constituée par un fil
carré de 1 métre (fil 3 mm) avec trois spires de lame mince (dia-
métre 21.cm). L = 6900 cm. T = 0,598.10% Résistance addi-
tionnelle 0,6247 ohm (fig. 17).

hauteur 1 _ IT
y/ym = 0,9 5, + 8, = 0,1157 0,1207
0,8 0.1083 0,1210
0,7 0.1047 0,1208
0,6 0,1018 0,1192
0,5 0,0983 0,1165
0,4 0,0936 0,129
0,3 0,0883 0,1099
0,2 0,0846 0,1084

0,1 0,0843 0,1057
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: = 0,0932 ; =z’ , . :
— 004530 3 — 0,486 Courbe I (sans résistance)
5+ 5, = 0460 [ =030  z = 0,851
8, + 8,=— 00597 [ — 0,0317 z, = 0,0793
z = 0,1130 ) =’ ame iz
2 — 0.0286 g — = 0,253 Couarbe II (avec résistance)
5+ 5, =0781 ¥ =027% 2z =017
o, + 8,=0,0883 { =0,0310 =z, = 0,1036
Calcul du décrément d, :
d=0,0270 ynu — 46,4 & - 8, = 0,0597 =z, = 0,0793
8 moy. = 0,0313  y,* =156 3, -+ 3,= 0,0883  z,* = 0.1036
On trouve
5, = 0.0190 .
On déduit
3, = 0,0407 .
On calcule ,
p=0297 .

Une nouvelle approximation n’est pas nécessaire.

Différence observée 0,0286

(calculée 0,0270) .

Exemple 4. — Condensateurs du primaire : deux tubes a acide
carbonique comprimé. Self-induction du secondaire : un carré
de 1 metre d’'une lame large et épaisse; trois condensateurs en
parallele. L — 4070. T = 0,829.10°. Résistance additionnelle
0,1567 ohm (fig. 3).

0,9°
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0.1

1
3, + 3, — 0,0895
0,0858
0,0842
0,0821
0,0792
0,0759
0,0710
0,0658
0,0638

11
0,0997
0,0967
0,0934%
0,0905
0,0869
0,0837
0,0807
0,0782
0,0772
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A la 2° approximation on trouve :

z — 0,0750 z’ . .
2 — 0.0420 i = 0,560 Courbe I (sans résistance)

5+ 5, =0597 F=10857 z = 0,83

5, 5, = 00448 [ = 0,0268 3, = 0,0629
5 =00839) ' . L
2 — 0.0302 i —ES 0,360 Courbe II (avec résistance)

’

5, + 85, =0716 =031 3 =086
3, + 8, = 0,0601 5 =0,0261 =z, = 0,0743

}

maxima 101,8 et 40,2 d — 0,0160 .

On calcule
9, = 0,0127 8, — 0,0321 3 = 0,0265 .
Différence observée 0,0153 (calculée 0,0160) .

§ 21. — Jusqw'a quel point la nouvelle théorie explique
les phénomenes.

1. Ces exemples montrent qu'il est possible de déterminer les
trois décréments J,, 8 et d,. A la vérité, ma supposition primi-
tive d’apres laquelle d, serait obtenu avec une grande précision,
g restant terme de correction, s’est trouvée démentie. Ces deux
quantités entrent de pair dans les formules, et pour que la pré-
cision des valeurs obtenues soit simplement satisfaisante, un
soin extréme est de rigueur dans la construction des courbes de
résonance. Une courbe qui, au point de vue de la théorie de
Bjerknes, permet d’établir un décrément moyen qui parait satis-
faisant, n’est cependant pas toujours acceptable au point de vue
de la nouvelle théorie. En effet, le décrément moyen, et aussi le
nombre 2z sont assez stables, mais le nombre 2’ qui caractérise
Vinclinaison de la tangente dépend beaucoup de la régularité du
tracé de la courbe. | |

2. Il est possible maintenant d’examiner jusqu’a quel point la
nouvelle théorie est conforme a I'expérience. Cette conformité a
atteindre est double;
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1° Conformité entre la forme de la courbe théorique et celle
de la courbe expérimentale. '

2° Conformité entre les valeurs observée et calculée de 'aug-
mentation du déerément.

Quant au second genre de conformité, les exemples ont mon-
tré qu’il est satisfaisant. Il reste & examiner le premier genre.
— La connaissance des décréments dans un cas particulier per-
met de calculer M, N, P et par suite de construire en entier la
courbe de résonance et la courbe des décréments. Ce sont les
courbes théoriques dont il est question sur la fig. 17. On voit
que la concordance avec la courbe expérimentale est assez bonne
jusqu’a la hauteur 0,6. Au dela il y a divergence; le sommet de

la courbe théorique est excavé, circonstance due au fait que
NP > 2M, autrement dit que le décrément § est assez grand.

Remarquons en passant qu’on aurait obtenu les mémes résul-
tats si, pour les deux données, on avait choisi autre chose que le
point 0,4 et la tangente en ce point. On aurait pu choisir p. ex.
les points 0,3 et 0,5 ou deux autres points quelconques, pourvu
qu’ils soient intérieurs & l'intervalle 0 <C 7 <C 0,6. Cela résulte
de la coincidence de la courbe théorique et de la courbe expéri-
mentale dans I'intervalle considéré.

3. Aprés avoir précisé cette conformité, il convient d’examiner
ici la théorie de Bjerknes au méme point de vue. — Soit.
d, + d,la valeur du décrément déterminée a la hauteur OM de
la courbe expérimentale I (fig. 21). La courbe normale 11 passant
par le point P et possédant d, + d, comme décrément, coupe la
courbe I. D’autre part d, + J,* déterminé sur une seconde
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courbe & la méme hauteur est tel que la différence (d, + d,%) —
(8, + J,) est trop petite. Pour ces deux raisons on peut dire
que la courbe II ne concorde pas avec la courbe expérimentale I.

Est-il possible de faire passer une courbe normale par un
point P, choisi tel que les tangentes aux deux courbes coinci-
dent ? Si oui, la concordance des formes serait meilleure. Cela
est effectivement possible lorsque P est dans le premier ou le
dernier intervalle (la hauteur étant divisée en dix parties). Mais
en aucun de ces deux cas on n'obtient 1'égalité des deux accrois-
sements. Toutefois 'intervalle inférieur est de beaucoup le plus
favorable, puisque le rapport des deux accroissements, si ’on
considere le décrément limite, est environ 0,9.

Admettons, pour le décrément limite, 1'égalité approximative
des deux accroissements. On aurait donc cerésultat: L’équation
de Bjerknes permet d’expliquer lo partie la plus basse de la
courbe de résonance. ;

C’est 14 un fait digne de remarque. On est en effet accoutumé
a regarder la formule de Bjerknes ordinaire comme valable
dans le voisinage de la résonance. Je sais que logiquement on
a raison, puisque les conditions d’application exigent qu’on ne
sécarte pas de la résonance. Mais, méme si I'on se sert dela for-
‘mule ordinaire, on obtient d’apres 'énoncé précédent un résul-
tat meilleur quand on I'applique 4 de grandes dissonances. Cela
provient de ce qu’il faut distinguer deux sources d’erreurs:
1'une sans importance, qui est I’ensemble des conditions restric-
tives de Bjerknes; I'autre qui est I'influence perturbatrice de
I'étincelle. Pour éviter en partie cette derniére, il faut appliquer
I'équation de Bjerknes & la partie inférieure de la courbe expé-
rimentale.

Nous pouvons maintenant facilement comparer les deux theo-
ries et voir le progrés de 'une sur 'autre. La théorie de Bjerk-
nes rend compte de la courbe de résonance dans sa partie tout &
fait infériewre; la nouvelle théorie rend compte de ce phénoméne
depuis le bas jusqu’a la hauteur 0,6. C’est dire que nous nous
trouvons maintenant & mi-chemin dans I’explication du phéno-
mene de la résonance.
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TROISIEME PARTIE

Cette derniére partie contient 1'exposé des conclusions aux-
quelles conduit 1a nouvelle théorie. Cette théorie, comparée a celle
de Bjerknes, présente des différences qu’il est utile d’examiner.

Toutefois, pour exposer commodément ces résultats, il est
nécessaire que je fasse tout d’abord connaitre une méthode de
caléul simplifiée, qui a 'avantage de donner aux décréments
une représentation graphique.

§ 22. — Méthode de calcul simplifiée.

1° La Table des décréments a été construite pour remplacer
'équation de degré élevé de la courbe de résonance. On peut
faire un pas de plus: remplacer la Table des décréments par des
équations simples.

Cette Table présente des courbes pour d+ 6,8,z .En

abscisses sont portées les deformatlom — . Dans I’ 1ntervalle
7’
0,2 < = < 0,6

les courbes pour d, 4 &), 2z ont une bonne allure linéaire;
quant & la courbe @, on peut la considérer comme un arc de
parabole. Les équations de ces droites et de cette parabole, pour
les diverses valeurs de p

Courbe 1 } 11 CIII
p =025 0,30 0,35
sont. :
r r r ’ > Z,, 1
pour 3, + 3, : 1. & + 3 = 0,936 — 0,580 —
1L 3 4 3,=0928 — 059 — (33)
L 8+ o, —0920_06051z

! Droites déterminées par les points i— = 0,3 et 0,5,
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z

¥

" /’ e 2 1
pour § : I. ¥ = 0,15% + 0,580 Z} — 0,350 ( )

~

1
1

II. [ = 0,148 -+ 0,571 — 0,356 (

nl“
u| ¢

1
~

III. "= 0,143 + 0,562 — 0,362 (

2

(33)

a sy
\__/
L]

1

0,988 — 0,288

SRICE

’
pour z, I. z

~

II. = =— 0,989 — 0,284

aln oa W

I, zp = 0,990 — 0,280

Les coefficients qui correspondent a des valeurs de p intermé-
diaires entre les trois valeurs données, s’obtiennent par interpo-
lation. ‘ _

Ces formules remplacent assez bien la Table des décréments
dans les intervalles

0,20 < p < 0,40
0,20 << 2 < 0,60

C’est seulement dans ce domaine que seront valables les régles -
pratiques qui seront énoncées ; ces regles pratiques sont 'inter-
prétation géométrique que permettent ces équations simples.

Considérons uniquement les courbes LI qui supposent p = 0,30.
Les résultats qui vont suivre seront donc attachés a cette valeur
particuliere de p. Toutefois je montrerai que, si I’on se contente
d’une certaine approximation, ils jouissent de quelque généra-
lité. Cela tient & ce que les coefficients qui figurent dans les
équations précédentes varient peu quand on passe d’une valeur
de p & une autre.

2° On a I’équation

’

8, + 8, = 0,928 — 0,595 (35)

n|n

. | n\

! Paraboles déterminées par les points — = 0,2, 0,4 et 0,6.

’

? Droites déterminées par les points ZT = 0,3 et 0,5.
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¥n multipliant par z on peut I'amener a la forme
3, 4+ 8, + 00725 =z — 0,595z" . (35"

1

Faisons la construction suivante (fig. 22):

1 9 A
04 Z P
A
B
O'*=::J.13:: """""""" >Z
———————————— >R

AC tangente a la courbe des décréments au point P (hauteur 0,4)

PBr = AB = i
C'B' = AB .

L’équation (35) dit que le 1° membre est égal & l'abscisse de
P diminuée de 0,595. CB. Tracons MN & une hauteur telle que

MN = 0,595. CB
On conclut facilement qu’il faut que 1'on ait :
IN = 0,195 .

Nous sommes donc amenés a construire parallelement & OZ un
nouvel axe O'Z & la hauteur négative y — — 0,195, sur lequel
O’'M signifie d, + 0, + 0,072 z. Pour obtenir d, 4+ J, d'une
maniere précise, il faut compléter la construction en tracant une
droite oblique O'R, faisant avec 'Z un angle « tel que tg o=
0,072. Dans ces conditions NQ = 0,072 z et enfin le point M’
placé tel que M'M = NQ fait apparaitre la signification gra-
phigie de 0, + J,
3, + 8, = O'M" .

Ce procédé fournirait d, + d, avec une exactitude tres satis-
faisante si seulement p était connu. Or en pratique p est une
constante du primaire, inconnue, et & déterminer.

On pourrait bien — comme on le fait par le calcul rigoureux

ARcCHIVES, Vol. 3. — Mai-Juin 1921. 16
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— traiter semblablement une seconde courbe de décréments,
calculer les décréments séparés au moyen de la formule (32),
enfin voir si la valeur qu'on obtient pour p est bien celle qu'on
a prévue.

Mais alors la méthode graphique perdrait tout son intérét.
Son intérét réside dans le fuit qu’elle donne des résultats appro-

chés, quelle que soit la valewr de p dont on parte. - ‘
Il est entendu que je parle de l'intervalle que j’ai observé
pour p dans mes expériences. Cet intervalle (34) est cependant
assez large pour comprendre une multitude de cas d’expérience.
On se rend compte de la chose quand on observe les change-
ments d’ordre quantitatif qu’il faut apporter au procédé suivant
la valeur de p. Les voici:

p=1025 030 0,35

Axe horiz. O'Z ala hant. 00’ = 0,180 0,195 0,205
Axe oblique O'R lga = 0,065 0,072 0,080

Ainsi pour I'exemple 2 (voir page 64 et fig. 3) le procédé gra-
phique fournit

pour p = 0,34 9, + 8, = 0,0463 .

Supposons que, ignorant cette vraie valeur de p, nous choi-
sissions p = 0,25. Le procédé graphique donne

pour p = 0.25 3, + 8, = 0,0%86 .

On peut done, en se contentant d'une certaine approximation,
considérer les axes O'Z et O'R comme des droites fixes, dé-
terminées par

00" =0,20 et 1ga=0,07.

Le procédé graphique présente un intérét particulier quand
on considére simultanément deux courbes de décréments. Sur
la fig. 23 AC et BD sont deux tangentes aux courbes des décré-
ments fournissant d, 4+ d, et d, + d,*

Accroissement Ad, = 0,* — J,. On trace O’'Z a la hauteur
négative 00’ = 0,195 ; puis O'R telle que tg & = 0,072. Et’'on
détermine, comme il a été expliqué, les points M’ et 1.".

OM =35, + 5, Ol =35, + &, + A3, .
M’L’ = A3, .
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On pourrait donc trouver Ad, en appliquant deux fois le pro-
cédé. Mais on peut arriver a ce résultat plus rapidement. Il est
visible en effet que ML est & peu pres egal a M'L'*, de sorte que
Vaccroissement observé est

A3, — ML .
49 A B
04 P K-
Ol >Z
, /éc /o
0 ===:::_7£q-[’_l__—:_—::_]“‘— S I >Z
S +R
Fig. 23,

Appliquons ce résultat aux divers exemples cités dans la
2° partie. Je lirai toujours la distance ML sur I'axe QO'Z mene 3
la hauteur fixe 0,20.

Exemple I (page 61 et fig. 3)

La construction donne ML — 0,0378 .
Le calcul par la table donne A3, — 0,0361

Exemple 2 (page 105 et ﬁg.‘ 3)
ML = 0,0367 A%, = 0,0345 .
Exemple 3 (page 229 et fig. 17)
ML = 0,0299 Ad
Exemple 4 (page 105 et fig. 3)
ML = 0,0167 A%, = 0,0153 .

= 0,0286 .

2

On voit que ce procédé graphique envisage comme mode de
calcul n’est pas parfait. Kt pourtant il rend de réels services.
Lorsque deux courbes simultanées viennent d’étre construites,
on a rapidement mené les tangentes et lu la distance ML. Si
cette distance est un peu supérieure a 'augmentation calculée

! La différence ML — M’L’ est égale en moyenne & 0,05 A3, .
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du décrément, on peut étre siir que le caleul rigoureux donnera
de bons résultats. Dans le cas contraire, on voit le sens et la
grandeur de l'erreur, et I'on peut immédiatement reconnaitre
les défectuosités de I'une ou 'autre des courbes. D’autre part
cette signification graphique de la différence Ad, sera treés utile
a Pintelligence des considérations du paragraphe suivant.
3° L’équation
3" = 0,148 + 0,571 ; — 0,356 (l)z : (36)

n’est pas susceptible d'une interprétation graphique simple.
Mais si a cette équation on additionne la suivante :

!

B+ 5= 0,928 — 0,595 —

on ohtient

~

5 5 - B =1.076 — 0,024 — — 0,356 ( )
1 2 z

3]

a

ou bien

3 o 3 — z 27 z"\*®
E B =3 096 — 0,026 % — 0,356 () .
zZ ¥4 4

/

Le second membre s’annule pour — = 0,429. Donc dans le voi-
2

sinage de cette valeur on a & peu pres

3,48+ =z (37)

De sorte que si AC (fig. 22) correspond & une déformation

égale & 0,429 alors
O'N=23, + 3 + &

et comme on a OM’ = d, 4 d,, on conclut

M'N = .

Dans ces conditions 3 a une signification graphique simple;
mais cela suppose d’'une part une valeur trés spéeiale de
—, d’autre part une valeur tres spéciale de p.

Par le tableau suivant on pourra se faire une idée de l'er-
reur commise sur la somme d, + d, + §, en admettant que

pour p = 0,30 et pour toutes les déformations, g est repré-
senté par M'N.
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s

S ]

0,2 0,3 0,4 0,429 0,5 0,6

e |t

o

Erreursur 3, + 8, 4+ 3 =15,79, 3.79%, 09° 0 259 6,79

’

N z .
Pour les autres valeurs de p, les valeurs de — qui rendent

rigoureuse I’ egallte d, + d, + B =z, sont dlﬁelentes de 0,429.
On a:
pour p = 0,25 0,30 0,35
L = 0,507 0,429 0,362

e |

L’erreur est du méme ordre de grandem Il est intéressant
de noter que ces valeurs de = - tombent toutes en plein dans

/

'intervalle pratique que j’ai observé pOur — ; elles sont toutes
réalisables,

49 Telle est cette méthode graphique qui n’est pas complete
par elle-méme, puisque les décréments séparés ne peuvent étre
que calculés par la formule (32). Son intérét, comme je I'ai dit,
consiste en ce qu’elle permet de lire immédiatement une valeur
approchée des décréments J, + d,, 3, Ad, sur la courbe des
décréments. Pour qu’elle soit utile, il faut considérer les axes
0'Z, O'R comme fizes et déterminés par les nombres

00’ = 0,20 tg « — 0,07

Dans ces conditions I'erreur commise n’est pas de nature &
détruire la valeur du procédé.

Je rappelle que ces leglos ne sont applicables que dans le do-
maine

0,20 < ”— < 0,60

0,20 < p < 0,40
qui correspond aux divers cas réalisés dans mes expériences.
Quelles modifications ces régles doivent-elles subir en dehors de
ce domaine? Ces régles existent-elles seulement? Ce sont des
questions auxquelles je n’ai pas cru devoir répondre.

Il est certain cepen«/ﬁlant que les déformations trop fortes,
c’est-a-dire telles que — © > 0,60, ne sont pas a prendre en consi-
delatlon carla théorie tout entiére semble en défaut. D’autre part
101%que — < 0,20, ces régles perdent leur caractére de sunphclté
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§ 23. — Le phénomene de la résonance.

Les exemples isolés qui terminent la deuxiéme partie étaient
surtout destinés & montrer que la nouvelle théorie rend compte
des phénomenes. Nous ferons maintenant 'inverse. Nous admet-
trons comme base du raisonnement que la théorie est juste; et
comme nous connaissons l'ordre de grandeur des décréments,
nous allons explorer le phénoméne de la résonance, en faisant
varier d’'une maniére continue les trois décréments d,, 8 et d,.
La théorie de Bjerknes examinée sous le méme rapport fournit
cette seule conclusion: La courbe de résonance s’aplatit quand
la somme des décréments augmente.

Dans notre cas les parametres variables sont au nombre de
trois, ce qui rend le phénomene plus complexe.

Deux courbes de résonance obtenues dans des circonstances
différentes peuvent étre comparées au point de vue de I'aplatis-
sement, et au point de vue de leur déformation relativement &
une courbe de résonance normale. L’aplatissement est caracté-
risé par 2, c’est-a-dire le décrément a la hauteur 04. La défor-
mation est caractérisée par 2’, nombre qui fixe I'inclinaison de
la courbe des déeréments au point considéré. Ces deux caracteres
sont immédiatement visibles sur la courbe des décréments; c’est
pourquoi désormais nous laisserons la courbe de résonance pour
considérer uniquement la courbe des décréments. Et méme, &
cette derniere nous pouvons substituer la fangente & la hau-
teur 0,4. '

La manieére dont se déplace cette droite, selon les diverses va-
leurs des décréments, est tigurée sur la fig. 24. Les conclusions
que nous énoncerons nous seront fournies par l'inspection de
cette figure.

1° Considérons premicrement les droites numérotées 1, 2, 3, 4.
C'est le cas d’un primaire dont les-décréments sont fixes et ont
pour valeurs

B 2= 0,0_30 6, = 0,039 done p = 0,30.
Ces droites correspondent & des décréments d, qui croissent
en progression arithmétique.

8, = 0,016 0,031 0,046 0,061



/

Fig. 24,
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Une droite mobile prenant ces diverses positions et les posi-
tions intermédiaires, se déplace de gauche a droite et devient
plus verticale. Cela signifie que

Lorsque 9, augmente, la courbe de résonance s'aplatit et de-
vient de moins en moins déformée.

2° Cette droite, en effectuant un mouvement de translation et
un mouvement de rotation, reste constamment tangente a une
certaine courbe fixe E,. L’équation de I'enveloppe de cette fa-
mille de droites peut étre obtenue a 'aide des équations (33).

Un point de 'enveloppe est & la fois point de tangence d’une
droite, et point d’intersection de deux droites infiniment rap-
prochées. Cette remarque permet de dire que deux droites attei-
gnant 'enveloppe dans sa partie inférieure, et correspondant a
un accroissement donné de d,, forment un angle relativement
grand. Alors, & un accroissement de d, , donné immédiatement
sur la figure par le segment A A, , correspond un accroissement
de z égal a B,B,, beaucoup plus petit que A,A,. Le rapport
BB,
AA,
croissement du décrément moyen. On peut donc énoncer la con-
clusion suivante: '

Le rapport entre Uaccroissement du décrément moyen et Uac-
croissement calculé, constamment infériewr a Uunité, augmente
a mesure que 0, augmente.

Pour montrer le phénoméne d’une manicre plus précise
construisons une courbe (fig. 25). Portons en abscisses les ac-
croissements de d,, e ordonnées les accroissements de z, le
décrément initial d, ayant pour valeur 0,016. Si on avait cons-
tamment Az — A d,, on obtiendrait une droite, bissectrice des

est relativement petit. Notons que B, B, est & peu pres l'ac-

ey A ;
axes. En réalité la courbe est telle que le rapport Si varie

b
entre 0,60 et 0,80. 2
Nous remarquons done que lorsque d, augmente, 'accroisse-
ment. observé tend a devenir égal &4 Paccroissement calculé.
Cette remarque est contenue dans une autre plus générale qu’il
est facile de tirer de I’équation de la courbe de résonance, savoir:
La théorie de Bjerknes se confond & la limite avec la nouvelle
théorie lorsque d, devient de plus en plus grand.
De sorte que si nous regardons la nouvelle théorie comne
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‘adéquate pour expliquer les phénomeénes dans tous les cas, la
théorie de Bjerknes s’en rapproche plus ou moins, selon que
I'influence de I'étincelle a été plus ou moins palliée par la
grandeur de 0, . _
Or eomme la nouvelle théorie assure, au moins en principe,
'égalité des valeurs observée et calculée, et comme la théorie de
Bjerknes approche plus ou moins de cette égalité suivant la va-
leur de d,, nous pouvons affirmer que le véritable critére des
bonnes mesures est I'égalité des deux accroissements, ce qui jus-

: |
4z 5 ]
7 /080
\ |
s 1
P 0FF !
//| || ]
. ! |
I EO';S ; ;
{ I !
067 1 :
ez
] i
001 00z 003 004 49,

tifie @ posterior: I'’hypothése de ce critére énoncé dans I'intro-
duction.
3° Nous avons fait la supposition p=0,30, ce qui attribue au

rapport 2 1a valear 0,78. Si 1'on augmente 'amortissement du

<
R
71

primaire d’'une maniere quelconque, il n’est pas sur que le rap-

g
port a: reste le méme, Toutefois, autant que les expériences me
I'ont montré, il est possible qu’il demeure constant. Si c’est le
cas, nous pouvons dire que la part de 'étincelle dans 'amor-

-tissement est restée constante. Pour ce qui suit, nous suppose-
rons qu’il en est ainsi. |

Admettons done que 8 prenne diverses valeurs. A la valeur

8=0,030 correspond I’enveloppe E,;

afi= 0,020 0,025 0,030 0,035

correspondent
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La fig. 24 représente ces courbes.

Considérons I'enveloppe E, et ses quatre tangentes 1', 2/, 3, 4".
La droite 1’ correspond & un méme décrément d,—0.016 que la
droite 1. Il en est de méme des droites 2" et 2, ete. En compa-
rant les droites 1’ et 1, on observe que la seconde est plus incli-
née par rapport a la verticale que la premiere ; ce fait a pour
cause les valeurs plus fortes de d, et de 8. Ainsi une augmenta-
tion de Pamortissement du primaire produit, naturellement, une
augmentation de z, mais aussi uue augmentation de 2. Nous ne
savons rien de la variation de '—é Pour faciliter I'énoncé de ce
résultat, appelons 2’ la déformation. Nous pouvons dire:

Un accroissement de Uamortissement du primalire a pour con-
séquence une plus grande déformation de la courbe de résonance.

Telles sont les lois principales qui régissent le phénomene de
la résonance quand le circuit primaire possede une étincelle.
On pourrait en trouver d’autres; car, pour étre complet, il fau-
drait expliquer ce qui se passe lorsqu’on fait varier 8 seul, ou d,
~seul, ou enfin d, et 8 ensemble, mais en liant ces décréments
par une relation. Ce sont autant de maniéres de faire varier
Pamortissement du primaire. Mais ces considérations auraient
peu d'intérét, parce qu’on ne sait pas comment faire varier les
parametres du circuit & étincelle, pour obtenir des variations
déterminées de d, et de 3.

Ces divers résultats sont implicitement renfermés dans
I'équation de la courbe de résonance. Pour pouvoir les trou-
ver, les énoncer et les rendre visibles, il a fallu passer de 1'équa-
tion de la courbe de résonance aux équations simples du para-
graphe précédent, par l'intermédiaire de la Table des décré-
ments; et enfin par des constructions envisager des cas particu-
liers. On comprend dés lors qu’un tel procédé ne permette ni
d’étre complet, ni d’étre rigoureux. Ces lois, que la théorie de .
Bjerknes ne prévoit pas, sont une premiére approximation dans
I'étude de I'influence perturbatrice de 1'étincelle.

REsSUME ET CONCLUSIONS.

1. Le présent travail commence par I'exposé des caractéres
que présente la courbe de résonance expérimentale, quand le
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circuit primaire posséde une étincelle. Ces caractéres sont au
nombre de deux, savoir:

I. La courbe de résonance est deformee relativement & une
courbe de résonance normale. Les valeurs qu’on obtient pour la
somme des décréments selon le procédé de Bjerknes décroissent
du haut en bas de la courbe. D’autre part, cette déformation di-
minue quand 'amortissement du secondaire augmente.

IL. SiT’'on considére deux courbes de résonance obtenues avee
un méme secondaire, mais ayant des amortissements différents,
T'accroissement de décrément observé par la comparaison des
courbes est toujours plus petit que D'accroissement calculé au
moyen de la résistance additionnelle.

2. L’examen de la théorie de Bjerknes sur la courbe de 1é50-
nance montre que la formule des décréments, malgré la rigueur
avec laquelle elle peut étre obtenue, est impuissante a expliquer
les caracteres cités. A 'occasion de cette question une théorie
détaillée de la courbe de résonance a été donnée.

3. Les deux caractéres de la courbe de résonance ont pour
cause l'étincelle elle-méme, c’est-a-dire le fait constaté, que la
courbe de décroissance de 'amplitude du courant se rapproche
davantage d’une droite que d’une exponentielle. En partant de
cette hypothése, et en admettant que le phénoméne de I'amor-
tissement dans le circuit & étincelle est déterminé par deux pa-
rameétres, une équation de la courbe de résonance a été établie,
laquelle se réduit a 'équation de Bjerknes, lorsque le second
parametre est posé égal & zéro.

4. L’application convenable de la nouvelle theorle a plu-
sieurs cas d’expérience, facilitée par une méthode pratique, a
montré qu’elle est apte a expliquer la moitié inférieure de
la courbe de résonance, et qu’elle fait apparaitre I’égalité entre
'accroissement de décrément observé et l'accroissement calculé. -

5. En dernier lieu, les lois qui régissent le phénomeéne de la
résonance ont été exposées, en tant qu’elles découlent de la nou-
velle théorie. Elles ne sont autre chose que les caractéres obser-
vés par Pexpérience et cités au n° 1. La recherche de ces lois a
¢été rendue possible glace a une inter pretatmn graphique des
décréments.
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