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REPRESENTATION ET MESURE DU TEMPS

PAR

Edouard GUILLAUME

La question du femps que pose la Théorie de la relativité est
vitale, peut-on dire, pour la Science entiére. Afin de I’éclaircir,
nous avons proposé, dans un précédent mémoire’, d’attaquer le
probleme analytiquement tout d’abord. Voici en quoi consistait
notre méthode.

Dans la Physique classique, comme en Mécanique, le temps
est toujours représenté par un parametre temporel unique, t,
qui joue le rdle de variable indépendante. Dans la théorie de
la relativité, par contre, chaque systéme de référence S; possede
un paramétre temporel z;, qui représente le temps dans ce sys-
teme seulement; comme il yaautant de systémes qu’on veut, le
temps se trouve, en fin de compte, exprimé par une infinité de
parametres. Si done, on désire retrouver la représentation classi-
que, il faut opérer un changement de variables de fagon & chas-
ser tous ces paramétres et & ne laisser subsister qu’une variable
unique ¢. C'est la un probleme de pure analyse, que nous avons
exposé dans le mémoire précité ; nous sommes arrivé a la conclu-
sion importante que les résultats essentiels de la théorie n’en
étaient pas altérés, et nous avons pu donner une signification
physique a celle-ci en la ramenant & une aberration généralisée.
Nous sommes parvenus ainsi & la nouvelle opération spatiale :
I’ « aberration », représentée par un nouvel algorithme : les
« dérivées homogénes ».

On peut dire que le probléme analytique que nous avons traité

1 Archives (4), 46, p. 281 et suiv., /918.
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A

consiste a substituer une représentation monoparamétrique a
une représentation polyparamétrique du temps.

Or, il se pose la question fondamentale suivante :

Si-le temps est véritablement une entité unique, les représen-
tations mono et polypammetmques ne dowent-elles pas etre équr-
valentes ?

Nous nous proposons, dans le présent mémoire, de montrer
que la réponse est affirmative. Nous verrons que si ’on n’a pas
su le reconnaitre jusqu’a maintenant, cela tient a 'omission d’une
distinction essentielle, et & la confusion entre deux relations de
formes analytiques similaires, mais dont 'une est relative & une
méme « durée », 'autre & deux « périodes » différentes.

Pour notre étude, nous nous appuierons sur-la proposition sui-
vante, & laquelle Kant donnait le nom de « jugement synthétique
a priori » et conférait par la-méme une certitude apodictique :

Différents temps ne  peuvent étre simultanés.

Admettons sans réserve cet axiome temporel et essayons de
lappliquer & la transformation de Lorentz, qui constitue la base
des théories dites de la relativité.

Tout d’abord, utilisons-le pour construire une « horloge ». Il
nous conduira a exemplifier le temps, continu & une dimension,
par une droite indéfinie unique OT, dont chacun des points
représentera un instant T bien déterminé, et une portion AT, un
intervalle de temps. Remarquons que, pour le moment, les sym-
boles T et AT ne désignent que des rapports de situation, et
non des valeurs numériques; nous faisons ainsi une sorte
d’Analysis situs temporelle. On imaginera qu’un index mobile
parcourt la droite OT et indique le temps par sa position. Peu
importe la « vitesse » de I'index. Nous pourrons, & notre gré,
ralentir, accélérer ou annuler son mouvement. C’est en cela que
consiste véritablement la « relativité du temps », telle que I’en-
tendait Poincaré par exemple. Au reste, rien ne nous empéche
d’attribuer 4 I'index un « mouvement uniforme », sans que,
bien entendu, nous puissions dire ce qu’il faut comprendre par
1a. Puisque OT est I’horloge supréme, elle indique le temps sans
recours possible. Remarquons d’autre part qu’il ne serait nulle-
ment absurde de faire marcher I'index « en arriére », c’est-a-
dire de remonter le cours du temps. La transformation de
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Lorentz, en effet, est essentiellement véversible; ¢lle n’est pas
mutilée lorsqu’on y remplace z, et z , respectivement par — z,
et — 7,; cela ne fait que changer le sens de la vitesse reldtlve
de S, et S,.

Nous rencontrerons une premiére: dlﬂlCU]te quand nous vou-
drons exprimer numériquement le temps T. C'est une difficulté
analogue & celle qui a donné lieu a tant de controverses et qui
n’a pu étre résolue que par le postulat de Cantor-Dedekind: « A
tout point d’une droite on peut faire correspondre un nombre. »

. Corrélativement nous devons énoncer le postulat suivant :

A tout instant, on peut faire correspondre un nombre.

Mais ce postulat n’implique qu'une possibilité; et.il y a une
infinité de maniéres d’établir ces correspondances.

Dans la Physique classique, ou le temps est repreeente par un
parameétre unique. £, la correspondance entre les valeurs de ¢ et
les points T se fait immédiatement et sans difficulté aucune. 11
suffit de faire correspondre & 'unité de temps un certain seg-
ment choisi arbitrairement, et de l'utiliser pour subdiviser la
droite OT en intervalles égaux, qu’on numérotera avec la suite
des nombres naturéls. On imaginera enfin une correspondance
univoque et réciproque entre les valeurs que prendra le para-
métre ¢ en vertu des relations et celles de la suite donnée.

Si, par contre, nous avons une infinité de parameétres z, z,, ...
pour représenter le temps, nous devrons établir autant de cor-
respondances entre les valeurs que prennent ces paramétres en
vertu des équations et les instants exemplifiés par les points de
la droite OT. Soit «; , y; , 2, , 7, , @, , ¥, » %, , 7, UN systéme de
valeurs satisfaisant a la transformation de Lorentz. Ces valeurs
seront, par définition, « simultanées » au sens mathématique
du mot ; mais cela n’implique pas nécessairement que les ins-
tants z, et , soient « simultanés » dans le monde sensible.

Nous aurons donc deux possibilités:

a) 7.,7,,..sont des nombre% différents relatifs & un méme
instant T ; corrélativement Az, Az, , ... sont des expressions nu-
merlqueq dlﬁerenteq d'une meme duree AT,

b T, ...désignent chacun un instant différent, c’est- -2 dlr
un pomt dlfferent sur la droite OT ; corrélativement, éti , Ar, ) o
désignent chacun des durées différentes.
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Une montre nous offrre, quoique par un autre mécanisme, un
exemple vulgaire de la premiére possibilité, puisque le temps y
est indiqué par deux aiguilles & marches distinctes. Le cadran
est divisé en 60 parties; pendant wne heure, la grande aiguille
parcourt les 60 parties alors que la petite n’en parcourt que 5:
les nombres 5 et 60 sont des expressions numériques diffé-
rentes d’'une méme durée, ct nous disons que la petite aiguille
va douze fois moins vite que la grande. Avec notre horloge nous
devrons procéder autrement; la montre comporte un cadran
avec division unique et deux aiguilles; comme nous n’avons
qu'un index, nous devrons multiplier les divisions. Pour réaliser
la montre, il suffit d’attribuer & OT deux subdivisions diffé-
rentes, de maniére qu’a 60 divisions de 'une des échelles corres-
pondent exactement 5 divisions de la seconde, les traits O,
d’une part, et les traits 5 et 60, d’autre part, étant en coinci-
dence. La nature crée constamment des conditions analogues.
Ainsi, 'ensemble continu des sources lumineuses de toutes cou-

leurs, permet d’attribuer a chaque instant une infinité de nom-
~ bres distinets. |

Nous allons appliquer les considérations qui précedent a
I’étude de la transformation de Lorentz. Comme on le fait habi-
tuellement, nous nous bornerons au cas ou il n’y a que deux
systemes, S, et S,, en présence ; on les prend alors sous la forme
de trirectangles euclidiens, placés de facon que les axes O, z, et
0,%, coincident et que les plans coordonnés ¥, 0, z, et %,0,2,
restent constamment paralléles lorsque les systémes se dépla-
cent I'un par rapport & 'autre avec une vitesse v dans la direc-
tion commune Ox. Pour fixer les idées, on peut imaginer que
S, est une voie de direction Ox, sur laquelle circule un train
trés long représentant S,. La transformation de Lorentz établit
une correspondance entre les points de ces deux systémes, et
s’écrit comme suit dans le cas envisageé :

‘1'2:13(1'1‘““6071) P Ye=JY1 R =73 3 Corzzﬁ(corl_“xl) ’ (l)

oll § =1:(1 — e) est une constante lide a la vitesse v par la

relation :
VTR Gy (2)

¢, représentant la valeur numérique de la vitesse de la lumiére
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pour le vide, mesurée dans un systéme quelconque. Cette vitesse
‘est donc une constante, en ce sens que quelle que soit 'expé-
rience faite dans un méme systéme en vue de la-déterminer,
on trouvera toujours ¢, pour sa valeur. (Principe de la cons-
tance de la vitesse de la lumidre). Bien entendu, nous pouvons
prendre pour ¢, un nombre quelconque, par exemple I'unité ; on
peut aussi poser " |

km

1 .
sec-lumiere

¢, = 300000

et définir de la sorte la « seconde-lumiére », qui dlﬁerera peu
de la « seconde terrestre ». |

Une remarque importante s’impose & propos de 'application
physique du principe précédent. Du point de vue mathématique,
la notion de « systéme de référence » est parfaitement claire. Il
n’en est pas ainsi, malheureusement, pour le physicien, et
celui-ci est incapable, pour l'instant tout au moins, de dire ot
finit le systeme-voie S, et oll commence le systéme-train S,
Lorsqu’une mouche pénétre dans un wagon par une fenétre,
a partir de quel moment peut on dire que P'insecte fait partie
du convoi ? -

Dans l'application de la transformation de Lorentz, nous
distinguerons deux cas, selon qu’on utilise la transformation
comme transformation ponctuelle (cas intégral) ou comme trans-
formation de vitesses (cas différentiel).

1° Cas wntégral. — Dans ce mode d’emplm on énonce habi-
tuellement une phrase comme, celle-ci: « A lindication z, de
la montre de I'observateur placé en P,iz,, v,,2,) sur S,, corres-
pond T'indication z, de la montre de l’observateur placé en
P,(x,,¥,, 2,) sur S, ». Que faut-il entendre parla ? Que z, et 7,
désignent des’ instants différents, donc des points différents sur
la droite OT ? Les indications z, et z,, comptées sur la méme
échelle, ne seraient donc pas supposées simultanées. C'est 12 une
assertion toute platonique. Pour le physicien, les indications de
deux horloges n’ont de relation que si I'on dispose d’un moyen
de communication, dont on connaisse la loi de transmission ou
de propagation, et qui permette de comparer les horloges entre
elles ; mais alors z, et x, deviennent des fonctions du temps; il

Arcmives, Vol. 2. — Mars-Avril 1920. 9
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n’y a plus qu’une seule variable indépendante, et nous tombons
sur le cas différentiel examiné ci-aprés. Nous sommes donc ici
dans Parbitraire. Nous avons deux variables indépendantes, et
nous pourrons leur donner les valeurs qui nous plairont. En
particulier, on peut avoir a la fois :

%0 et i 1—L.

ou vice-versa, sans qu’il en résulte de contradiction. Selon qu’on
pose telles ou telles relations, les points se groupent différem-
ment & un méme instant pour former la configuration d’ensem-
ble des systémes, et ce groupement dépendra, en général, du
systéme sur lequel on se suppose placé pour envisager le tout.

2° Cas différentiel. — Tout autre est la question dans le se-
cond cas, lorsqu’on considére un phénoméne déterminé. Celui-ci
se déroule dans le temps, qui devient I'unique variable indé-
pendante. Afin d’analyser ce qui se passe, nous allons décrire
une expérience fictive, celle-1a méme que I'on imagine pour éta-
blir habituellement la transformation de Lorentz. Nous disons
bien « expérience fictive », et nous ne rechercherons pas le dispo-
sitif qu’il faudrait employer pour observer réellement quelque
chose. Ce « quelque chose », d’ailleurs, serait sans nul doute en
relation tres compliquée avec les phénomeénes schématiques que
nous envisageons, et qui ne doivent étre considérés que comme
des supports de la pensée. Cela dit, reprenons I'image du train,
et supposons qu’un opérateur lance de son wagon un signal
lumineux bref. D’apres la théorie, I'onde émise forme, & chaque
instant, une sphére emportée avee le train et dont le rayon ecroit
proportionnellement au temps. Que « verra » un observateur
placé le long de la voie ? La théorie veut que ce méme signal
donne naissance, pour le systéme-voie, & une onde sphérique
identique. Désignons par S, ce dernier systeme et par S, le sys-
teme-train. Soient

A == oy, (&)

I'accroissement du rayon de la sphere de S, et
Auy, = c,At, (4"

celui de la sphére conjuguée dans S,. En introduisant 1'ex-
pression de « sphéres conjuguées », nous comprenons en particu-
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lier le cas ou S, et S, « observeraient » la méme spheére, puisqu’il
1 2 p p
suffit alors d’admettre que 'une d’elles se confond avec sa con-
juguée. Les accroissements conjugués Au, et Au,, supposés tres
petits, satisfont aux relations suivantes, comme il est facile de
le vérifier : '
£ 2 2 3
Ax, + Ny, + Az, = Au, 8
2 2 2 2
Ax, + Ay, + Az, = Ou, .

Ily a compléte symétrie dans les équations; il n’y a pas par-
faite symétrie dans les phénoménes puisque nous avons imaginé
que le signal était produit dans le systéme-train, qui de-
vient le systéme-cause ; mais les équations resteraient les mémes
si nous avions supposé le foyer lumineux sur le systéme-voie;
elles sont donc indépendantes de ce que nous convenons d’ap-
peler « cause » et « effet ». |

En conclusion, rien ne s’oppose & ce que nous admettions
que les accroissements concomitants Au,, et Au, sotent rigoureuse-
ment simultanés; ils ont donc nécessairement méme durée.

C’est ce qui ressort encore du fait suivant. Les accroissements
considérés satisfont évidemment & la relation:

Auy, = f(Au, — alx)) ;

supposons pour un instant que leurs durées soient différentes,
par exemple que Au, s’accomplissent en un temps plus long que
Au,. Nous pourrons alors partager la durée de Aw, en deux
intervalles, et la longueur Aw, en deux portions Au, et Au, telles
que A, et Aw, s'accomplissent simultanément pendant la pre-
mier intervalle, alors que Aw, aurait lieu seul lors du second
intervalle. En d’autres termes, dans la formule ci-dessus, nous
devrions poser pour tout intervalle de temps compris dans le
second intervalle:

ou, = 0
Suy, =0,

ce qui exigerait que:
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car o < 1; or, ce résultat est impossible, puisque, par hypothese,
x, se meut avec la vitesse de la lumiére, c’est-a-dire, que

A,
Nous devons conclure de ce qui précede que — et ? ne peu-

vent étre que des mesures différentes d’une méme duree, ou, d’'une
fagon plus précise, d’un méme intervalle de temps AT.

Ainsi, alors que dans le cas intégral nous ne pouvions savoir
si 7, et 7, désignaient, sur la droite OT, des instants différents,
dans le cas différentiel les accroissements différents Az, et Az,
doivent nécessairement étre considérés comme des mesures diffé-
rentes d’une seule et unique durée, de méme que nous avions
considéré les nombres 5 et 60 comme des mesures différentes
de I'heure.

Avant de poursuivre, une remarque encore i propos de ce
dernier exemple. Soient £ et ¢’ les mesures d’un intervalle de
temps T parla grande et la petite aiguille d’'une montre, comptées
sur les 60 divisions du cadran. On a évidemment :

t=12¢

Appelons périodes les temps d’une révolution entiere, et dési-

gnons-les par @ et ®'. Pendant que la grande aiguille fait un

“tour complet, la petite ne fait qu'un douzieme de tour; la pé-
riode de cette derniére est donc douze fois plus grande :

M =120 .

Les équations précédentes sont exactement l'inverse 'une de -
Pautre; leurs significations physiques ne doivent pas étre con-
fondues. Dans la premiére il serait absurde de dire que £ et ¢’
représentent des mémes unités, des « minutes » par exemple;
on arriverait en effet au résultat qu'une heure vaut cinq mi-
nutes! Dans la seconde, au cohtraire, ®' et ® sont nécessaire-
ment exprimeées a 'aide de la méme unité de temps, des « heu-
res » pour fixer les idées; on dira alors que la période de la
grande aiguille est d’une heure et celle de la petite de douze
heures. Des deux relations précédentes, on tire les égalités évi-
dentes :
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O . t=0.t=..; o

elles signifient que les nombres qui mesurent une méme durée
sont en raison inverse des périodes des horloges utilisées.

La méconnaissance de cette simple remarque a conduit 4 des
résultats inacceptables, comme nous allons le constater a pro-
pos du « temps propre » de Minkowski. Pour avoir le temps
propre de S,, par exemple, Minkowski pose :

o == Ay, B g w0l
ce qui donne en vertu des relations (1) :
Ay =oan yT—=a. (6)

Remarquons qu’il est curieux, du point de vue physique, de
poser tous les accroissements Az, , Ay, et Az, égaux a zéro. Cela
présuppose qu’il n’y a aucun mouvement dans S,; comme Aw,
représente un chemin parcouru par la lumiére, on est obligé
d’imaginer que ce mouvement s’effectue dans la quatriéme
dimension. Cette particularité aide a4 comprendre pourquoi
Minkowski a voulu faire du temps la quatritme dimension
de I’espace. Mais on voit alors nettement la nécessité de bien
distinguer les particularités qui dérivent de l'algorithme em-
ployé d’avec les possibilités réalisables physiquement.

Pour mettre en évidence la signification du temps propre, on
utilise habituellement Iillustration suivante. Le systéme S,,
imagine-t-on, se meut par rapport a S, avec une vitesse voisine
de celle de la lumiere ; elle n’en différera, par exemple, que d'un
vingt-millieme ; S, poursuit son voyage pendant un an dans un
sens, puis rebrousse chemin pour revenir & son point de départ,
toujours avec la méme vitesse. Nous aurons dans ces hypothéses :

a=0,99995 ; 5 =100 ;

d’olt pour 'aller et le retour:

Dty = 2 ans
Aty 200 »

Ainsi, alors que les voyageurs emmenés dans S, auraient fait
dans les espaces interstellaires une randonnée de deux ans, en
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revenant sur la Terre ils trouveraient celle-ci vieillie de deux
siécles! On voit que ce résultat paradoxal provient de ce que
nous écrivons la méme unité « ans » apres les nombres 2 et 200,
au lieu de les considérer comme des mesures différentes d’'une
seule et méme durée.

D’olt a pu provenir cette erreur qui conduit & un résultat
manifestement en contradiction avec le principe de relativité ?
Il est vrai qu’on a essayé de répondre a cette derniére objection
en réintroduisant le systéme absolu de Newton ; S, serait le sys-
téeme lié aux étoiles fixes, et seul S, aurait un mouvement
« réel »; comme le retour en arriére de S, ne peut avoir lieu
sans accélération, et que celle-ci a un sens absolu dans la Méca-
nique, on croit avoir trouvé la 1’élément de disymétrie néces-
saire pour rendre compte de la disymétrie des durées.
~ Si I'on ne veut pas s’égarer, il faut s’en tenir strictement aux
significations physiques des grandeurs qui entrent dans la for-
mule, et, par suite, préciser 'expression « eine auf S, ruhende
Uhr, welche von S, aus beurteilt ist », que I'on trouve dans tous
les exposés allemands. Qu'est-ce qu'une « ruhende Uhr » et
qu’est-ce que la « beurteilen » ? De ce que le support d’une hor-
loge est immobile dans S,, il n’en faut pas conclure qu’il ne se
passe rien & l'intérieur et dans le voisinage de T’horloge. Sans
mouvements pas d’horloge, et ces mouvements doivent avoir
lieu conformément a la Théorie. |

Or, dans la Théorie, I'unité de temps dans chaque systéme
est définie par le fait méme qu’on donne une valeur numérique
a la vitesse de la lumiére. Tout rayon lumineux peut donc ser-
vir d’horloge. Supposons qu'un train d’ondes planes sinusoidales
de fréquence », tombe obliquement sur l'axe O,z, de S,; si
pendant D'intervalle AT, il parcourt la distance Au,, le train
d’onde conjugué dans S, parcourra la distance Au, ; en désignant
par ¢, et ¢, les angles des faisceaux avec les axes O, x, et O,x,
respectivement, nous aurons évidemment :

Ary = Qu, cos g, 3  Ax, = Au, cos g, .

1

En outre, on sait qu’entre les fréquences », et », et les angles ¢,
et @,, il y a les relations suivantes, qui expriment le phénoméne
de Doppler et 'aberration (voir le tableau, p. 136 ; dans ce ta-
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bleau I = cos ¢, et I’ = cos ¢,):

cos o, + a

1 4 «cos g, 7)

vlﬁvgﬁ(i + acos g) ; cos g =

Or, pour définir le temps propre de S,, Minkowski annule Az,,

ce qui exige que ¢, soit égal & = : 2, ¢’est-a-dire que le faisceau

tombe a angle droit sur I'axe O,x,. Le faisceau conjugué fait

alors un angle ¢, dont le cosinus est « == v : ¢,. Quant aux fré-

quences, on voit immédiatement que leur relation se simplifie

puisque cos @, est nul; en introduisant leurs inverses, ¢’est-a-
dire les périodes ®, et ®,, on peut écrire: |

6, =06, y1 —a*; : (8)

elle est bien I'inverse de (6), qui donne le temps propre, comme
il le faut; et ici, les variables de nature temporelles 6, et ®, doi-
vent étre exprimées avec la méme unité de temps, en « secondes-
lumiére » par exemple; la période @, est plus courte que la
période @,.

- Cela posé, comparons ce résultat a celui auquel parviennent
les relativistes. Voici comment ils raisonnent : supposons, disent-
ils, qu'une horloge soit entrainée avec S, ; comme horloge nous
pouvons prendre n’importe quel phénoméne périodique, une
source lumineuse par exemple ; celle-ci étant au repos dans S, ,
i faut poser Ax, égal a zéro. En ce faisant on tombe sur la for-

‘mule (6) du temps propre; puis, confondant dans celle-ci les
intervalles Az,, Az, avec des périodes, ils introduisent les fré-
quences v, et v,, et écrivent la formule:

v1:v2|/1-—a2,

manifestement éncompatible avec la relation (8), c’est-a-dire
avec U'hypothése Ax, — 0. Remarquons d’ailleurs qu’exprimée
en mots, cette formule conduit & la proposition suivante : « lors-
qu'une source lumineuse passe devant un observateur, elle lui
apparaitra plus rouge qu'une source identigue, au repos par
rapport & lui ». Or, si ’on braque une lunette perpendiculaire-
ment a la trajectoire de la source, il faut évidemment annuler
cos ¢, , c’est-d-dire Az, et non pas Az,. On vérifie facilement sur
les relations (7) que I’on parvient bien & la formule précédente,
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L’erreur, on le voit, consiste essentiellement & confondre une
formule afférente & une durée bien déterminée avec une rela-
tion entre deux périodes; puis, en outre, & considérer I’ « hor-
loge », — en I’espéce la source lumineuse, — comme un bloc
rigide, alors qu’elle ne peut agir sur S, que grice & I'agitation
de ses électrons et aux rayons qu’ils émettent,

Il est d’ailleurs aisé d’établir directement une relation entre
durées et périodes, analogue 2 la relation (I) donnée plus haut.
11 suffit d’envisager le tablean suivant :

sin 2n . lx + my + nz E =ex [V =épm
® s B == Rtn
sin?—t - _l’x’ + m’y" 4 n'z’ ' ==l | = gplar g
® & 5=y
| — U/ 4+ a | — UV 4+ a
=Txa =1{Far
-’ m’
= me= ———
Bl 4 al’) (1 4+ al’)
n’ n’
n=_-——7y = e
5+ af) "= R T al)
CY
@: s SR r — 'R 4
B+ al’) ._Tp(i—}-al)
R -4
~ M
®.t=06".7.

Dans la premiére colonne on identifie deux sinusoides, repré-
sentant un train d’ondes planes, au moyen de la transformation
de Lorentz; on trouve les trois expressions connues de 'aberra-
tion et le phénoméne de Doppler-Fizeau. Dans la seconde co-
lonne, on exprime, dans la transformation, les coordonnées en
fonction des chemins que parcourt simultanément la lumiére
par rapport & chacun des systémes. On trouve des relations
identiques deux a deux, ce qui exige que la relation soulignée
soit satisfaite. Elle est bien de la forme prévue.

Nous résumons ce qui précéde dans la proposition sulvante
~ trés importante :

Les paramétres temporels T ou t, pas plus que leurs accroisse-
ments At ou At, ne peuvent élre considérés comme des périodes.
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Ce résultat est non seulement fondamental pour la compré-
hension de la Théorie, mais il montre I'impossibilité d’accepter
- tel quel le calcul du déplacement des raies spectrales dans les
champs de gravitation, puisque ce calcul repose justement sur
le fait que les parameétres temporels sont traités comme des
périodes'. Un examen attentif s’impose d’autant plus que le
déplacement observé dans la lumiére solaire ne correspond nul-
lement a la valeur calculée?

Reprenons maintenant I'étude de la transformation de Lo-
rentz. Revenons & I'image du train, et envoyons obliquement a la
voie, C’est-a-dire & 'axe O,x, de S, des rayons lumineux paral-
léles, faisant un angle ¢, dont le cosinus soit égal & «. Envisa-
geons plus spécialement les rayons qui passent sous le train,
autrement dit entre le plancher du wagon et la voie. Comment
les observateurs placés le long de la voie vont-ils raisonner ? Ils
diront ceci: puisque le train, qui forme le systéme S,, est ani-
mé d’'une vitesse v, ces rayons doivent avoir, perpendiculaire-
ment & O,x, une vitesse relative dont la valeur est I/c: <z 4y
Si donc pendant le temps AT les rayons parcourent un chemin
. Aw, sur la voie, ces mémes rayons ne doivent parcourir par rap-
port & S, qu’un chemin Au, donné par la relation :

Du, A,

¢ l/z i
0 F
&2 ¢

Il serait naturel de conclure de cette formule que la vitesse
relative des rayons qui passent sous le train est moindre que ¢,

et égale &
3
{ € = l/cg

Les relativistes ont trouvé plus commode d’attribuer a c, la

2
—_V .

! EmsreIN, A., Die Grundlage der allgemeinen Relativititstheorie, Leip-
zig, 1916, p. 62 et Ann. d. Phys., 49, 1916.

* Bulletin de la Société Astronomique de France, décembre, 1919, p. 494.
A Toccasion d’une des derniéres séances de la « Deutsche physikalische
Gesellschaft », il a été affirmé que le déplacement en question échappait en-
core & nos instruments actuels. En outre, d’aprés une communication per-
sonnelle de M. Einstein & ’auteur, il faut compter deux ans pour que le
monde savant soit fixé d’une fagcon définitive sur cette question (février
1920).
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méme valeur numérique ¢, ; par contre, ils mesurent le temps
dans S, avec des horloges qui établissent exactement la compen-
sation, en d’autres mots qui vont plus lentement dans la pro-
portion : :
Art, €,
L. W (9)
Aty l/’“i :

On voit immédiatement pourquoi la compensation est rigou-
reuse: les temps de propagation sont mesurés par les chemins
que parcourent les rayons lumineux eux-mémes.

Ainsi, des deux formules

€, AT,

|/1—a2, .

on a jusqu’ici préféré la seconde, dans laquelle évidemment le
méme intervalle AT est exprimé par deux nombres différents
Ar, et Ar,,au lieu de I'étre par un seul et méme nombre A¢. Pour-
quoi cette préférence ? Portons notre attention sur les rayons
qui « pénétrent » dans S,, c’est-a-dire qui peuvent étre consi-
dérés comme appartenant & ce systéme ; nous avons vu plus haut
que des rayons faisant avec O,z, 'angle ¢, dont le cosinus est
e, avaient pour conjugués dans S, des rayons & angle droit avec
0,x,; de plus leur vitesse mesurée dans S, a aussi pour valeur
numérique ¢,. Dés lors, la seconde formule (10) offre un certain
avantage; elle est pour ainsi dire 4 double entrée et peut étre
déduite immédiatement de la transformation de Lorentz en
posant

et ¢ At = (10)

Ay w2l

Si, d'une facon générale, nous représentons conventionnelle-
ment le temps par plusieurs parameétres, il en résulte des con-
séquences dont la plus curieuse est certainement la célébre « con-
traction » de Lorentz. Désignons par [T] un nombre afférent &
I'instant T sur une échelle quelconque. Placons-nous sur S,,
pour préciser ; les points P, P, P!, ... seront, par convention,
envisagés simultanément lorsqu’on pose :

T =T, =%, = sw == [T] »

Soient deux points P, et P, seulement; P, et P leursconjugués
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sur S, & 'instant T; les coordonnées et les valeurs correspon-
dantes des z doivent satisfaire &4 la transformation, qu’il faut
appliquer deux fois; on a en particulier

x, = f (¥, — ac,[T])

x, = Bx, — ac,[T])

dont on tire par soustraction :

x: — .x'; = (.T: — x;} \/1 — a?

relation d’ou résultela célébre « contraction ». Quelle signification
convient-il, raisonnablement, deluidonner ? La plus simple possi-
ble. Nous n’attribuerons aucune existence a la « contraction », ni
réelle ni apparente. Lorsque nous écrirons larelation précédente
nous ne ferons qu'assigner deux nombres différents (z, — ,)
et (z, — x,) & un seul et méme segment. Nous réalisons ainsi
pour ’espace la proposition corrélative de celle que nous avons
introduite pour le temps, et nous arriverons a des conclusions
paralléles. Si, en effet, la longueur reste la méme mais que les
nombres qui 1’exprimént différent, il faut en conclure que nous
ne nous servons pas du méme instrument pour évaluer cette
longueur dans les deux cas. Supposons, pour fixer les idées, qu’il
s’agisse d’une régle de d metres de longueur. Placons-la sur S,

et pour S, elle sera mesurée par le nombre :
d, =dyT— .

Cela exige que les étalons de longueur utilisés dans les deux
cas soient liés par la relation '

AT —a=A,
de fagon qu’on ait I'égalité :
Ad, = Ad, (1)

corrélative de la relation (I) entre les périodes et les mesures
d’une méme durée. Quelle signification faut-il accorder aux A ?
Pour le voir, dérivons par rapport & ¢ la relation de Lorentz
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o— [i(u2 + ax,) ,
nous obtenons :

¢, = flcy + agy) ,

et comme la régle est immobile sur S,, sa vitesse g, est nulle;
on a done

Oy = By |/1 — Oy .
L’on voit ainsi que '

A, — G

A7 e’

autrement dit, les étalons de longueur sont proportionnels aux
vitesses de la lumiére dans chacun des systemes pour le cas par-
ticulier envisagé. Cela revient a mesurer la longueur par le temps
qu’un méme rayon lumineux mettrait & la parcourir, la vitesse
de ce rayon étant rapportée tantdt a I'un, tantot i I’autre sys-
teme. Posons :

r 1
A=1 d’ou AI:L—I-_.—————;
(—'2 1 — a?

~ nous obtenons pour les mesures de la régle:
— et d=—=d)1—a;

on retrouve bien la formule de la contraction. Il est & peine be-
soin de remarquer que I'expérience présupposée dans les affir-
mations précédentes ne peut étre que fictive. Puisqu’on annule
q,, le rayon mensurateur est perpendiculaire a z,; il chemine
ici dans la quatriéme dimension et correspond au temps propre
de Minkowski. Un peu plus loin, & propos de I’expérience de
Michelson et Morley, on verra facilement que si 1'on mesurait
la longueur d en la faisant parcourir a I’aller et au retour par
un rayon lumineux, on obtiendrait une relation analogue avec
¢, = =+ ¢,. Quant & I'impossibilité d’une vérification expéri-
mentale, il se présente une remarque semblable & celle de la
page 143.

Pour parachever la justification de notre point de vue, il nous
reste & faire voir qu’en introduisant une autre convention sur
la représentation du temps, on peut faire disparaitre complée-
tement la « contraction ». Il suffit de substituer la représenta-
tion monoparamétrique a la polyparamétrique.



REPRESENTATION ET MESURE DU TEMPS 141
A cet effet, intégrons les relations suivantes:

Au,  Au,
¢

= At ,

C

1 2

corrélatives de (4) et de (4’) ; nous obtenons :

uy =cl4+r

Uy = cot 4+ 1y .

En disposant de ¢, , ¢, et des deux constantes arbitraires r, et r,
de maniére a satisfaire a la transformation de Lorentz tout en
sauvegardant la relativité, qui exige 1’équivalence compléte des
des deux systémes, on peut mettre ces relations sous la forme:

é —1 .
Catlzét'l‘ﬁ_ap_xf:cot"' [ja—@ Xy
o f—1 ¢ p—1
\couz_cot -—;{j——xl_ﬁﬁ—t-—u P Xy
dont on tire I'équation
X, = x, + vt,

qui montre immédiatement que la « contraction » a disparu;
les deux systemes se meuvent 'un pour lautre, comme §'ils
étaient des « touts » rigides ordinaires.

Ainsi la « contraction » s’évanouit automatiquement. Ce ré-
sultat remarquable a été commenté longuement dans notre pre-
mier travail, auquel nous renvoyons.

Clest ici ’endroit de rendre hommage 4 Henri Poincaré, qui
a su entrevoir les résultats qui précedent.

Dans Science et Méthode, parlant de la « contraction » intro-
duite d’abord comme hypothése physique, Iillustre mathémati-
cien demande quelle utilité peut avoir cette hypothese si aucune
expérience ne peut permettre de la vérifier. « C'est que mon
exposition a été incomplete, explique-t-il ; je n’ai parlé que des
mesures que 1’on peut faire avec un meétre ; mais on peut mesu-
rer aussi une longueur par le temps que la lumiére met & la
parcourir, & la condition que 'on admette que la vitesse de la
lumiere est constante et indépendante de la direction. Lorentz
aurait pu rendre compte des faits en supposant que la vitesse
de la lumiére est plus grande dans la direction du mouvement
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de la Terre que dans la direction perpendiculaire. Il a préféré
~admettre que la vitesse est la méme dans ces diverses directions,
mais que les corps sont plus petits dans les unes que dans les
autres. »

Montrons comment le calcul vérifie les affirmations du grand
géometre. Nous aurons ainsi’occasion de parler de ’expérience
de Michelson et Morley, qui a joué un si grand role dans la
genese de la théorie.

Revenons pour un instant aux anciennes idées et admettons
I’existence de I'éther. L’éther immobile forme notre systéme
S, et sera solidaire du systéme-voie. Sur le train nous installe-
rons deux régles de longueur d, 'une paralléle, 'autre perpen-
diculaire & la voie, ¢’est-a-dire au mouvement. Un rayon lumi-
neux se propage dans I’éther comme un rayon sonore dans ’air.
Si ¢, est la valeur de la vitesse de propagation par rapport &
I’éther et si nous considérons, comme plus haut des rayons fai-

. . ¢ .
sant avec la voie un angle dont le cosinus est —, la vitesse rela-
[}

» . . . T 2
tive de ceux-ci par rapport au train sera I/c0 — v de sorte que
le temps de parcours de la longueur 4 aura pour valeur

d: I/C: — o' . Introduisons un faisceau symétrique du premier;
le cosinus de ’angle avec la voie sera — v : ¢,, mais la vitesse ra-
lative aura la méme valeur, et le temps de parcours sera égal au
précédent. Le temps total est donc

_2d
W S
Ve—

Considérons maintenant les rayons paralléles au train, se pro-
pageant dans un sens ou dans l'autre. Pour ceux qui vont dans
le méme sens, la vitesse relative est plus faible et égalea ¢, — v;
pour ceux qui vont en sens contraire, la vitesse relative est plus
grande et a pour valeur ¢, + v. La somme des durées des
parcours est donc :

At

d d 2d¢
+ =5

Cg — ¥ ¢+ v c,— v

elle est différente du temps qu’emploient les rayons transver-
saux & parcourir la regle perpendiculaire au mouvement. Pour
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établir I'égalité, Lorentz et Fitzgerald ont supposé que la régle
paralléle au mouvement subissait, du fait de celui-ci, une con-
traction qui lui donnait la longueur d \/'1 — 42 . Si, en effet,
on substitue a d cette valeur moindre dans I’expression ci-des-
sus, on trouve bien 1’égalité des temps. Or, au lieu de réduire
les numérateurs d, Lorentz aurait pu augmenter les dénomina-
teurs, et admettre que les vitesses dans le sens du mouvement
sont plus grandes, conformément & la remarque de Poincaré. Il
suffit, en effet, de leur attribuer les valeurs 8 (¢, — v) et 8(c, + v)
pour retrouver 1'égalité des durdées.

Voyons comment on peut déduire ces vitesses de la transfor-
mation de Lorentz. Si nous appelons respectivement g,.,¢,. ¢,
les dérivées par rapport a ¢ des coordonnées x,, u,, u, la der-
niére des relations (1) donne: |

g = Ple; — agiq) -

Or, dans S,, nous avons pour les rayons lumineux paralléles &

laxe O,z,
‘ G == 0, == T8

d’ou1 en substituant dans la relation précédente:
(02)+x =Bleg — )i (egl_p = Bleg + v) -

Ce sont justement les valeurs prévues, et 'on a bien

d 1 1 2d
Atlx_g<co—v+co+u)—l—/——:-—zn’

c, — ¢
0

¢’ est-a-dire :
Aty = Atly .

Empressons-nous de remarquer d’ailleurs qu’on ne voit nulle-
ment la possibilité de vérifier cette relation expérimentalement
et de déterminer les durées A%, et Af, " 11 faudrait, en effet, que
les régles d du systéme-train fussent parcourues par des rayons
qui #’appartiennent pas au systéme. Si ’on réalise 'expérience,
comme c’est le cas dans les célebres recherches de Michelson et
Morley, les rayons appartiennent nécessairement au systéme qui
porte les appareils, en 1’espéce la Terre; dans ce cas, la vitesse
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des rayons est ¢, pour toutes les directions, et les durées sont

Aty = Oty = 2?(: -
elles sont nécessairement différentes des précédentes. Nous nous
heurtons ici 4 la difficulté signalée au début et qui provient de
ce que nous ignorons I'envergure du systéme physique de
référence.

Pour résumer les résultats de la présente étude, nous dirons
qu’on peut employer indifféremment la représentation monopara-
métrique en polyparamétrique du temps ; elles sont équivalen-
tes et conduisent aux mémes interprétations des formules. On
utilisera de préférence les équations aux accroissements Ax,
Ay, Az, A ceux-ci sont alors « simultanés », au sens mathé-
‘matique et au sens concret. Dés lors, chacun fonctionne comme
une horloge et donne une mesure du temps; & nous de choisir
la plus commode.

La question du temps se trouve ainsi completement éclaircie.
Une des plus importantes & traiter maintenant est, sans contre-
dit, la question des « vraies » vitesses des systémes. Si trois sys-
temes S,, S,, S, sont animés de translations relatives uniformes
et paralléles, leurs vitesses, d’apres la Mécanique classique, satis-
font & la relation:

V13 = V5 -+ ¥ :

D’apres la Théorie de la relativité, par contre, les vitesses doi-
vent remplir la condition :

o s Vig T Vos
13 — )
14 vyp v

ce que nous avons exprimé en disant qu’il y avait mouvement
avec aberration. Cette aberration provient de ce que les vitesses
Uy, Usas Vpy NE€ se composent pas suivant une figure fermeée,
comme c’est le cas dans toutes les cinématiques, euclidiennes ou
non-euclidiennes. Si donc on veut trouver les vitesses « vraies »,
il faut chercher des fonctions Q,,, Q,,, Q,; des vitesses v, qui
donnent une figure fermée, c’est-a-dire s’additionnent linéaire-
ment. Enun mot, les vitesses vraies doivent satisfaire a I'équation
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fonctionnelle suivante :
Qg (vig) = Qg (vig) + Qgy (95) -

Or il est trés remarquable que 1’Analyse réponde immédiate-
ment a cette question, et d’une facon qui exclut tout arbitraire:
il suffit, en effet, de prendre pour Q les arguments dont les tan-
gentes hyperboliques sont justement les v. Ce n’est certes pas
par hasard qu’une telle solution s’offre & nous, et nous ne de-
vons pas la rejeter sans Pavoir consciencieusement examinée. 11
en résulterait que les trajectoires vraies des points matériels
seralent des géodésiques de surfaces & courbure constante né-
gative. ‘ |

La conséquence la plus curieuse concerne la vitesse « vraie »
de la lumiere. Celle-ci s’obtient en posant : '

v—=1, d’ou Q— o .

Cette solution fait bien apparaitre le caractére limife de la
vitesse lumineuse, caractére qui se rencontre & chaque pas dans
la Théorie. Or, qui dit limite dit tendance. On sait que dans la
théorie restreinte, 'énergie rayonnante n’est pas parfaitement
identique a la matiére; la masse d'un corps augmente avec la
vitesse et deviendrait infinie si ce corps pouvait atteindre la
vitesse de la lumiére ; celle-ci constituerait donc une limite inac-
cessible & la substance. Or, tout tend 4 nous prouver que I’éner-
gie jouit des mémes propriétés physiques que les corps. Si nous
posons d'une facon générale le principe de U'équivalence physi-
que de U'énergie et de la matiere, nous serons conduits & une image
comme celle-ci: un rayon s’élance d’une source lumineuse ; son
énergie aurait la tendance & cheminer aussi vite que possible ;
mais, par le fait méme de son mouvement, elle se « matérialise-
rait », ce qui I'obligerait & ralentir son élan et & acquérir une
vitesse de régime légérement inférieure a la limite ¢, ; la vitesse
«vraie » Q, neserait plus infinie. Avec cette image le principe de
la constance de la vitesse de la lumiere, si mystérieux, rece-
vrait une ébauche d’explication. Ce régime se présente comme
un continu pour la Théorie; si I'on suit les tendances modernes,
on sera conduit & croire qu'en réalité, il est formé d’un nombre
énorme de processus élémentaires. Peut-étre y aurait-il 13 un

ARrcHIVES, Vol. 2. — Mars-Avril 1920. 10
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germe qui permettrait de pénétrer le mécanisme encore inconnu
des quanta d’énergie. A I'avenir de répondre.

RecriFicaTiON.

Dans notre premier travail (Archives (4). 46, 1918, pp. 281 et
suivantes), il s’est glissé quelques erreurs dont voici la rectifi-
cation :

Page 300, 1™ formule (1), remplacer les indices 1 par les in-
dices 2 dans le second membre.

Page 303, 9™ ligne, lire: lentement au lieu de vite.

A
Page 304, formule (4), mettre le signe — devant z;-z ;

’ .
Dans les figures et les formules qui s’y rapportent, la vitesse

de la lumiére doit étre multipliée par I'unité imaginaire .
Page 322, il faut mettre le signe — devant Q,, dans la der-
niere relation. |

BULLETIN SCIENTIFIQUE

Louis Roveier. — La matérialisation de l'énergie, Gauthier-
Villars, Paris.

L’ouvrage que vient de publier M. Rougier, professeur agrégé
de philosophie, sur la matérialisation de ’énergie est de nature
a4 intéresser non seulement les philosophes, mais tous ceux par-
mi les physiciens qu’intéresse la haute portée philosophique
des récentes découvertes de la physique. Ils y trouveront d’abord
un résumé tres clair des résultats les plus importants que les
nouvelles conceptions, grace au principe de relativité et a
la théorie des quanta, ont introduits dans la physique moderne;
et cela sous une forme bien faite pour en faire ressortir I'impor-
tance philosophique.

« Il arrive souvent, nous dit I’auteur de cet ouvrage, dans sa
préface, que les problemes métaphysiques réputés insolubles,
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