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1921 Vol. 3 Mai-Juin.

Recherches tbeoriques et experimentales

SUR LA

Mesure de raraoptissement d'nn circuit a etincelle

PAR

Paul LAMHOSSY
(Avec 25 fig.)

(Suite et fin).

DEUXIEME PARTIE

L'objet de cette deuxieme partie est:
1" d'etablir l'equation de la coui'be de resonance, en partant

de l'hypoth&se que la courbe des amplitudes du courant dans le

primaire a une forme intermediate entre celle d'une exponen-
tielle et celle d'une droite.

2° d'exposer les mesures destinees ä verifier la theorie.

§ 13. — Nouvelle Hypothese.

Les recherches theoriques d'Heydweiller', et les resultats

expdrimentaux de Zenneck2, Roschansky3 ont montre que la
courbe de decroissance de l'amplitude du courant dans un cir-

1 Heydweiller, A. Ann. d. Phys., 19, p. 649, 1906.
2 Zenneck, J. Ann. d. Phys., 13, p. 822, 1904.
3 Roschansky, D. Ann. d. Phys., 36, p. 281 1911.
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214 AMOETI88EMENT D'ÜN CIRCUIT A ETINCELLE

cuit ä etincelle ressemble beaucoup plus ä une droite qu'ä une
exponentielle. Cela nous conduit ä poser I I0(l — at) pour
l'equation de la courbe des amplitudes, et ä designer par a
l'amortissement lineaire. On pourrait aussi, comme l'a
propose Zenneck, approcher de la vraie droite par liquation
I I0e"a'-ß'". Dans ce cas le phenomene de l'amortissement
serait caracterise par deux constantes « et ß.

Et alors le probleme se pose: trouver dans les hypotheses pre-
cedentes laforme de la courbe de resonance. La forme du courant
dans le secondaire a moins d'interet.

Dependant les difficultes mathematiques sont tres considerables

avec des hypotheses de la forme indiquee. J'en propose une
autre.

La courbe representee dans la fig. 12 est une exponentielle

y — e'at. Quelle modification faut-il apporter ä chaque ordon-

nee MA pour la reduire ä l'ordonnee correspondante MB de la
droite II faut la multiplier par un certain facteur plus petit
que 1'unitA Ce facteur, egal ä 1 pour l'abscisse zero, decrolt
d'abord lentement, ensuite plus vite et devient nul pour le

point C. Or un tel facteur est fourni par

cos nt

oil n est une constante dont la signification sera donnee par les

resultats de l'integration.
II est done probable que la courbe

j e~ai' cos nt

se rapproche d'une droite, au moins dans un certain intervalle.
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On peut s'inquieter de voir la periodicite de cos nt se communi-

quer ä la courbe ; mais si n n'est pas trop grand, aux instants

jqui suivent celui determine par l'equation cos nt 0, e~ad est

assez reduite pour que e~ V cos nt n'ait plus une valeur appreciable.

La fig. 13 represente la courbe y e'ad cos nt. J'ai adjoint
l'exponentielle y e'V afin qu'on puisse comparer la forme
des deux courbes. La premiere atteint l'axe, dans l'exemple
choisi, au bout d'une soixantaine de periodes. Des cet instant ä

peu pres, la courbe ne represente plus le phenomene reel, ni

plus ni moins d'ailleurs que l'exponentielle simple. Comme on
le voit, on ne peut preciser d'avance le degre de legitimite de

l'hypothese: l'experience seule en est capable. On notera cepen-
dant que les parties de la courbe appartenant aux premiers
moments ont une importance preponderante, et que pour celles-lä

Failure, sans etre tout ä fait lineaire, se rapproche quand
meme de celle qu'on trouve experimentalement.

La nouvelle Hypothese consiste ä admettre que la force elec-

tromotrice exterieure qui agit sur le secondaire est de la forme

E cos nt cos mxt

Par consequent l'equation de Bjerknes modifiee est

V" -f- 2a2V -f- otJV zr Ee"ai( cos nt cos m^t

G'est l'equation de depart pour le calcul de l'effet thermique.
Les deux paragraphes qui suivent contiennent l'ensemble des

calculs qui conduisent ä l'equation de la courbe de resonance

sous sa forme la plus simplifiee.

§ 14. — Calcul de l'effet thermique.

On traite l'equation

V + 2 a2V' + in'V — m'Ee"ai' cos nt cos ml t (14)

comme dans la premiere partie. Mais auparavant on decompose

le second membre comme suit:
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1
cos nt cos m,1 — [cos (m, + n) t + cos (m, — n) <]

1
— [cos m't + cos m"t\

en posant m' «,-)-« et m" — ml — n.

V" + 2a,V' + m'Y A[e"V cos m't + e"ad cos m"t] (IV)

m" £
A — 8 '

2 *

En ecrivant P, e"ai' cos m't et Q, e~aP sin m't, on con-
trole facilement qu'on a:

P, e"aP cos m't Q, e"ai' sin m't

— a, P, — m'Q, Qj — a, Q, + m'P,

Pj'= (aj — I«'2) P, + 2m'a,Qi Q"= (a2 — m'2) Q, — 2ro'a,P,

De meme

P, e~atf cos m"< Q2 e'ail sin m"I

P1 — ai p2 — m"Q2 Qj — «i Q2 + m"P2

K K - m"2) P2 + 2'»"a. Q2 Dl K - m"2) Q2 - 2m'\ p2

On introduit les inconnues

oo

fv'*dt — V,
0

00 00

yVP, R, /'vQ, <7< S,

0 0

oe oo

/vPjdI Rj /vQ,«ft S,
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et les constantes

fp1(P1 + p,)dt cl y*Qt (P, + P») rf« c,

/P3(P1 + Vt)dt C, fQ,(V1 + Pt)dt C.

En multipliantrequation(14')successivement par V, P,, Q,,

P,, Qa, et en la traitant comme dans la premiere partie (voir
§ 5), on trouve :

2asV, A[a,R, + m'S, + a,R2 + m"S3]

(aj_ m'2)R, + 2m'a,S, + 2aa(a1R1 + m'S,) + /n2R, AC,

(a' — m'2) S, — 2m'a, R, + 2a3(a, S, — '«'R,) + m'S, ACS

(a2 — rn"2)R2 + 2m'"a] S2 + 2a2(a, R2 + m"S3) + m2R2 ACS

(a, — m"'2)S2 — 2m"a, R2 + 2a2 (a, S2 — m"R2) + m2S3 AC4

On tire R, et S, de la 2ma et de la 3me equation. En posant

A, m2 — m'2 + aj + 2a, a2

on trouve

R _ A{C,A, - C2A2) s _ A(C,/», + C, A,)

AJ + h\
1

K+ h[

On tire Rs et S2 de la 4"" et de la 5m* Equation. En posant

A„ 2m' (a, + a2)

h[ m\ — m"» + a2 + 2<xl<h

h't 2m" (a, + a2)

on trouve

a(c4a; + c,h[)

h" + a"
1

1

*
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On substitue R,, S,, R,, S, dans la 1" equation.

2a,v,
A2

hi +
[(ai Gi + m'CjlÄ, + (m'Cj — a, C,) A,

+ ^ ,„[(»,c» + "C4)A, + (m"C3 - ^CJA;]
K + K

On introduit les nouvelles constantes

p ajC, + in' C, p' + m"Ci

q m'C, — a, C, q' m"C, — C4

On a en outre

00 00

fi'd,=fc\ dl C.2V,

C2A2
E2

4L2 '

On arrive ä la formule finale

hdt - — [> + <lh> +
P'h'1 + *'1

J Ba,i.2[ A.+ A. />;+*;* J (15)

11 reste ä calculer les constantes C,, C2, C3, C4, puis p, q, p',
q'. On trouve sans difficulty

c, J_ + 5f 1

+ _^ + __l_
4ai 4 |^a| + "i'a a' + "2

+ +
4(aJ + in'2) 4 (a2 + m2) 4(aj + n2)

c-=4 + ?[yJ + _J— + —1—
+ m"2 a2 + m* aj + n2

a +
4(aJ+m"2) 4(a| + mJ) 4(a2+«2)

4 [a2 + m\ a2 + n2J
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1 —
illj + n

1 —

"'i gi + "gi ]
a2 + n2 a2 + >»2J

+ ]
a2 + m\ a2 + n2J

j — n hi j a, n a, "|
ai a'; + ,,2

~
a2 + m2J

§ 15. — Courbe de resonance.

En notant

f'2dt-=X' <16)

o
2

I'equation (15) peut s'ecrire

+ K)^+ O - (phi + ih.)(**+

- (/»'*; + q'ty (*; + a;> o.

La variable est contenue dans /<, et //,; il faut l'expliciter.

A, m2 — m'2 + a| + 2^0^ oü m' m, + n

On peut ecrire

A, (»nj •— »>2 — Hz + a2 + 2a, a2) — 2m, n

de meme

A, (m2 — mj — n2 + aj + 2a, a2) + 2m, n

En posant
A m2 — nd — H2 + a2 + 2a, otj (17)

on pourra ecrire

A, A — 2m, h

h'1=h + 2,n1n. (17')

La substitution (17'), apres des calculs assez longs, conduit ä

une Equation du 4m* degre en h qui peut s'ecrire

KrA4 — 2A3 + (AKj — B) A2 + (EKj — F)A + CKj — D 0 (18)
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en posant

A — h' + h"— 8 in'it2
S 1 8 1

B 2m1n(p — p') + qhi +
E 2nt1n(h'a — h*)

F im1n(qht — q'h'j + (ph* + p'h*) — 8/«Jns

C (4m\n* + h\) (4m\n3 + K')

D — im'n2 (qh2 + q'h[) + (qh2h'* + q'h[h\) — 8 m\n?(p — p')

— 2;», n (pti~ — p'h')

On ne peut pas aller plus loin sans introduire des simplifications.

a, qui entre ici n'est pas identique au «, qui intervient
dans la formule de Bjerknes; cependant sa dimension est ega-
lement celle d'un amortissement (inverse d'un temps), n est une

grandeur de meme dimension. Quant k Vordre de grandeur de

cq et de n, nous ne savons rien davance; mais il est plausible
de supposer que leurs valeurs numeriques sont voisines de la
valeur numerique de a, qui figure dans la formule de Bjerknes.
Nous pouvons bien admettre

«. • a negligeables devant m? ;

c'est lä une supposition simplifiante semblable ä celle de Bjerknes,

qu'il sera necessaire de controler plus tard d'apres les re-
sultats experimentaux. Les mesures montreront que cette
supposition est entierement legitime.

Avec cette hypothese, les quantites A, B, etc., out une forme
plus simple:

A 8»iJ[(a, + a2)2 — n2]

B at «, + «,)(-+ -r-5—\
a' + n2J aj + h2

E dim'n2 (a, + a2|2

C 16m; [(a, + a2)2 + n2]'

D 4m;[(a, + a2)2 + ,,2] |~(a, + a,) ^ + —-J—

(19)

«; + «2

F n'a pas ete calcule, parce que cette quantite sera eliminee.
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Je rappelle que (17)

h — mI — mj — n2 + a' -f 2a, a2

Si Ton fait n 0, on retombe sur le h{ ou x dont il etait question

dans la 1 partie [form. (5)]. Or la theorie de Bjerknes
generalisee, prevoit le maximum pour x 0 ä une tres bonne

approximation1. II est done legitime d'admettre qu'ici encore
le maximum a lieu pour h 0. Introduisons done h 0 dans

l'equation (18).

CKJffl — Ü 0 d'oü K -5^— (20)

Substituons eette valeur de K dans l'equation (18):

-c{'-£)=0 (21)

La presence des puissances impaires de h atteste la dissyme-
trie de la courbe par rapport ä l'axe vertical passant par l'ori-
gine des h. Aux abscisses -f h et — h, oil h est essentiellement

positif, egales en valeur absolue, correspondent des ordonnees

— et —. En introduisant les couples de valeurs + h, — J et
1 m 1 m \ mj

et en additionnant les deux equations obtenues,

1 On a montrE qu'il est pratiquement Equivalent de partir, soit de l'axe
de resonance, soit de l'axe d'isochronisme, soit de l'axe des h. Voir § 9.
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on arrive a

Xi "I" 3'2 1/1 Xi + X'2 2BC\
2 Ji JaA« + + — ^-V2 + E ~ — • h

\ y,n D / r,n

— c^2 — y* ^ 0

Le terme EJl Jih peut etre supprime, car il est toujours
X m

X'l X 2 ltres petit, soit ä cause de E, soit ä cause de -J—
X m

Desormais je donnerai ä y la signification suivante:

v _ 1 J'! + Xt
1 2 tJ m

Voici la signification g#ometrique de y. La courbe reellement
observee est formde de deux versants I et II (fig. 14). Soit I'
l'image de I par rapport ä l'axe. La courbe III moyenne entre

I' et II formee d'un seul versant, est celle dont les ordonnees

sont precisement y. Son equation est:

yh4 + ^Ay — ^ — X') avec h positif.

Soit III' l'image de III par rapport ä l'axe (fig. 15). ette der-
niere courbe ä deux versants est symetrique; son equation est

yh* + ^Ay — h2 — C (1 — y) avec h positif ou negalif (21')

Ainsi la transformation de l'equation (21) en cette derniere

qui est debarrassee des puissances impaires de h, est le paral-

1 Ce terme apparaltrait dans l'equation finale sous la forme

2ß'(S, + 8,1^.1-, -yt
r.

'
r.„

Le rapport de ce terme au terme I)2(l — y) est

r ßis, + s,i i2
rL(8i + V2 + ß'J " Xi Xj

X X m

Pour la partie superieure de la courbe, yi — y2 est pratiquement nul.
Prenons maintenant deux points convenablement espaces de la courbe de

la fig. 17 ; et admettons 8, 82 ß. Pour x 0,1 ce rapport est 0,0006.
Pour x 0,2 il est 0,0009. On a done raison de negliger ce terme.
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lele de la transformation geometrique de la courbe observee en

une courbe symetrique. II faudrait done, quand on est en
presence d'un cas pratique, commencer par faire cette transformation

geometrique; mais eette operation peut etre evitee, comme
on le verra bientöt.

y-4

Multiplions l'equation (21') par —

i

Or

ih r-(< - _ i\.
rnl "'l V»; J

Nous avons admis que la resonance a lieu pour h — 0 (voir
page 49). Si done on appelle Cr la capacite du secondaire ä la
resonance, on a:

Nous supposerons desormais les quantites x portees en
abscisses.

Les constantes contiennent les amortissements. Nous allons
2 75

introduire les decrements. T, est la periode du primaire.

a,T, rf,, eqTj d2 sont les decrements des deux circuits

pour la periode T,. Introduisons par analogie \e deuxieme decrement

dn primaire

"Tj ß (23)

1 En realite h — m' + -J + 2a, a2 — rr. Mais le rapport

aj + 2a, a2 — n2

»»* — m'
est de l'ordre de 0,0025 lorsque -— 0,1.
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On trouve

Ajt2

to
2 [(§, + 8.)

—~ D8i + s2)2 + ßT

BC r2 (8, + S„) (2S? + ß2) + ß2 8,

~ • - ' 21 ' —-1(8. + 82>2 + ß2]

,„J (8j + S2) (28® + ß2) — ß2Sj

En sorte que si l'on introduit les parametres

P (8j + 82)2 + ß2

M (81 + S2)2 - ß2 (24)

(8, + 82>(282 + ß2) + ß28,
N

(S± + 8,) (28J + ß2) - ß28j

I'equation de la courbe de resonance, vendue symetrique, prend
la forme la plus simple qu'il soit possible d'obtenir :

j;41 + (2 Mi — NP).j2 P2(l — y) (25)

§ 16. — Courbe des decrements.

L'equation (25). que l'on peut presenter sous la forme

NP*2 4- P2
~~ xA + 2M.r2 + P2 '

ne laisse pas aisement voir le caractere qui la distingue de

l'equation etablie dans la premiere partie.
Le caractere distinctif d'une courbe de Bjerknes normale est

la constance du decrement aux differentes hauteurs. II vient
done ä l'idee d'examiner la loi suivant laquelle le decrement
varie, en se basant sur la nouvelle equation, autrement dit de

chercher l'equation de la courbe des decrements.

Considerons la courbe de resonance transformee et son equation

x-"y 4- (2My — NPI xl P2(l — r)

Nous allons effectuer un changement de variable. A la place
de x nous introduisons une nouvelle variable z relide aux
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anciennes par la relation

• Vr=TF'
Par la substitution

* !x~r •

l'equation precedente devient

z4 (1 — y) + (2My — NP) za P2y (26)

Quelle est la signification de z? En retournant ä la signification

de x donnee par (22), nous pouvons dire: z est le nombre

trouve ä la hauteur y dans le procede Bjerknes, sur la courbe

transformee, symetrique [dont l'equation est donnee par (25) ou
(21')-]

Or j'affirme que z est egalement le nombre trouve a la hauteur

y dans le procede Bjerknes, sur la courbe primitive, dissyme-
trique [dont l'equation est donnee par (21)]. Cela est un fait
pratique, observe, qui a sa raison dans la faible influence de la dis-

symetrie sur la valeur du decrement.
Par consequent l'equation obtenue (26) est bien celle de la

courbe des decrements. C'est la courbe que nous envisagerons
desormais, et l'on comprend maintenant pourquoi la transformation

dont parlait le paragraphe precedent n'est pas neces-
saire.

La forme de la courbe des decrements est celle d'une courbe
de resonance renversee, dont on n'utilise que la partie tres incli-
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nee d'un des versants (fig. 16). En effet, par la substitution
y' — 1 — y on retombe sur une equation semblable ä la prece-
dente, sauf qu'au lieu de 2My on a 2M(1 —y), ce qui n'influe
pas sur l'allure generale.

La courbe des decrements prevue par la theorie de Bjerknes,
et eonstatee lorsque le primaire n'a pas d'etincelle, est une
droite.

Le domaine de validite de l'equation (26) n'est limite que par
la grandeur des decrements. II est suppose

82, S2, ft' negligeables devant in2

II n'y a pas de restriction relative ä la dissonance.

§ 17. — Recherche d'une methode pratique.

L'application ä un cas concret a presente de grandes difficul-
tes. II faut en chercher la raison soit dans la forme compliquee
de liquation du 5° degre, soit dans le fait que la theorie ne
correspond pas completement ä l'experience. Les recherches que j'ai
faites de differents cotes pour trouver un procede de calcul et

pour concilier la theorie et l'experience, m'ont fait aboutir ä

des conclusions que je suis force d'exposer avant le procede de

calcul des decrements.

L'equation de la courbe des decrements est

Z*(\ — y) + (2 My — NP) z2 P'y

Les constantes sont au nombre de trois: M, N, P. D&s qu'on
connalt ces dernieres, on calcule sans difficulte d15 d5 et ß

separement. La premiere idee qui se präsente k l'esprit est de

faire passer cette courbe par trois points convenablement espa-
c£s. Le procede, s'il etait possible, serait long, mais presenterait
une haute valeur; car une seule courbe suffirait ä faire connai-
tre M, N, P, done les trois decrements. On peut se rendre
compte ä priori döjä de cette impossibilite. On sait en effet que
d'une courbe de resonance normale, on ne peut tirer que la

somme d, + S,2 et point du tout les decrements separes. Cela

ne provient point d'une impossibilite radicale, puisqu'on pourrait
avoir une deuxieme relation entre d, et <f2 en tirant parti de la
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dissymetrie. Mais l'exactitude de cette deuxieme relation serait
tres iraparfaite.

Done il est obligatoire de n'utiliser que deux points ou deux

donnees de la courbe. Si, ä l'aide de ces deux donnees, il etait
possible de tirer separement M et P, tout irait bien; N ne nous
interessant pas beaucoup. Si p. ex. on pouvait trouver la hauteur

y qui annule la parenthbse 2My — NP, on pourrait imme-
diatement calculer P. Cette hauteur est voisine de 0,70; mais
eile est inconnue et d'ailleurs variable avec <h2. Un procede de

ce genre essaye surla courbe des decrements ou sur une courbe
obtenue de celle-lä par des transformations geometriques,
demeure sans succes.

Par consequent d'une courbe unique on ne peut rien tirer.
Prenons alors deux courbes simultanement, la seconde corres-
pondant ä un secondaire plus amorti. A l'aide de deux donnees

tournies par chacune d'elles on peut determiner quatre incon-
nues dt, S2, ß et l'augmentation de Mais quelles donnees

choisirons-nous?
En choisissant deux points convenablement espaces sur cha-

que courbe des decrements, on peut etfectivement determiner
les quatre inconnues ; et connaissant par suite M, N, P. on peut
construire les deux courbes de resonance en entier. Ces deux
constructions se fondent avec les courbes experimental bien

mieux que les courbes de Bjerknes; mais on ne constate pas
l'identite entre la valeur observee et la valeur calculee pour
l'accroissement du decrement. Ce n'est done que la moitie du

Probleme qui se trouve ainsi resolue-

La raison intime de ce fait est la suivante: la nouvelle theorie
est adequate ä l'ancienne pour expliquer la moitie inferieure de

la courbe, disons meme la partiecomprise entre y 0 et y 0,61

c.-ä-d. qu'il est possible de determiner M, N, P (en choisissant
convenablement les deux donnees sur chaque courbe) et par suite de

construire une courbe qui, dans cet Intervalle, coincideassez bien

avec la courbe experimentale. Le procede, deerit plus loin, applique

ä deux courbes, fait effectivement apparaltre Vegalite entre
l'accroissement du decrement observe et Vaccroissement calcule. La
partie superieure de la courbe theorique diverge notablement
de la partie correspondante de la courbe experimentale (fig. 17).
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On s'explique maintenant pourquoi j'ai choisi les deux don-

nees dans la partie inferieure, savoir: le point y 0,4 et la,

tangenie en cepoint. II est le centre de l'intervalle limite par les

points 0,2 et 0,6. J'abandonne le point 0,1 comme trop incertain

par suite des erreurs de mesures ou de trace.
Si les points 2, 3, 4, 5, 6 (fig. 18) etaient disposes sur une cir-

conference et equidistants, la tangente au point 4 serait
determine par une parallele ä AB; A et B etant les points milieux
de 23 et de 56. Or la courbe des decrements a dans cet inter-
valle une courbure assez faible pour que nous puissions l'assimi-

ler ä une circonference. Aussi c'est cette rbgle que j'ai adoptee

pour la construction de la tangente au point 4. Quelquefois,
dans la pratique, ces cinq points sont alignes sur une droite ou
ont une distribution indecise; en pared cas, on trace simple-
ment et aussi exactement que possible la droite qui passe par ces

points. Ce procede n'est qu'approche; mais ce que je recherche
c'est une regie pratique, fixe, qui donne les resultats les meil-
leurs; et ces resultats en justifient l'application.

§ 18. — Table des decrements et calcul des decrements.

La courbe des decrements a pour equation (26)

/.s

Fig. 18.

z2( 1 — r) + 2 Mr — NP —2
Z

(26')

Faisons y 0, nous obtenons

«0 V/NP (27)
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C'est le decrement limite, intersection de la courbe avec l'axe
des abscisses1.

Differentions par rapport a y:

^ z' 2 zz' (1 — j) — z2 + 2M P2 • (28)
dy ^ z*

Dans ces deux equations (26') et (28), faisons y — 0,4

2P2
3J2 + 4M — 5NP —

1 _4r' (29)

6zz' — 5s2 + 10M P2 ;
Z6

z est ici le decrement ä la hauteur 0,4; z' est la derivee en ce

point. Eapportons toutes les constantes a z'; introduisons done

les rapports:

s; + ä; !4A
=7

P' J (< + + ß'*

M' j + O2 - r
N, =(< + Sj)(2<'+ ß") + ß"<

(<+s;> (2<2+f) - ß,2§;

z ^ \Ztfp
0 z

Z'
Appelons — la deformation et representons-la par u.

Cette deformation est une quantite calculable sur une courbe
donnee. Avec ces notations, les equations (29) deviennent

3 + 4M' — 5N'P' 2P'2
6k — 5 + 10M' P'3 (5 — 4«)

' '

1 On verra bientot pourquoi ce decrement limite est utile ä connaitre.
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N' peut s'ecrire

\ \ + p$'
N' ; en posanl p

8 +8 - 2 +
(30)

p est une constante du primaire. Les resultats exposes plus loin
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montrent que et ß ont des valeurs numeriques voisines.

Meme lorsqu'on varie sur une grande echelle les conditions du

primaire, le rapport f- n'est jamais tres eloigne de l'unite. Or p
°1

varie tres peu avec et pratiquement savaleur reste comprise

11entre et ^ C'est pourquoi il est avantageux de choisir p
comme parametre des courbes que nous allons construire; le
nombre de ces courbes sera fort heureusement tres limite:

II s'agit maintenant, en regardant u comme variable indd-

pendante, de construire des courbes representatives de >

ß' et z0. Pour voir la possibility de ce probleme, admettons que

p garde la valeur fixe 0,30. Les equations (29') et (30) peuvent
etre presentees comme suit:

/;(< +ß', n') o

k (8i + <, ß', u 0

/•,(< + ß', n')-O
Resolvons-les par rapport ä + c)'2. ß', N'.

Sj + Eiq («I

ß' &'-i (ul

y &'3(u)

Je rapelle que z'0 — \/N'P',de sorte qu'au lieu de cette
3e equation, nous avons la suivante

II n'est pas possible de donner l'expression algebrique de ces

fonctions S\. Neanmoins les courbes qu'elles repre-
sentent peuvent etre construites par un procede semblable ä
celui de la resolution des equations numeriques. Ces courbes,
construites pour diverses valeurs de p, constituent la Table des

decrements.

La fig. 19 represente cette table faite pour les diverses valeurs
de p

0,25 0,30 0,35

pLes abscisses sont les deformations u —
Z
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Comme exemple je vais appliquer la methode aux courbes de

la fig. 2 (Voir aussi fig. 3).

Sur la fig. 20 CA est la tangente ä la courbe des decrements

au point M. Pour la courbe I (sans resistance), on a les cotes

suivantes:
DM z 0,0910

AB dz
s,- 0,0455

g'
La deformation est - 0,500.

Z '

En premiere approximation, nous pouvons supposerp 0,30;
et par suite nous aurons ä utiliser les trois courbes de la Table
des decrements marquees II.

A l'abscisse 0,500 correspondent

s' + s' — 0,631 S' 0,343 z 0,847t 1

2 1 ' 0

En multipliant par 2 on obtient les decrements

8, + S2 0,0574 ß 0,0312 z0 0,0771

z0 sera utilise dans le calcul des decrements separes.
Faisons de meme pour la seconde courbe

s 0,1160

=' 0,0247

z'
La deformation est — 0,213. A cette abscisse correspondent

8' + 8' 0,806 S' 0,256 z' 0,930
1

1

2 ' r ' 0 '
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En multipliant par z on obtient les decrements

8, + S2 0,0935 ß 0,0297 z0 0,1079

On observe que la valeur numerique de d, + äi est plus petite

que dans la methode Bjerknes. II ne faut pas oublier que la
R.T

signification de d4, c'est-ä-dire 2L n'est plus ici la meme.

Si l'on fait la difference entre les valeurs de <J4 + pour les

deux courbes, on trouve '

0,0361

Sa valeur prevue etait 0,0376.
On remarque que la difference observee est legerement infe-

rieure ä la difference calculee. Cette erreur se retrouvera avec

le meme signe dans la piupart des exemples que je citerai. Pour
voir jusqu'oü va l'exactitude de la methode, il faut porter son

attention sur la difference des decrements et sur la valeur de ß

qui doit se retrouver egale dans la seconde courbe. Dans cet

exemple on trouve pour ß, successivement,

0,0312 et 0,0297

p

Cependant j'avais suppose p l,
f, x 0,30. Pour voir si

2 + U)
cette condition est bien realisee, il faut connaltre d, separement.

§ 19. — Decrements separes.

Si l'on se reporte aux formules (16) et (20), on a

Q„ r 2

CKjm — D 0 et K
j£27 •

En substituant ä C et ä D leurs expressions (19), et en passant
des amortissements aux decrements, on trouve:

32L2
-j-jj.-ia y,n —

(8, + Ss)|28* + ß2! - ß*8,

tS| + ßJ) [(öj + S2 )> + ß2l
(31)
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On a aussi (24)

(8, + 8,1(25;+ ß») — ß»8,
_ 1

(8, '+ S2) (28* + ß2) + ß^ ~ N '

Le terme /?2d, est toujours assez petit pour qu'on puisse negliger
son carre devant le carre du premier terme'. En multipliant
numerateur et denominateur par la conjuguee du denomina-
teur et extrayant la racine carree, on obtient :

(8, + 8,1128; + ß2) - ß2S,

_
(Si + 8,1(2«; + ß2) _V/n '

L'equation (31) peut s'ecrire:

32L2 _ + ß2 8, + 82 1

Si l'on introduit dans le secondaire une resistance addition-
nelle qui ne change pas la self-induction, d2 devient d«*, et y„,
devient y

32L2 „ _
28' + ß2 + 1

'ym ~ 6^; 7?)' '

Divisons ces deux equations membre ä membre :

Jm o2* 81 -f- 82 P*l/N*
ym* S2 8,-1-82* pI/n

Soit d l'accroissement de decrement produit par la resistance
additionnelle

1 + — Zu 8i -C p^//N
s2 ym* ö, + S2 p*\/rT*

1 L'erreur maximum est 3 %• Mais eile apparaitra en numerateur et
en denominateur dans la formule finale, ce qui la rend insignifiante.
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Enfin puisque z* NP, la formule qui fournit le decrement
est:

2- A J-
h V p*

j + i — El. 81 f °2 .i./i, (32)
§2 Tm*

Appliquons cette formule ä l'exemple precedent

d 0,0376 rm 88.9 3, + 32 0,0574 z0 0,0771

r,n* 26 3, + S2* 0,0935 z0* 0,1079

ß 0,0304

(ym et y,n* sont des valeurs proportionnelles k
On trouve1

32 0,0231

On deduit
8, 0,0343

On peut alors calculer p:

p 0,304

J'avais suppose p= 0,30. On voit done qu'il n'est pas ntcessaire
de recommencer les calculs avec cette nouvelle valeur de p.

§ 20. — Exemples.

Exemple 2. — Self-induction du secondaire constitute par un
carre del metre(fil 3mm) avecunebobinede22 spires (til3mm;
diametre d'une spire 10 cm). L 37.160 COS. T 1,606.10-6
Resistance additionnelle 1,596 ohm. (fig. 3)

Courbe I (sans resistance)

0,353 0,832
0

0,0282 z0 0,0664

0,1036 z' „> — := 0,229 Couröe II (avec resistance)

z 0,0798
0,0441

0,553

3t o2 0,599 ß'
8. + 8, 0,0478 ß

1 Self-ind. du secondaire eonstituee par un carre de 1 m; fil 3 mm;
L z= 6380 CGS. T 0,60.10-6. Resistance additionnelle 0,798 ohm.
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\ + 8^ 0.796 ß' 0,263 z[ 0,925

8, + S2 0,0825 ß 0,0273 z0 0,0958

On calcule par la formule (32) ou l'on fait:

d 0,0345 (calcule) 8, + 82* 0,0825 r0 0,0664

ym 39,2 S, + §2 0,0478 z* — 0,0958

ym* iz 11,3 ß moy. 0,0278

On trouve

On dtduit
.0,0211

8, 0,0267

Et Ton calcule p 0,338. Comme il a ete suppose p — 0,30 une
2e approximation est necessaire. On utilise les deux courbes II
et III de la Table des decrements et Ton interpole. On obtient
finalement:

Courbe I (sans resist.) 3X —f- S« 0,0471 ß — 0,0275 z-0 — 0,0665

Courbe II (avec » ^ 0,0816 ß — 0,0265 zQ — 0,0958

D'oü l'on calcule

S2 0,0211 8, 0,0260 ß moy. 0,0270

Difference observee 0,0315 (calculee 0,0345)

Exemple 3. — Self-induction du secondaire constitute par un til
carrt de 1 metre (til 3 mm) avec trois spires de lame mince (dia-
metre 21 cm). L 6900 cm. T 0,598.10"6. Resistance addi-
tionnelle 0,6247 ohm (fig. 17).

hauteur i II
r/rm 0,9 8, + S2 0,1157 0,1207

0,8 0,1083 0,1210
0,7 0,1047 0,1208
0,6 0,1018 0,1192
0,5 0,0983 0,1165
0,4 0,0936 0,1129
0,3 0,0883 0,1099
0,2 0,0846 0,1084
0,1 0,0843 0,1057
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f — 0,486 Courbe I (sans resistance)
z 0,0458 z

8^ + 8^ — 0,460 ß' 0,340 z'Q 0,851

8, + 82 0,0597 ß 0,0317 z0 0,0793

Z, ~ | — 0,253 Courbe II (avec resistance)
z — u,028o J Z

8' + 8'= 0,781 ß'= 0,274 z'= 0,917
1 1

2 ' 0

8, + 82 0,0883 ß 0,0310 z0 0,1036

Calcul du decrement <f2 :

d 0,0270 ym — 46,4 \ + 62 0,0597 z0 0,0793

ß moy. 0,0313 ym* 15,6 8t + 82*= 0,0883 z0* 0,1036

On trouve

On deduit

On calcule

8, 0,0190

0,0407

p 0,297

line nouvelle approximation n'est pas necessaire.

Difference observee 0,0286 (calculee 0,0270)

Exemple4. — Condensateurs du primaire : deux tubesäacide
carbonique comprime. Self-induction du secondaire: un carre
de 1 metre d'une lame large et epaisse; trois condensateurs en

parallele. L 4070. T 0,829.10'8. Resistance additionnelle
0,1567 ohm (tig. 3).

i ii
0,9" 8, + 82 0,0895 0,0997
0,8 0,0858 0,0967
0,7 0,0842 0,0934
0,6 0,0821 0,0905
0,5 0,0792 0,0869
0,4 0,0759 0,0837
0,3 0,0710 0,0807
0,2 0,0658 0,0782
0,1 0,0638 0,0772
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A la 2° approximation on trouve :

*i I — 0,560 Coui'be I (sans resistance)
2 0,0120 )z

5 + 5 0,597 S' 0,357 2' — 0,830
1

1

2 ' 1
0

8,4-82= 0,0448 ß 0,0268 ;0 0,0629

I — 0,360 Courbe II (avec resistance)
2 0,0839
2' 0,0302

8 + 8 0,716 ß' 0,311 2 0,816
1

1 2 ' 1 0

Sj + 82 0,0601 fj 0,0261 r0 0,0743

maxima 101,8 et 40,2 d ~ 0,0160

On calcule

S2 0,0127 8, 0,0321 ß 0,0265

Difference observee 0,0153 (calculee 0,0160)

§ 21. — Jusqiiä quel point la nouvelle theorie explique
les phenomenes.

1. Ces exemples montrent qu'il est possible de determiner les

trois decrements d,, ß et <)'2. A la verite, ma supposition primitive

d'apres laquelle <?, serait obtenu avec une grande precision,
ß restant terme de correction, s'est trouvee dementie. Ces deux

quantites entrent de pair dans les formules, et pour que la
precision des valeurs obtenues soit simplement satisfaisante, un
soin extreme est de rigueur dans la construction des courbesde
resonance. Une courbe qui, au point de vue de la theorie de

Bjerknes, permet d'etablir un decrement moyen qui paralt satis-

faisant, n'est cependant pas toujours acceptable au point de vue
de la nouvelle theorie. En efl'et, le decrement moyen, et aussi le

nombre z sont assez stables, mais le nombre z' qui caracterise
1'inclinaison de la tangente depend beaucoup de la regularite du
trace de la courbe.

2. II est possible maintenant d'examiner jusqu'k quel point la
nouvelle theorie est conforme k l'experience. Cette conformite h

atteindre est double;
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1° Conformite entre la forme de la courbe theorique et celle

de la courbe experimentale.
2" Conformite entre les valeurs observee et calculee de l'aug-

mentation du decrement.

Quant au second genre de conformite, les exemples ont mon-
tre qu'il est satisfaisant. II reste k examiner le premier genre.
— La connaissance des decrements dans un cas particular per-
met de calculer M, N, P et par suite de construire en entier la
courbe de resonance et la courbe des decrements. Ce sont les

courbes theoriques dont il est question sur la fig. 17. On voit
que la concordance avec la courbe experimentale est assez bonne

jusqu'ä la hauteur 0,6. Au dela il y a divergence; le sommet de

la courbe theorique est excave, circonstance due au fait que
NP > 2M, autrement dit que le decrement ß est assez grand.

Remarquons en passant qu'on aurait obtenu les memes resul-

tats si, pour les deux donnees, on avait choisi autre chose que le

point 0,4 et la tangente en ce point. On aurait pu choisir p. ex.

les points 0,3 et 0,5 ou deux autres points quelconques, pourvu
qu'ils soient interieurs ä l'intervalle 0 <C y <i 0,6. Cela resulte
de la coincidence de la courbe theorique et de la courbe
experimentale dans l'intervalle considere.

3. Apres avoir precise cette conformity, il convient d'examiner
ici 'a theorie de Bjerknes au meme point de vue. — Soit

d, -)- d2 la valeur du decrement determinee ä la hauteur OM de

la courbe experimentale I (fig. 21). La courbe normale II passant

par le point P et possedant d, + S.2 comme decrement, coupe la
courbe I. D'autre part d, -f- d.2 * determine sur une seeonde
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courbe ä la meme hauteur est tel que la difference (<f, + d2*) —
(d, + da) est trop petite. Pour ces deux raisons on peut dire
que la courbe II ne concorde pas avec la courbe experimentaleL

Est-il possible de faire passer une courbe normale par un
point P, choisi tel que les tangentes aux deux courbes coincident

Si oui, la concordance des formes serait meilleure. Cela
est effectivement possible lorsque P est dans le premier ou le
dernier intervalle (la hauteur etant divisee en dix parties). Mais

en aucun de ces deux cas on n'obtient l'egalite des deux accrois-
sements. Toutefois l'intervalle inferieur est de beaucoup le plus
favorable, puisque le rapport des deux accroissements, si Ton

considere le decrement limite, est environ 0,9.

Admettons, pour le decrement limite, l'egalite approximative
des deux accroissements. On aurait done ce resultat: Uequation
de Bjerknes permet d'expliquer la partie la plus basse de la
courbe de resonance.

C'est la un fait digne de remarque. On est en effet accoutume
ä regarder la formule de Bjerknes ordinaire comme valable
dans le voisinage de la rdsonance. Je sais que logiquement on
a raison, puisque les conditions d'application exigent qu'on ne
sV'carte pas de la resonance. Mais, meme si l'on se sert de la
formule ordinaire, on obtient d'apres l'enonce precedent un resultat

meilleur quand on l'applique ä de grandes dissonances. Cela

provient de ce qu'il faut distinguer deux sources d'erreurs:
l'une sans importance, qui est l'ensemble des conditions restric-
tives de Bjerknes; l'autre qui est l'influence perturbatrice de

l'etincelle. Pour eviter en partie cette derniere, il faut appliquer
l'equation de Bjerknes ä la partie inferieure de la courbe expe-
rimentale.

Nous pouvons maintenant facilement comparer les deux theories

et voir le progres de l'une sur l'autre. La theorie de Bjerknes

rend compte de la courbe de resonance dans sa partie tout ä

fait inferieure; la nouvelle theorie rend compte de ce phenomene

depuis le bas jusqu'a la hauteur 0,6. C'est dire que nous nous
trouvons maintenant ä mi-chemin dans l'explication du phenomene

de la resonance.
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TROISIEME PARTIE

Cette derniere partie contient l'expose des conclusions aux-
quelles conduit la nouvelle theorie. Cette theorie, comparee ä celle
de Bjerknes, presente des differences qu'il est utile d'examiner.

Toutefois, pour exposer commodement ces resultats, il est

necessaire que je fasse tout d'abord connaltre une methode de

calcul simplifiee, qui a l'avantage de donner aux decrements

une representation graphique.

1° La Table des decrements a ete construite pour remplacer
l'equation de degre eleve de la courbe de resonance. On peut
faire un pas de plus: remplacer la Table des decrements par des

equations simples.
Cette Table presente des courbes pour A + ß', z0 En

z'
abscisses sont portees les deformations — Dans Tintervalle

les courbes pour A + S\, z[ ont une bonne allure lineaire;
quant ä la courbe ß', on peut la considerer comme un arc de

parabole. Les Equations de ces droites et de cette parabole, pour
les diverses valeurs de p

§ 22. — Methode de calcul simplifiee.

0,2 < ^ < 0,6

Courbe

p 0,25

II III
0,30 0,35

sont:

/ / z' 1

pour -|- Sa : I. 0,936 — 0,580 —

II. s[ + 8^ 0,928 — 0,595 (33)

III. S' + 8' 0,920 — 0,605 —
1 ' 8 Z

1 Droites determinees par les points — 0,3 et 0,5,
z
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pour ß' : I. ß' 0,154 + 0,580 0,350

III. ß' 0,143 + 0,562 — 0,362

II. ß' 0,148 + 0,571 ^ — 0,356

z

(33)

pour z I. j0 0,988 — 0,288 L

II. z'o 0,989 — 0,284 5-

_/
III. r0 0,990 — 0,280 1-

Les coefficients qui correspondent ä des valeurs de p interme-
diaires entre les trois valeurs donnees, s'obtiennent par interpolation.

Ces formules remplacent assez bien la Table des decrements
dans les intervalles

C'est seulement dans ce domaine que seront valables les regies

pratiques qui seront enoncees; ces regies pratiques sont l'inter-
pretation geometrique que permettent ces equations simples.

Considerons uniquement les courbes IIqui supposent p 0,30.
Les resultats qui vont suivre seront done attaches a cette valeur

particuliere de p. Toutefois je montrerai que, si l'on se contente
d'une certaine approximation, ils jouissent de quelque genera-
lite. Cela tient k ce que les coefficients qui figurent dans les

equations precedentes varient peu quand on passe d'une valeur
dei> ä une autre.

2° On a l'equation

0,20 < p < 0,40

„/
0,20 < — < 0,60

(34)

8, + 5 — 0,928 — 0,595 -1 z z
(35)

1 Paraboles determiners par les points — — 0,2, 0,4 et 0,6.

zr2 Droites determinees par les points — 0,3 et 0,5.
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En multipliant par z on peut 1'amener ä la forme

5j + o2 + 0,072 s s — 0,595z (35')

Faisons la construction suivante (fig. 22):

iy A

2 //
O

I
1 B
N ^

Q '
C B'

Fig. 22

AC tangente a la courbe des decrements au point P ('hauteur 0,4)

Pfi/ — AH 1

C'IV AB

L'equation (35') dit que le Ier membre est egal a l'abscisse de

P diminuöe de 0,595. CB. Traqons MN ä une hauteur telle que

MN =: 0,595 CB

On conclut facilement qu'il faut que I'on ait:
IN 0,195

Nous soinmes done amenes ä construire parallelement ä OZ un
nouvel axe O'Z ä la hauteur negative y — 0,195. sur lequel
O'M signifie dt <h, -)- 0,072 z. Pour ohtenir ^ dune
nianiere precise, il faut completer la construction en traqant une

droite oblique O'B, faisant avec O'Z un angle a tel que tg a —
0,072. Dans ces conditions NQ — 0,072 2 et enfin le point M'
place tel que M'M NQ fait apparaitre la signification gra-
phiqite de <J, -j-

8, + 8,, O'M'

Ce precede fournirait dt + <f.2 avec une exactitude tres satis-

faisante si seulement p etait connu. Or en pratique p est une

eonstante du primaire, inconnue, et ä determiner.
On pourrait bien — comme on le fait par le calcul rigoureux

Archives, Vol. 3. — Mai-Juin 1921. 10
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— traiter semblablement une seconde courbe de decrements,
calculer les decrements separes au moyen de la formule (32),
enfin voir si la valeur qu'on obtient pour p est bien celle qu'on
a prevue.

Mais alors la methode graphique perdrait tout son interet.
Son interet reside dans le fait qu'elle donne des resultats appro-
ciies, quelle que soit la valeur de p dont on parte.

II est entendu que je parle de Tintervalle que j'ai observe

pourp dans mes experiences. Cet intervalle (34) est cependant
assez large pour comprendre une multitude de cas d'experience.
On se rend compte de la chose quand on observe les change-
ments d'ordre quantitatif qu'il faut apporter au procedd suivant
la valeur de p. Les void:

p — 0,25 0,30 0,35
Axe horiz. O'Z ä la haut. OO' 0,180 0,195 0,205
Axe oblique O'R tg a 0,064 0,072 0,080

Ainsi pour l'exemple 2 (voir page 64 et fig. 3) le procede
graphique fournit

pour p — 0,34 Sj + S2 z=r 0,0463

Supposons que, ignorant cette vraie valeur de p, nous choi-
sissions_p 0,25. Le procede graphique donne

pour p — 0.25 Sj -(- 8a 0,0'i86

On pent done, en se contentant d'une certaine approximation,
considerer les axes O'Z et O'R comme des droites fixes,
determines par

OO' 0,20 et lg a 0,07

Le procede graphique presente un interet particular quand
on considere simultanement deux courbes de decrements. Sur
la fig. 23 AC et BD sont deux tangentes aux courbes des decrements

fournissant <1, -f et d, + ds*.

Accroissement Ad2 df — 6.,. On trace O'Z It la hauteur
negative OO' 0,195; puis O'R telle que tg a 0,072. Et Ton

determine, comme il a ete explique, les points M' et L'.

O'M' 5, + 82 O'L' 8, + Ss + A8j
M'L' A8„
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On pourrait done trouver Ads en appliquant deux fois le pro-
cede. Mais on peut arriver ä ce resultat plus rapideinent. II est

visible en effet que ML est ä peu pres egal ä M'L' L de sorte que
1 'accroissement observe est

A?, ML

Fig. 23.

Appliquons ce resultat aux divers exemples cites dans la
2" partie. Je lirai toujours la distance ML sur Taxe O'Z mene ä

la hauteur fixe 0,20.

Exemple 1 (page 61 et fig. 3)

La construction donne ML 0,0378

Le calcul par la table donne A8„ 0,0361

Exemple 2 (page 105 et fig. 3)

ML 0,0367 A§2 0,0345

Exemple 3 (page 229 et fig. 17)

ML 0,0299 A82 0,0286

Exemple 4 (page 105 et fig. 3)

ML 0,0167 A8S 0,0153

On voit que ce procede graphique envisage comme mode de

calcul n'est pas parfait. Et pourtant il rend de reels services.

Lorsque deux courbes simultanees viennent d'etre construites,
on a rapidement mene les tangentes et lu la distance ML. Si

cette distance est un peu superieure ä l'augmentation calculfie

1 La difference ML — M'L' est egale en moyenne a 0,05 A8a.
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du decrement, on peut etre sür que le calcu] rigoureux donnera
de bons resultats. Dans le cas contraire, on voit le sens et la

grandeur de l'erreur, et Ton peut immediatement reconnattre
les defectuosites de l'une ou l'autre des courbes. D'autre part
cette signification graphique de la difference sera tres utile
ä Pintelligence des considerations du paragraphe suivant.

3° L'equation

ß' 0,148 + 0,571 1 — 0,356 (36)

n'est pas susceptible d'une interpretation graphique simple.
Mais si ä cette equation on additionne la suivante :

8' + o 0,928 — 0,595 —
1

'
2 ' ' -

on obtient

S1 + 3s + I3' — 1'076 — °-024 7 — °'356 (7)'
ou bien

°i +_°2_+ _ 0 076 _ 0;024 __ 0356

Le second membre s'annule pour j 0,429. Done dans le voi-

sinage de cette valeur on a ä peu pres

S, + S2 + fs 3 (37)

De sorte que si AC (fig. 22) correspond ä une deformation
egale ä 0,429 alors

O'N - 8, + 82 + ß

et comme on a O'M' St -f- on conclut

M'N ß

Dans ces conditions ß a une signification graphique simple;
mais cela suppose d'une part une valeur tres speciale de
z'
— d'autre part une valeur tres speciale dep.

Par le tableau suivant on pourra se faire une idee de

l'erreur commise sur la somme <f, -7 <L + ß, en admettant que
pour p 0,30 et pour toutes les deformations, ß est represents

par M'N.
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i 0,2 0,3 0,4 0,429 0,5 0,6
z

Erreursur S, + S2 + fi 5,7% 3.7 % 0,9% 0 2,5 % 6,7%

Pour les autres valeurs de p, les valeurs de z qui rendent

rigoureuse l'egalite J, + -f- ß z, sont differentes de 0,429.

On a:
pour p — 0,25 0,30 0,35

Z- — 0,507 0,429 0,362

L'erreur est du meine ordre de grandeur. II est interessant

de noter que ces valeurs de ^ tonibent toutes en plein dans
z>

Pintervalle pratique que j'ai observe pour - ; elles sont toutes

realisables.
4° Telle est cette methode graphique qui n'est pas complete

par elle-meme, puisque les decrements separes ne peuvent etre

que calcules par la formule (32). Son interet, cornme je Tai dit,
consiste en ce qu'elle pennet de lire immediatement une valeur
approchee des decrements d, + ß, sur la courbe des

decrements. Pour qu'elle soit utile, il faut considerer les axes

O'Z, O'R comme fixes et determines par les nombres

OO' 0,20 tg « 0,07

Dans ces conditions l'erreur commise n'est pas de nature ä

detruire la valeur du procede.
Je rappeile que ces regies ne sont applicables que dans le do-

maine

0,20 < i < 0,60

0,20 < p < 0,40

qui correspond aux divers cas realises dans mes experiences.
Quelles modifications ces regies doivent-elles subir en dehors de

ce domaine? Ces regies existent-elles seulement? Ce sont des

questions auxquelles je n'ai pas cru devoir repondre.
II est certain cependant que les deformations trop fortes,

c'est-ä-dire telies que ^ >• 0,60, ne sont pas ä prendre en

consideration, car la theorie tout entiere semble en defaut. D'autre part

lorsque z- < 0,20, ces regies perdent leur caractere de simplicite.
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§ 23. — Le phenomene de la resonance.

Les exemples isoles qui terminent la deuxieme partie etaient
surtout destines ä montrer quo la nouvelle theorie rend compte
des phenomenes. Nous ferons maintenantl'inverse. Nous admet-
trons comme base du raisonnement que la theorie est juste; et

comme nous eonnaissons l'ordre de grandeur des decrements,
nous allons explorer le phenomene de la resonance, en faisant
varier d'une maniere continue les trois decrements dt, ß et. <Jä.

La theorie de Bjerknes examinee sous le meme rapport fournit
cette seule conclusion: La courbe de resonance s'aplatit quand
la somme des decrements augmente.

Dans notre cas les parametres variables sont au nombre de

trois, ce qui rend le phenomene plus complexe.
Deux courbes de resonance obtenues dans des circonstances

difierentes peuvent etre comparees au point de vue de l'aplatis-
sement, et au point de vue de leur deformation relativement ä

une courbe de resonance normale. L'aplatissement est caracte-
rise par z, c'est-ä-dire le decrement a la hauteur 0,4. La
deformation est caracterisee par z\ nombre qui fixe l'inclinaison de

la courbe des decrements au point considere. Ces deux caracteres

sont immediatement visibles sur la courbe des decrements; c'est

pourquoi desormais nous laisserons la courbe de resonance pour
considerer uniquement la courbe des decrements. Et meme, ä

cette derniere nous pouvons substituer la tangente ä la hauteur

0,4.
La maniere dont se deplace cette droite, selon les diverses va-

leurs des decrements, est figuree sur la fig. 24. Les conclusions

que nous enoncerons nous seront fournies par l'inspection de

cette figure.
1° Considerons premierement les droites numerotees 1, 2, 3,4.

C'est le cas d'un primaire dont les decrements sont fixes et ont

pour valeurs

ß ~ 0,030 oA — 0,039 done p 0,30.

Ces droites correspondent k des decrements S.2 qui croissent

en progression arithmetique.

S2 0,016 0,031 0,046 0,061





252 AMORTISSEMEN'T D'ÜN CIRCUIT A ETINCELLE

Une droite mobile prenant cos diverses positions et les

positions intermediates, se deplace de gauche a droite et devient

plus verticale. Cela signilie que
Lorsque <1.2 augmente, la courbe de resonance s'aplatit et

devient de moins en moins deformee.
2" Cette droite, en effectuant un mouvement de translation et

un mouvement de rotation, reste constamment tangente ä une
certaine courbe fixe E3. L'equation de l'enveloppe de cette fa-

mille de droites peut etre obtenue ä Faide des equations (33).
Un point de l'enveloppe est ä la fois point de tangence d'une

droite, et point d'intersection de deux droites infiniment rap-
prochees. Cette remarque permet de dire que deux droites attei-
gnant l'enveloppe dans sa partie inferieure, et correspondant ä

un accroissement donne de A,, torment un angle relativement

grand. Alors, ä un accroissement de öi. donne immediatement
sur la figure par le segment A,AS, correspond un accroissement
de z egal a B2, beaucoup plus petit que A,A2. Le rapport
B H

est relativement petit. Notons que B,Bä est ä peu pres l'ac-

croissement du decrement moyen. On peut done enoncer la
conclusion suivante:

Le rapport entre 1'accroissement du decrement moyen et

1'accroissement calcule, constamment inferieur ä l'unite, augmente
a mesure que <1.2 augmente.

Pour montrer le phenomene d'une maniere plus precise
construisons une courbe (fig. 25). Portons en abscisses les ac-
croissements de^.2, eh ordonnees les accroissements de z, le

decrement initial S.2 ayant pour valeur 0,016. Si on avait
constamment As A on obtiendrait une droite, bissectrice des

Az
axes. En realite la courbe est telle que le rapport varie

entre 0.60 et 0,80.
Nous remarquons done que lorsque augmente, l'accroisse-

ment, observe tend ä devenir egal k Faccroissement calcule.
Cette remarque est contenue dans une autre plus generale qu'il
est facile de tirer de l'equation de la courbe de resonance, savoir:
La theorie de Bjerknes se confond ä la liinite avec la nouvelle
theorie lorsque A2 devient de plus en plus grand.

De sorte que si nous regardons la nouvelle theorie comme
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adequate pour expliquer les phenomenes dans tous les cas, la
theorie de Bjerknes s'eu rapproche plus ou moins, selon que
Finfluence de Fetincelle a ete plus ou nioins palliee par la

grandeur de d2.
Or comme la nouvelle theorie assure, au moins en principe,

l'egalite des valeurs observee et calculee, et comme la theorie de

Bjerknes approche plus ou moins de cette egalite suivant la va-
leur de d3, nous pouvons affirmer que le veritable critere des

bonnes mesures est l'egalite des deux accroissements, ce qui jus-

w
/ 0.80

///
A /m

/ \//
>lz=0,67!

As i [ ]

Fig. 25.

tifie a posteriori l'hypotbese de ce critere enonce dans l'intro-
duction.

3° Nous avons fait la supposition p — 0,30, ce qui attribue au

rapport ~ la valeur 0,78. Si l'on augmente l'amortissement du

primaire d'une maniere quelconque, il n'est pas sür que le

rapport reste le memo. Toutofois, autant que les experiences me

l'ontmontre, il est possible qu'il demeure constant. Si c'est le

cas, nous pouvons dire que la part de Fetincelle dans I'amor-
tissement est restee constante. Pour ce qui suit, nous suppose-
rons qu'il en est ainsi.

Admettons done que ß prenne diverses valeurs. A la valeur
ß=0,030 correspond l'enveloppe E3;

a p= 0.020 0,025 0,030 0,035

correspondent
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La fig. 24 represente ces courbes.
Considerons l'enveloppe E, et ses quatre tangentes 1', 2', 3', 4'.

La droite 1' correspond äun meme decrement dä 0.016 que la

droite 1. II en est de meme des droites 2' et 2, etc. En compa-
rant les droites 1' et 1, on observe que la seconde est plus incli-
nee par rapport ä la verticale que la premiere ; ce fait a pour
cause les valeurs plus fortes de d, et de ß. Ainsi une augmentation

de l'amortissement du primaire produit, naturellement, une
augmentation de z, mais aussi uue augmentation de z'. Nous ne

savons rien de la variation de -- Pour faciliter l'enonce de ce
Z

resultat, appelons.s' la deformation. Nous pouvons dire:
Un accroissement de l'amortissement da primaire a pour

consequence une plus yrande deformation de la courbe de resonance.
Teiles sont les lois principales qui regissent le phenomene de

la resonance quand le circuit primaire possede une etincello.
On pourrait en trouver d'autres; car, pour etre complet, il fau-
drait expliquer ce qui se passe lorsqu'on fait varier ß seul.ou d,

seui, ou enfin <1, et ß ensemble, mais en liant ces decrements

par une relation. Ce sont autant de maniores de faire varier
l'amortissement du primaire. Mais ces considerations auraient
peu d'interet, parce qu'on ne sait pas comment faire varier les

parametres du circuit 5 etincelle, pour obtenir des variations
determinees de d, et de ß.

Ces divers resultats sont implicitement renfennes dans

l'equation de la courbe de resonance. Pour pouvoir les trouver,

les enoncer et les rendre visibles, il a fallu passer de l'equation

de la courbe de resonance aux equations simples du para-
graphe precedent, par l'intermediaire de la Table des

decrements; et enfin par des constructions envisager des cas particu-
liers. On comprend des lors qu'un tel procede ne permette ni
d'etre complet, ni d'etre rigoureux. Ces lois, que la theorie de

Bjerknes ne prevoit pas, sont une premiere approximation dans

l'etude de l'infiuence perturbatrice de Tetincelle.

Resume et conclusions.

1. Le present travail, commence par l'expose des caracteres

que presente la courbe de resonance experimentale, quand le
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circuit primaire possede une etincelle. Ces caracteres sont au
nombre de deux, savoir:

1. La courbe de resonance est deformöe relativement ä une
courbe de resonance normale. Les valeurs qu'on obtient pour la
somme des decrements selon le procede de Bjerknes decroissent
du haut en bas de la courbe. D'autre part, cette deformation di-
minue quand l'amortissement du secondaire augmento.

II. Si l'on considere deux courbes de resonance obtenues avec

un meme secondaire, mais ayant des amortissements differents,
l'accroissement de decrement observe par la comparaison des

courbes est toujours plus petit que l'accroissement calcule au

moyen de la resistance additionnelle.
2. L'examen de la theorie de Bjerknes sur la courbe de

resonance montre que la formule des decrements, malgre la rigueur
avec laquelle eile peut etre obtenue, est impuissante ä expliquer
les caracteres cites. A l'occasion do cette question une theorie
detaillee de la courbe de resonance a ete donnee.

3. Les deux caracteres de la courbe de resonance ont pour
cause l'etincelle elle-meme, c'est-ä-dire le fait constate, que la

courbe de decroissance de l'amplitude du courant se rapproche
davantage d'une droite que d'une exponentielle. En partant de

cette hypothese, et en admettant que le phenomene de
l'amortissement dans le circuit ä etincelle est determine par deux pa-
rainetres, une equation de la courbe de resonance a ete etablie,

laquelle se reduit ä l'equation de Bjerknes, lorsque le second

parametre est pose egal ä zero.
4. L'application convenable de la nouvelle theorie ä plu-

sieurs cas d'experience, facilitee par une methode pratique, a

montre qu'elle est apte ä expliquer la moitie införieure de

la courbe de resonance, et qu'elle fait apparaftre l'egalite entre
l'accroissement de decrement observe et l'accroissement calcule.

5. En dernier lieu, les lois qui regissent le phenomene de la
resonance ont ete exposees, en tant qu'elles decoulent de la
nouvelle thöorie. Elles ne sont autre chose que les caracteres observes

par l'experience et cites au n° 1. La recherche de ces lois a

ete rendue possible gräce ä une interpretation graphique des

decrements.
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