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1920 ; Vol. 2 Juillet-Aotit.

INTERPRETATION GEOMETRIQUE DU TEMPS UNIVERSEL

DANS LA

THEORIE DE LA RELATIVITE RESTREINTE

PAR

Charles WILLIGENS

Je me propose dans le présent travail d’interpréter géomé-
triquement le temps universel, tel qu'il a été introduit par M.
Edouard Guillaume dans la Théorie de la relativité restreinte .

Vu I'importance du sujet, je commencerai par rappeler les
- principes sur lesquels M. Guillaume établit la Théorie. Cet
auteur pose les deux postulats fondamentaux suivants:

1. Le Principe de la constance relative de la vitesse de la lu-
miére dans le vide galiléen. (Dans tout systéme galiléen, la vi-
tesse de la lumiere, mesurée dans ce systéme, est un nombre fixe
¢, qu'on peut d’ailleurs choisir arbitrairement).

2. Le Principe de la sphéricité de l'onde lumineuse émise par
une source ponctuelle dans le vide galiléen.

Considérons deux systemes de référence trirectangles, soit
S,y (%5 Yy 20), Sy (2,5, Y4, 2,), animés d’une translation uniforme
de vitesse v le long des axes O, z, et O,x, supposés coincidants.
Le mouvement aura lieu conformément & la transformation
galiléenne :

.1"1:.1:2-4—05: i At T S g (1)

! Kd. GuiLnavme. La Théorie de la Relativité en fonction du temps
universel, Arch. (4), 46, p. 281 et suiv., 1918. Représentation et Mesure
du temps, ibid. (5), 2, p. 125 et suiv., 1920; Les Bases de la Théorie de la
Relativité, Revue Générale des Sciences. 15 avril 1920.
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290 THEORIE DE LA RELATIVITE RESTREINTE

Supposons qu’on produise un signal lumineux bref aux ori-
gines O, et O,, a I'instant ol elles coincident ({=0). Il donnera
naissance dans chacun des systémes a une onde sphérique en
vertu du second postulat :

\ .1r: + _1‘: + zj == u:
? (2)

) 2 2 k']
x, I X = U,
u, et u, désignant les rayons des sphéres au méme instant. On

vérifie immédiatement que les variables z,, z,, u,, u, satisfont
a la transformation suivante, due 4 Lorentz :

= B lay + awy) 5w, = flax, + u,)

{3}
1: (1 —a?

A= B

Nous admettrons que cette transformation a lieu pour tous les
phénomeénes qui sont observés & la fois depuis 8, et depuis S,;
la variable u représentera toujours un « chemin lumineux »
mesuré dans le systeme S; sa dérivée ¢ par rapport au temps
sera la vitesse dela lumiere relative a ce systeme. Par raison de
symétrie, posons :

U, =ct4r,; #wy=ct-—r {4)

ol ¢, et ¢, ne dépendent pas de ¢; » ne dépendra que de x, ou
de x, selon le systéeme sur lequel on suppose I'observateur placé.
Substituons dans la seconde équation (3); on obtient :

r{l 4+ §) = ey —¢,) t + afx, .
Placons-nous sur 8,, c’est & dire posons :

da
dt

= R A — ]

La relation précédente, dérivée par rapport a ¢, donne :

d’ou

En introduisant les parametres z, et z,, les équations (4) peuvent
alors s’éerire :
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f—1 ¢ f—1
afs = o e
8 af

Xy Wy TSN _ﬁt
En permutant les indices et changeant le signe de &, on obtient
les deux autres relations :

Uy = ¢,T, = ¢,t -+

&)

s Cq B_l
Uy = ¢,1, :w@_t -+ af

Xy Uy = €Ty = cot— a_ﬁ x,
On vérifie facilement qu’en remplacant dans la premiére équa-
tion (3) u, par sa valeur en fonction de ¢ et z,, on tombe sur la
premiére relation (1).

Les parametres z, et 7, peuvent étre considérés comme repré-
sentant le «temps local». Si I'observateur est sur S,, par
exemple, tous les points de S, sont au repos relatif, et 'on a :

(5')

%1:—2 =0, df=dt,
autrement dit, les « hblfloges locales » qu’on peut supposer ins-
tallées en chaque point de S,, vont toutes également vite et ont
une marche synchrone avec I'horloge universelle. Par contre, il
y a un déphasage constant entre chaque horloge locale et 1'hor-
loge ¢; ce déphasage est une fonction du lieu, c’est-a-dire du
point x,, fixe dans S,, envisagé depuisS,. Comme M. Guillaume
I'a fait observer, il est curieux de constater que si l'on envoie
des signaux brefs entre des horloges locales éloignées, celles-ci

sembleront réglées comme 1’horloge universelle. On a, en effet,
dans ce cas :

== 0T =l .

Ty 1

On voit done que le réglage des horloges par des échanges de
signaux lumineux n’est qu'un trompe-1’eil.

En résumé, les indications des horloges donnant les temps ¢
et r ne difféerent que par des constantes d’intégration. Du fait
que leurs différentielles sont égales, il résulte que les phéno-
menes physiques, représentés par des équations différentielles,
peuvent étre exprimés indifféremment avec la variable ¢ ou la
z. Il n’y a 1a pas plus de difficulté qu’il n’y a de difficulté & un
aviateur de déterminer sa vitesse soit & I'aide du chronometre
du bord, soit en lisant 'heure sur les horloges des clochers qu’il
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292 THEORIE DE LA RELATIVITE RESTREINTE

apercoit, en tenant compte chaque fois des déphasages cons-
tants existant entre les temps des différents pays.

Il est commode d’utiliser les quantités imaginaires dans la
représentation graphique de la transformation de Lorentz. A
cet effet, il suffit de remplacer « par ia et ¢, par —ic, dans la
transformation, en convenant de donner & a et & ¢, les valeurs
numériques « et ¢, respectivement. La transformation représen-
tera alors une rotation d’'un angle — ¢ des axes rectangulaires
O (z,, ¢, 7,) autour de l'origine O, Pangle ¢ étant défini par :

1
|/_1+» a®

ab __'l-—l')_t
1+6 —ab — B

a=1igegs b= —=cos ¢ ; ab =—==sing

-6

Comme a << 1, la rotation est au plus de 45°. Toutefois, pour
obtenir des figures plus claires, comme il ne s’agissait que
d’exposer le principe, cette limite n’a pas été observée dans les
constructions géométriques, ce qui n’altére pas qualitativement
les résultats. La premiére des relations (5') devient alors :

s ? CO
€Ty = — X g o + cos ¢ . (®)
Désignons par :
e i T

le coefficient angulaire de la droite que I'on obtient en prenant
pour coordonées w=¢,t,, © = z,, la relation (6) prend la
forme : :

— 14 m? 6

u:mx—}-coti——ﬁ

cette droite forme avec 'axe Oz un angle — % . Lorsque ¢ va-

rie, ces droites se déplacent parallelement. Les droites de simul-
tanéité, qu’on peut appeler «droites isochrones», ne sont donc
plus des paralléles & Oz, comme dans la définition einsténienne
de la simultanéité, mais des paralléles & la bissectrice des direc-
tions positives de Oz, et Oz,. _
Faire varier « dans la transformation de Lorentz revient &
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faire varier m dans (6'). Si on laisse ¢ constant, la droite (6')
enveloppe une courbe. Les coordonnées des points de cette
courbe s'obtiennent sans difficulté en fonction de m. Denvons
en effet (6") par rapport a m, nous obtenons :

= bm .
r= — ¢t ——
o [T — 2
*tl—-—"tm“’—m‘*
U=z
¢ (1 — m??

en substituant dans (6") la valeur obtenue pour x.

Si on fait varier £, on obtient une famille de courbes homothé-
tiques par rapport a 'origine. Cette famille de courbes définit
une horloge indiquant le temps universel, car si nous avons un
systéme S, correspondant aux axes O(z,, ¢, 7,) déduits par une
rotation de Pangle — ¢ du systéme O (x,, ¢, 7,) cortespondant a
S,, les droites isochrones s’obtiendront en menant aux courbes
des tangentes paralleles & la bisectrice de Ox, et Owx,.

Ces droites sont des droites isochrones dans les deux systémes,
et leur choix a pour effet, comme le fait observer M. Guillaume,
de faire disparaitre la «contraction» de Lorentz. Le temps n’est
pas autre chose que le rapport o homothétie entre une courbe
quelconque et la .courbe correspondante a t — 1. Toutefois il sera
commode de le mesurer sur la droite passant par I'origine et les
points de contact des tangentes paralléles. Ceci n’est toutefois
qu'une question de commodité, les rapports d’homothétie étant
les mémes pour toute droite passant par 'origine. Un change-
ment de direction n’aura done aucune influence sur la mesure
du temps, celui-ci étant défini, non pas par les droites iso-
chrones, mais par le rapport d’homothétie des courbes aux-
quelles ces derniéres sont tangentes.

En particulier, coupons les courbes par Ou. Le coefficient
angulaire des tangentes aux points d’intersection sera m=—0
qui correspond 4 e«—=0, donc au repos complet des systemes.
Nous avons dans ce cas : u=c¢, 7, = ¢,4 donc 7, =t ; ¢ devient
identique aux temps locaux du systéme ou se trouve l’observa-
teur. :

Les courbes considérées sont symétriques par rapport a Ou
elles ont trois points de rebroussement, dont deux imaginaires
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et elles sont doublement tangentes & la droite de I'infini, les
bissectrices des axes étant des directions asymptotiques. (Fig. 1).

Considérons trois systémes S,, S,, S, et les rotations corres-
pondantes des axes de coordonnées. Il est facile de construire

COTI

L

Fig. 1.

=]

pour les trois systémes les droites correspondant & urie méme
valeur de ¢, dans ces trois systémes, en partant de 1’équation :

™

cos @

u:—lg%x—}—

puisque nous connaissons 1'angle ¢ que forment les nouveaux
axes avec les anciens. La droite elle-méme est parallele a la
bissectrice des axes desx des deux systémes considérés. (Fig. 2).
Désignons ces trois droites par ¢,,, ¢,, et ¢,,, les indices indi-
quant simplement pour quelle association de systéme chacune
d’elles est valable.

Donnons-nous dans le systeme S, I'abscisse z, = OM, . Si
nous considérons la combinaison de systémes (S,, S,) nous de-
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vons lui faire correspondre le point M,, sur la droite ¢,,. Ce
point a pour abscisse dans le systéme S, : x, = OM,,. Prenons

Fig. 2.
le point H d’intersection de M, M, avec la bissectrice b, de
Oxz, et Oz,, et projetons H orthogonalement en K sur Oz, .
Nous avons : y '
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o, = OM:2 -
:1'2 = OM;l — OK
en vertu de la formule
xr, = x, + vt

que nous avons trouvée plus haut, comme conséquence de la
transformation de Lorentz lorsqu’on prend le parameétre ¢ pour
mesurer le temps :

- r
X, — X, = hM12 = Byl

v,, désignant la vitesse de translation de S, par rapport & S,.

Si par le méme procédé, nous prolongeons M, M., jusqu’en_ K,
point d’intersection avec b,,, et en projetons K en S sur Ox,,
nous trouvons :

’
S';\/'Im:ar'2 — X, = vy, b

il ressort de la figure que :

Vgl == — vy, T .

21

Le procédé, on le voit, est trés simple et vaut pour un couple
quelconque de systémes. La figure 2 donne la construction de
la vitesse d’un systéme par rapport a I'autre.

Quittons maintenant la représentation graphique pour revenir
dans I'espace ordinaire, et considérons trois systémes trirec-
tangles qui se déplacent parallélement & leurs axes des x, glis-
sant les uns sur les autres, C'est le cas décrit par M. Guillaume
dans I'espace réel. Supposons 'observateur placé dans S,. (Fig. 3).
Nous déterminons la disposition des systémes S, et S, & I'ins-
tant ¢ tels qu’on les voit de S, en portant sur Ox, les longueurs
v, et v,

Supposons ensuite I'observateur placé dans S, et portons sur
Oz, les longueurs v,,t et v,,¢, nous obtiendrons les systémes
S, et S, tels qu’ils sont vusde S,

Enfin, si 'observateur est supposé sur S, et que sur Oz, on
porte v,,t et v,,f on obtient les systémes S, et S, vus de S,.

Nous voyons que les trois figures obtenues ne sont pas iden-
tiques, mais qu’il y a une aberration variable avec le systéme de
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I'observateur. Nous avons fait ressortir en trait gras le systeme
ol se trouve I’observateur et nous ’avons désigné par un seul
indice, en indiquant pour les autres systemes, a I'aide d'un
second indice, le systeme d’ou ils sont vus. '
Proposons-nous pour terminer de représenter les mémes for-
mules 4 I'aide de 'interprétation de la transformation de Lorentz

/ /7
S{ Sor Sat

Sz 32

/
51_3 ) 23 3

Fig. 3.

en conservant les valeurs réelles. (Fig. 4). On considére dans le
systeme rectangulaire Ox,, Ou, les deux hyperboles équilatéres

conjuguées :
2 — = —1

a? —uP= 41

et on prend pour axes Ox, et Ou, deux diamétres conjugués.
Ceux-ci sont symétriques par rapport & une asymptote et
coupent les deux hyperboles en des points X, et U,. Dans le
nouveau systéme les longueurs OX, et OU, seront prises comme.
unités sur ces axes de coordonnées.
L’angle y que forme I'axe Ox, avec Oz, est défini par :
tgdy=—a
hY V 4 rd
0l @ = — comme précédemment.
- 0 ‘
Les coordonnées du point U, sont :
x; == af

up=13 .
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L’équation de la droite U,U, sera de la forme :

. u=pr 4+ 1
puisque OU, =1, ou
B —1

v

Fig. 4.
Si nous reprenons la relation établie au début
B —1

c
0
o ;

=

nous voyons que nos droites de simultanéité sont paralleles a la
direction U, U,. Ce sont, comme dans le cas précédent, des
droites découpant sur Ow, et Ou, des segments mesurés par le
méme nombre, si I'on tient compte du fait que I'unité de lon-
gueur n’est pas la méme sur les deux axes.
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En appelant y 'angle dont la tangente est u, on obtient :

2p.

1 + !‘,‘2— "l
1 — u? 7 cos 2y

= sin 2y

L’équation de la droite devient :

W= pxr 4+ c,t -

Si I'on cherche I’enveloppe de cette droite, on trouve en expri-
mant les coordonnées en fonction de w :

g

LA —

En étudiant cette courbe, on arrive a la caractériser comme
une courbe du 4™ ordre et de 3™ classe doublement tangente
a la droite de I'infini aux points cycliques. Ces propriétés suf-
fisent pour caractériser la courbe comme une hypocycloide a
trois rebroussements?. |

Le temps est de nouveau défini comme le rapport d’homothétie
d’'un systeme de courbes. Mais, dans ce cas, ces courbes sont des
hypocycloides. '

Dans la figure 4 nous avons représenté I’hypocycloide corres-
pondant & ¢,t —=1. On peut se livrer sur ce mode de représen-
tation, & des considérations analogues & celles du cas précédent.
Toutefois il est moins commode pour la construction des aber-
rations, & cause du changement d’échelle lors du passage d’un
systéme dans I'autre et de I'angle aigu formé par Ox, et Ou,.

L'interprétation géométrique de la représentation monopara-
métrique du temps, décrite dans ce travail, conduit & considérer
le paramétre ¢ comme un rapport d’homothétie, c'est-a-dire
comme un nombre pur. La vitesse de la lumiére a alors la

! Cf. CremoNA. « Sur hypocycloide a trois rebroussements », Crelles, .,
1865 et Gino Loria, Spezielle algebraische und transcendente ebene Kurven,
t. I, p. 161, 2me édition, Teubner, 1910.
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dimension d’une longueur. Le temps est en dehors de I'espace,
il est despatialisé, ce qui concorde avee l'universalité de cette
notion. Cette conclusion résulte directement de la définition de
la mesure du temps. Nous nous donnons une longueur ¢, et nous
admettons que la propagation de la lumiére est un phénoméne
identique en tout point de l’espace'. Mesurer un temps revient
a dire, combien de fois la longueur ¢, est parcourue, pendant
qu'un événement se produit. Le temps est donc un simple fac-
teur numérique de proportionalité qui mesure le rapport du
chemin parcouru effectivement par la lumiére a celui servant &
définir 'unité de temps. :

L’interprétation de Minkowski, qui a voulu faire du temps
une quatriéme dimension de D’espace est toute artificielle et
tient & ce que ce savant nous parait confondre les parameétres
T avec les chemins ¢,z — w parcourus par les rayons lumineux
mensurateurs.

Du point de vue cinématique, on donnera & ¢, par définition,
la dimension du temps. ¢, aura la dimension d’une vitesse et les
abscisses z seront homogeénes & des longueurs. On fera ainsi dans
les formules de dimensions une distinction entre des longueurs
variables et des longueurs fixes et I'on retrouve les représenta-
tions usuelles de la Mécanique classique.

On peut du reste observer que lorsqu’on définit le temps a
Iaide de la rotation de la Terre, il se trouve mesuré par un
angle, donc également par le rapport de deux longueurs,
exactement comme dans le cas des horloges lumineuses.
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