Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 2 (1920)

Artikel: Sur une méthode sensible d'analyse thermique et les transformations

du quartz, du fer et du nickel

Autor: Perrier, Albert / Wolfers, F.

DOI: https://doi.org/10.5169/seals-742564

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Sur une

MÉTHODE SENSIBLE D'ANALYSE THERMIQUE

ET LES

Transformations du quartz, du fer et du nickel

PAR

Albert PERRIER et F. WOLFERS

(Avec 2 fig.).

L'un de nous a indiqué i en même temps qu'un procédé nouveau d'analyse thermique, le principe général d'une mesure directe de la dérivée de grandeurs physiques. Ce principe avait été exprimé dans la forme suivante :

Soit un phénomène que l'on peut décrire par la dépendance entre deux grandeurs physiques x et y. Provoquons ce phénomène à la fois dans deux systèmes identiques, de telle manière qu'au même instant la variable indépendante affecte dans les deux systèmes des valeurs respectives x et $x+\Delta x$, Δx étant petit et constant; les indications de l'instrument qui mesure directement la différence Δy des valeurs correspondantes de l'autre grandeur sont proportionnelles approximativement à la dérivée $\frac{\Delta y}{\Delta x}$ pour $x+\frac{\Delta x}{2}$. L'approximation est manifestement d'autant plus grande que Δx a pu être choisi plus petit, c'està-dire que l'instrument est plus sensible.

Le but du présent travail est de montrer que l'application de ce principe à la recherche thermique des points de transforma-

¹ Perrier, Alb. Sur une méthode différentielle rapide, etc. Compte rendu de la Soc. suisse de phys., 4 mai 1918: Arch. (4), 46, 1918, p. 45.

tion est non seulement possible, mais encore très pratique et avantageuse; d'emblée, elle a permis de vérifier ce que d'autres procédés avaient déjà donné, et de trouver en outre plusieurs résultats nouveaux.

Cette application de la règle générale revient à observer directement des vitesses de refroidissement ou de chauffage.

Il suffit pour cela, en principe, de chauffer ou de refroidir dans des conditions identiques deux échantillons identiques d'une même substance, mais avec un décalage de temps Δz constant et petit. Un couple thermoélectrique dont les deux soudures sont en contact respectivement avec l'un et l'autre corps mesurera à chaque instant la différence de température Δt , soit en même temps $\frac{\Delta t}{\Delta z}$ puisque Δz est invariable.

Discutons d'abord quelques aspects des courbes $\Delta t = f(z)$ suivant la nature des anomalies thermiques présentées par les substances. Ces anomalies peuvent se rattacher à deux types généraux : discontinuités de la chaleur spécifique (point de Curie des ferromagnétiques par exemple), et chaleurs latentes de transformation. L'une et l'autre peuvent d'ailleurs apparaître simultanément (point de fusion avec chaleurs spécifiques différentes à l'état solide et à l'état liquide). Le premier cas est illustré par les courbes I et II, fig. 1, qui représentent les discontinuités possibles : accroissement de la chaleur spécifique (I) et diminution (augmentation de la vitesse de refroidissement (II)). Une chaleur latente notable se traduit par les diagrammes III et IV; ce dernier correspondant au cas assez fréquent où la transformation se déclanche avec un certain retard (surfusion par exemple) entraînant un relèvement spontané de la température. On remarquera qu'alors le sens de la différence de température peut se renverser.

Ces figures sont, bien entendu, toutes schématiques. Elles supposent en particulier que la température soit uniforme dans toute l'étendue de l'éprouvette, ce qui ne peut jamais être le cas puisque la méthode est par essence dynamique. En conséquence, les aspérites des courbes seront toujours estompées, plus ou moins suivant que l'uniformité de la température est plus ou moins imparfaite.

La mise en œuvre de la méthode exigerait, strictement par-ARCHIVES, Vol. 2. — Septembre-Octobre 1920. lant, la réalisation de deux installations d'ensemble identiques, par conséquent deux fours électriques (ou éventuellement deux cryostats), etc. Il est clair que, sauf cas très spéciaux, de tels montages seraient disproportionnés avec le but à atteindre, savoir la découverte de points de transformation. Mais on peut aisément imaginer des variantes incomparablement plus simples : on pourra, par exemple, renoncer complètement au décalage constant dans le temps, et le remplacer par une différence

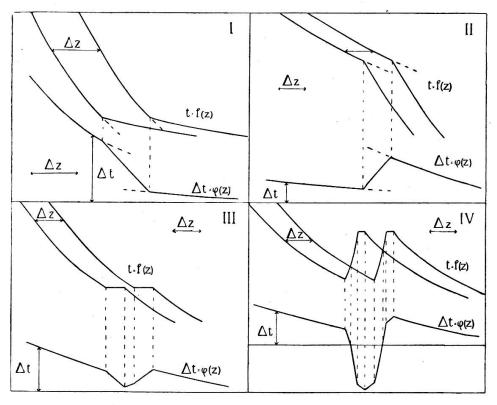


Fig. 1.

de température spatiale: et cela se réalisera soit en plaçant les deux corps identiques dans deux régions d'un four (ou cryostat) où les températures ne sont pas identiques, soit, disposant d'une température uniforme, en choisissant deux échantillons de même masse et de surface différente, ou encore de même surface et de masse différente, ou bien aussi deux corps dont l'un enveloppe l'autre et séparés par une couche isolante convenable.

Il est manifeste que, dans toutes ces conditions, l'on n'enregistrera plus à proprement parler la vitesse de refroidissement; mais le but poursuivi par l'analyse thermique, la mise en évidence des anomalies, n'en est pas moins atteint.

Sensibilité et comparaison avec la méthode du corps témoin. — Nous reviendrons plus bas avec quelque détail sur la sensibilité dans nos expériences particulières. Remarquons seulement ici que, plus on choisit Δt faible et plus l'observation se rapproche de la vitesse de refroidissement vraie; mais que l'on ne saurait descendre au point que les deux courbes de refroidissement empiètent l'une sur l'autre en quelque région, ce qui évidemment serait très défavorable. On se placera donc autant que possible au voisinage de cette limite si la sensibilité du galvanomètre disponible le permet. La vitesse de variation de la température, quant à sa valeur absolue, intervient également en ce sens que les expériences sont plus aisées avec des vitesses un peu fortes. (Voir les données numériques plus bas.)

Comparons maintenant la méthode exposée ici avec celle de Roberts Austen, dite du corps témoin. C'est également une méthode différentielle, mais dans laquelle les deux échantillons traités simultanément sont différents, l'un d'eux devant être exempt d'anomalies thermiques. On a déjà fait remarquer antérieurement la difficulté de trouver le corps témoin convenant pour chaque cas; mais il y a d'autres différences: la capacité calorifique d'un corps, même dépourvu d'anomalies ne sera que bien rarement semblable, quant à sa loi de variation thermique, à celle du corps étudié, d'où variation de la différence de température dans de larges limites au cours d'une même expérience, c'est-à-dire nécessité de limiter la sensibilité du galvanomètre; enfin les discontinuités de la chaleur spécifique ne seront accusées que par des changements de direction de la courbe Δt , caractère notablement moins facile à déceler avec certitude que les sinuosités discutées plus haut.

Réalisation expérimentale. — Notre but, étant donné le temps très restreint dont nous disposions, était seulement de mettre à épreuve la méthode, sans que nous puissions déterminer en détail, par de nombreuses expériences, les conditions les plus favorables pour son application. Aussi l'avons-nous employée sous la forme la plus rapide et la plus simple à réaliser avec les moyens courants d'un laboratoire. Nous avons suspendu

deux échantillons identiques à des niveaux différents dans un four électrique vertical, le décalage de température étant causé simplement par les différences locales du four.

Ce dernier était constitué par un tube de porcelaine réfractaire recouvert d'un enroulement de nichrome et fermé aux deux extrémités par des bouchons de stéatite. L'uniformité trop faible de la température a nécessité l'introduction à l'intérieur d'un tube de fer; du nickel eut été bien préférable, mais nous fûmes dans l'impossibilité de nous en procurer à temps. L'isolement thermique du four joue un rôle important: trop faible, le chauffage est trop lent; trop fort, c'est le refroidissement qui est trop lent à son tour. Il faut donc le modifier selon les besoins, ce qui se fait d'ailleurs sans difficulté avec des enroulements de carton d'amiante.

Les échantillons étaient des cylindres de 1 cm³ environ, et des cubes dans les cas du quartz. Ils étaient percés de part en part à des places identiques, et dans ces trous étaient logés les soudures du couple différentiel platine et platine rhodié; ce couple était fermé sur un galvanomètre Deprez-d'Arsonval ordinaire. La soudure d'un autre couple au platine était placée en contact avec l'un des corps, ou même (quand cela n'était pas nécessaire) simplement dans le voisinage, et le circuit extérieur formé par un pyromètre à lecture directe des températures. Tous les fils étaient isolés dans leur trajet à l'intérieur du four par des fragments de tube de porcelaine. Les échantillons étaient suspendus au bouchon supérieur du four par du fil de platine fort. Le fer devait être protégé de l'oxydation; nous avions d'abord utilisé de l'azote à cause de certains avantages thermiques, mais nous avons dû l'abandonner complètement par suite d'un effet destructeur des fils de platine qui apparaît dès qu'il existe en même temps du nickel. Ce phénomène a été publié ailleurs par l'un de nous 1.

On a adopté par la suite une circulation lente d'hydrogène.

Ne disposant pas d'un système automatique, nous nous sommes bien trouvés de noter simultanément les températures et les

¹ Wolfers, F. Compte rendu de la Soc. suisse de physique, 1er sept. 1920. Arch., même fascicule.

positions du spot différentiel sur la bande de papier d'un chronographe à trois plumes analogue à un récepteur Morse (la troisième plume notait les secondes).

Pour la représentation graphique, il faut évidemment choisir de préférence comme variable indépendante la température plutôt que le temps, c'est d'ailleurs aussi plus commode.

Avec les corps des dimensions utilisées, les conditions les plus favorables comportaient des vitesses de variation de la température de 20° à 60° par minute. Le couple différentiel pouvait déceler encore des variations de 0.02° et pour Δt des différences de l'ordre de 10° se sont montrées les plus avantageuses. On peut juger par là la sensibilité dont la méthode est susceptible après élimination des causes perturbantes (remous dans le four par exemple). On peut sans aucun doute perfectionner encore ces conditions, il nous est apparu en particulier qu'il y aurait avantage à choisir des échantillons plus petits.

Résultats. — Nous nous sommes adressés au quartz cristallisé, au fer et au nickel, parce que ces trois corps, disponibles partout, ont été en outre passablement étudiés déjà au point de vue thermique, en sorte qu'ils permettaient de s'appuyer sur des données sûres pour l'épreuve du procédé.

Quartz cristallisé. — Nous ne représentons dans la fig. 2a qu'une seule expérience, chauffe et refroidissement. On voit avec quelle remarquable netteté apparaît et se confirme ainsi le phénomène thermique signalé pour la première fois par l'un de nous et qui accompagne la transformation $\alpha\beta$. Il s'agit là évidemment, non seulement d'une discontinuité de la chaleur spécifique, mais certainement aussi d'une chaleur latente c'est-à-dire d'une absorption (resp. dégagement) de chaleur concentrée sur un intervalle de température très étroit 2 .

Le décalage entre les températures de transformation accusées au chauffage et au refroidissement n'est pas dû à une irréversibilité (celle-ci existe, mais elle est au maximnm de quelques

¹ Perrier, Alb. Hypothèse de polarisations diélectriques spontanées, etc. Arch. (4), t. 41, 1916, p. 493.

² Des résultats quantitatifs donnés par des expériences d'une autre nature en cours d'exécution seront publiés ultérieurement.

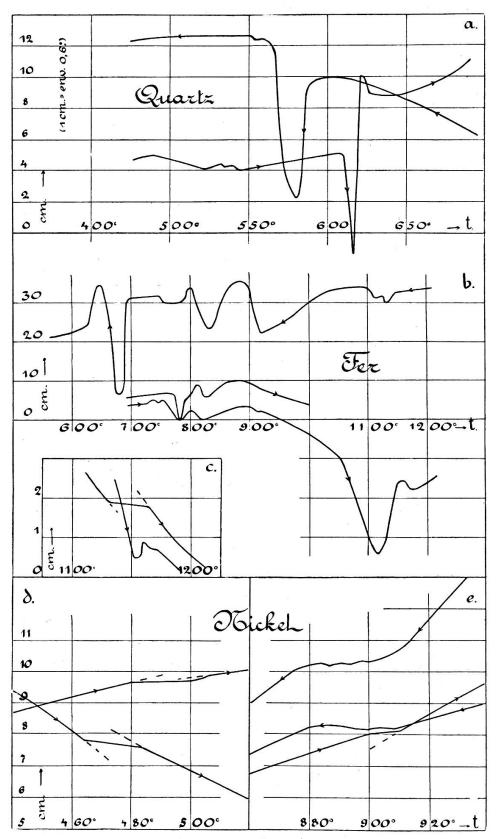


Fig. 2.

degrés d'après des mesures antérieures sur la biréfringence, la polarisation rotatoire etc. ¹, mais simplement au fait que la soudure du pyromètre était ici dans le voisinage, non au contact de l'un des corps.

Fer. — La fig. 2 b représente, en fonction de la température, des courbes relevées avec du fer doux du commerce (contenant du carbone). Elles ont été choisies parmi d'autres qui les corroborent, parce qu'enregistrées dans des conditions passablement variées quant à l'ordre de grandeur de l'écart de température initial.

On voit d'abord que les mêmes sinuosités apparaissent sur toutes et à des températures égales, les différences étant moindres que les retards que présentent toutes ces transformations à un degré plus ou moins marqué. Les courbes mettent en relief de la façon la plus nette les transformations dont l'accompagnement thermique avait déjà été indiqué : d'abord les points A_2 et A_3 de M. Osmond qui correspondent vers 760° et vers 900° aux transformations $\alpha\beta$ (perte du ferro-magnétisme, point de Curie) et $\beta\gamma$ (diminution plus ou moins échelonnée de la susceptibilité), lesquelles sont caractéristiques du fer pur comme des fers carburés. La courbe supérieure accuse en outre nettement au refroidissement la « recalescence » (des fers carburés seulement, limite de séparation de la perlite d'un côté d'avec la ferrite et la cémentite de l'autre), soit le point A_4 de Osmond, avec un retard.

Mais nos relevés décèlent encore deux autres anomalies non signalées jusqu'ici : vers 800° et un peu au delà de 1100°.

Il est intéressant de rappeler ici que des expériences magnétiques délicates de Weiss et Foëx 2, confirmées ensuite par celles de Renker 3, ont montré que, vers 800° , la courbe des susceptibilités présente, non une discontinuité, mais un point anguleux (passage $\beta_1\beta_2$, discontinuité de la constante de Curie). Il faut, à n'en pas douter, voir dans nos observations une manifestation thermique de cette modification, et le premier exemple de phé-

¹ Perrier, Alb. Hypothèse de polarisations diélectriques, etc., loc. cit.

² Weiss, P. et Foëx, G. Etude de l'aimantation, etc. *Journal de physique* (5), I, 1911, p. 274, 744 et 805.

³ Renker. Thèse, Zurich, Ecole polytechnique, 1913.

nomène de ce genre (voir plus bas encore, le nickel). — Quant au second point au-delà de 1100° , il n'a jamais été signalé par aucune expérience faite jusqu'ici à notre connaissance. Et cependant, il s'est manifesté avec une grande netteté dans plusieurs expériences (voir courbes c). Nous n'avons pas pu, dans les conditions exposées, pousser au delà de 1400° pour examiner au point de vue thermique la transformation $\gamma\delta$; nous explorerons cette région dès que possible.

Nickel. — Les expériences sont évidemment plus simples qu'avec le fer. Nous avons trouvé, cela va de soi, le point de Curie, mais en outre deux autres anomalies thermiques nouvelles. Elles sont très faibles et il n'y a rien d'étonnant qu'elles se soient dérobées jusqu'ici. Les fig. 2d et e ont été reproduites à cet effet à une échelle plus grande, et seulement pour les régions intéressantes. L'une de ces transformations se trouve vers 460° , l'autre vers 890° . Là encore, ces températures s'accordent avec celles des observations magnétiques, la première grossièrement avec la fin de l'état de passage de β_1 à β_2 caractérisé par Weiss et Foëx 1 puis Renker 2 , la seconde aussi exactement que possible avec la discontinuité de la constante de Curie (angle dans la courbe $\chi = f(t)$) fixée par Bloch 3 puis par Renker 4 .

Nous avons aussi observé assez nettement une anomalie vers 740°. Toutefois, elle peut prêter le flanc à des objections, dans les circonstances où elle s'est produite, et nous ne la signalons que sous réserve.

En résumé, nous pensons que les expériences ci-dessus montrent de façon tout à fait positive que la méthode proposée est nettement supérieure à celles qui étaient usitées jusqu'ici. Elle a en effet donné sans peine ce qui avait été observé antérieurement, et de plus elle a fait découvrir d'autres anomalies thermiques plus faibles. Or elle a été réalisée, nous l'avons dit, de la façon la plus élémentaire ; les perfectionnements dont il a été question quant à la disposition des échantillons et du four la rendraient d'emblée notablement plus sensible encore. Et, dans

¹ Weiss, P. et Foëx, G. Loc. cit.

² Renker. Loc. cit.

³ Bloch. Thèse. Zurich, Ecole polytechnique, 1912.

⁴ RENKER. Loc. cit.

le même ordre d'idées, notons qu'on pourrait lui adapter sans modification les appareils d'enregistrement automatique dont divers modèles ont été mis au point pour l'étude des alliages dans des buts industriels, notamment par la méthode du corps témoin ¹.

Lausanne, Université, août 1920.

Dispositifs de MM. Roberts Austen, Saladin, galvanomètre double de M. H. Le Chatelier, ou encore les appareils de la Leeds & Northrup Co, à Philadelphie.