Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 1 (1919)

Artikel: Un dialomètre

Autor: Piccard, A. / Backhauss, K.

DOI: https://doi.org/10.5169/seals-742169

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

cent, tandis que l'observation faite au cours m'a donné 2,5 pour cent chez un tube de verre.

Le phénomène décrit peut occasionner des erreurs dans certains appareils de mesure qui sont étalonnés statiquement et employés balistiquement, s'ils sont munis d'un ressort à flexion ou d'une corde tendue.

A. Piccard et K. Backhauss. — Un Dilatomètre.

Pour une détermination exacte de l'équivalent mécanique de la chaleur les auteurs emploient un thermomètre à gaz de grande sensibilité $\left(\frac{1}{300\,000}\,^{\circ}\mathrm{C}\right)$. Le coefficient de dilatation du récipient (quartz fondu) a dû être déterminé avec précision. Les auteurs ont construit dans ce but un dilatomètre qui amplifie 36,000 fois la dilatation du tube de quartz. Cette amplification est obtenue d'abord par un grossissement mécanique et ensuite par un miroir tournant. Les mesures ont montré que la dilatation du tube de quartz, qui a une longueur de 12 cm, peut être déterminée au $\frac{1}{100\,000}\,\mathrm{mm}\,\mathrm{près}$, c'est-à-dire que les déplacements du zéro de l'appareil (qui sont la principale cause d'erreurs) n'arrivent que rarement à dépasser la limite indiquée.

Le coefficient de dilatation d'un tube de quartz de Heraeus a été déterminée entre les températures de 17 et 26° C. On a trouvé la valeur $\beta = 0.390 \cdot 10^{-6}$, tandis qu'il résulte des mesures de Chappuis et Scheel, pour le même intervalle de température, $\beta = 0.410 \cdot 10^{-6}$, et des mesures de Scheel et Heuse $\beta = 0.435 \cdot 10^{-6}$.

Les auteurs espèrent donner plus tard une description plus complète du dilatomètre dans les *Archives*.

Le présent travail a été exécuté dans le Laboratoire de Physique de l'Ecole polytechnique de Zurich.

J. Brentano (Zurich). — Sur un dispositif pour l'analyse spectrographique de la structure des substances à l'état de particules désordonnées par les rayons Röntgen.

La méthode Debye pour l'examen des spectrogrammes de particules désordonnées a donné de grands résultats, exécutée dans la forme indiquée par Debye et Scherrer. En cherchant à évaluer les intensités relatives des faisceaux de rayons dispersés dans différentes directions, on rencontre cependant quelques difficultés, notamment à cause de l'absorption inégale des différentes parties d'un faisceau. Seeman a exposé cela dans une publication récente ¹. La difficulté

¹ H. SEEMANN, Ann. d. Phys. 59, p. 455-464, 1919.