Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 46 (1918)

Artikel: Sur l'expression de la théorie de la relativité en fonction du temps

universel

Autor: Guillaume, Edouard

DOI: https://doi.org/10.5169/seals-743135

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Les quotients sont donc constants jusqu'à $3^{\circ}/_{00}$, et la constance se fait sentir jusqu'à la limite des erreurs d'observation.

Les courbes de la tension de vapeur des corps étudiés sont reproduites par la formule de Rankine.

$$\log p = a - \frac{b}{T}$$

jusqu'à $1^{0}/_{0}$ près; a et b sont des constantes, dont on trouvera les valeurs dans le mémoire de l'auteur.

Edouard Guillaume (Berne). — Sur l'expression de la Théorie de la Relativité en fonction du temps universel 1.

L'auteur part de la transformation de Lorentz sous la forme habituelle entre deux systèmes S_1 et S_2 :

(I)
$$\begin{cases} x_1 = \beta (x_2 + \alpha u_2) \; ; \; u_1 = \beta (u_2 + \alpha x_2) \; ; \; y_1 = y_2 \; ; \; z_1 = z_2 \\ \beta = \frac{1}{\sqrt{1 - \alpha^2}} \qquad \qquad \alpha = \text{constante} \end{cases}$$

Pour simplifier, on ne s'occupera pas des axes y et z. Les quantités u mesurent les chemins parcourus par la lumière dans chacun des systèmes (chemins optiques). C'est à eux qu'on rapporte les « vitesses » dans chaque système. Ils en sont les « horloges-mères ».

A. Tous les points sont au repos relatif dans leurs systèmes respectifs. — Si les systèmes étaient purement mécaniques et animés d'une translation relative uniforme de vitesse v, on passerait de l'un à l'autre au moyen de la transformation dite galiléenne :

$$x_1 = x_2 + vt .$$

Supposons que nous nous placions sur S_1 et que tous les points de S_2 soient au repos relatif. Alors de

$$\Delta x_1 = \Delta x_2 + v \Delta t$$

on tire évidemment:

$$\Delta x_2 = 0 : \quad \frac{\Delta x_1}{\Delta t} = q_{1x} = v .$$

Voyons ce que donnent les équations (I) dans l'hypothèse où Δx_2 est nul. Entre les accroissements concomitants Δu_1 et Δu_2 des chemins optiques, on obtient la relation :

¹ Voir Arch. 1917, vol. 43.

$$\Delta u_1 = \frac{\Delta u_2}{\sqrt{1 - \alpha^2}}$$

qui nous montre que Δu_1 est plus grand que Δu_2 . Vis-à-vis de ce fait, on peut avoir deux attitudes simples, également remarquables :

1° On admet que la vitesse de la lumière c_2 dans S_2 pour l'observateur lié à S_1 est inférieure à la vitesse c_0 que cet observateur mesure dans son système, et cela, suivant la relation :

$$c_2 = c_0 \sqrt{1 - \alpha^2} \ .$$

 2° On admet que la vitesse de la lumière dans S_2 est mesurée, pour S_1 , par le même nombre c_0 , mais que les horloges de S_2 vont plus vite que celle de S_1 dans la proportion :

$$\frac{\Delta \tau_1}{\Delta \tau_2} = \frac{1}{\sqrt{1-\alpha^2}} \ ,$$

 au_1 et au_2 étant les « temps » afférents à chacun des systèmes (temps locaux).

Comme la forme symétrique de la transformation de Lorentz permet de faire des constatations et des hypothèses identiques en se plaçant sur S_2 , nous pouvons dire qu'elle est compatible avec les deux points de vue simples suivants :

1° Dans le vide, la vitesse d'un rayon lumineux mesurée dans le système auquel appartient le rayon et par un observateur au repos dans ce système, est une constante universelle c_0 . (Principe de la constance relative de la vitesse de la lumière).

 2° On accorde à la vitesse de la lumière dans le vide non seulement la valeur constante c_0 pour les rayons qui sont dans le système portant l'observateur, mais aussi pour les rayons qui se trouvent dans d'autres systèmes, quels que soient les mouvements de ceux-ci par rapport au premier. (Principe de la constance absolue de la vitesse de la lumière).

Au lieu de poser avec Einstein, et conformément à ce dernier principe, u_1 et u_2 égal à $c_0 \tau_1$ et $c_0 \tau_2$ respectivement, nous poserons :

$$u_1 = c_1 t + r$$
; $u_2 = c_2 t - r$

où t, le temps universel, et r, variable spatiale fonction de x_1 ou x_2 , sont les nouvelles variables; c_1 et c_2 sont deux quantités indépendantes de t. En substituant dans la seconde équation (I), nous obtenons

$$r = \frac{\beta c_2 - c_1}{\beta + 1} t + \frac{\alpha \beta}{\beta + 1} x_2.$$

Supposons d'abord que nous sommes sur S_1 , et disposons de c_1 et c_2 de façon que (1) soit satisfaite; on aura:

$$c'_{1} = c_{0} = \beta c'_{2}$$
; $r_{2}(x_{2}) = \frac{\alpha \beta}{\beta + 1} x_{2} = \frac{\beta - 1}{\alpha \beta} x_{2}$

où x_2 ne dépend pas de t par hypothèse. En faisant les mêmes raisonnements en se plaçant sur S_2 , on arrive finalement au système remarquable suivant, à deux variables indépendantes :

$$\begin{pmatrix} x_1 &= \beta(x_2 + \alpha c_0 \tau_2) ; & c_0 \tau_1 &= \beta(c_0 \tau_2 + \alpha x_2) \\ c_0 \tau_1 &= \frac{c_0}{\beta} t + \frac{\beta - 1}{\alpha \beta} x_1 & c_0 \tau_2 &= \frac{c_0}{\beta} t - \frac{\beta - 1}{\alpha \beta} x_2 \end{pmatrix}$$

qui résoud le problème. On en tire :

$$x_1 = x_2 + vt$$
 où $v = \alpha c_0$

autrement dit, les deux systèmes, lorsque tous leurs points sont au repos relatif dans chacun d'eux, se meuvent comme des touts rigides ordinaires. Les équations nouvelles permettent d'exprimer le temps local en fonction du temps universel, et vice versa. Les deux points de vue sont « également justifiés » et physiquement indiscernables.

B. Les points sont en mouvement dans leurs systèmes respectifs. — Appelons q_{1x} , q_{1y} , q_{1z} , c_1 ; q_{2x} , q_{2y} , q_{2z} , c_2 les dérivées des variables par rapport à t. Ces dérivées seront elles-mêmes, dans le cas général, des fonctions de t. Nous obtiendrons le système :

$$\left\{ \begin{array}{c} q_{1x} = \beta (q_{2x} + \alpha c_2) \; ; \; c_1 = \beta (c_2 + \alpha q_{2x}) \; ; \; q_{1y} = q_{2y} \; ; \\ q_{1z} = q_{2z} \; , \end{array} \right.$$

qui donne ce que nous avons appelé la règle de composition des vitesses extérieures.

Pour avoir la règle de composition des vitesses intérieures, homologue de la célèbre règle d'Einstein, nous traiterons les vitesses comme des quantités homogènes, en prenant la vitesse de la lumière comme vitesse étalon (horloge-mère). Cette nouvelle homographie (homographie cinématique) donne alors le système:

(III)
$$\begin{cases} \frac{Q_{1x}}{c_0} = \frac{Q_{2x} + \nu}{c_0 + \alpha Q_{2x}}; & \frac{Q_{1y}}{c_0} = \frac{Q_{2y}}{\beta (c_0 + \alpha Q_{2x})}; \\ \frac{Q_{1z}}{c_0} = \frac{Q_{2z}}{\beta (c_0 + \alpha Q_{2x})}. \end{cases}$$

A un point en mouvement dans S_4 avec la vitesse Q_4 correspond un conjugué en mouvement dans S_2 avec la vitesse Q_2 ; la correspondance est univoque et réciproque. Les vitesses Q appartiennent à un groupe, auquel nous donnerons le nom de groupe einsténien. Pour le mettre en évidence, on écrira, par exemple, dans le cas simple de 3 systèmes S_4 , S_2 , S_3 , où les vitesses Q_y et Q_z seraient nulles:

$$Q_{13} = \frac{Q_{32} + Q_{21}}{1 + Q_{32} Q_{21}}, \quad (Q_{ij} = Q_{ji}).$$

Ces mouvements sont représentables d'une infinité de manières par des mouvements galiléens. On posera par exemple :

$$x_1 = x_2 + Q_{12} t : x_{3\cdot 1} = x_1 + Q_{13} t : x_2 = x_{3\cdot 2} + Q_{23} t$$

le système S_3 donnant un conjugué $S_{3,\,1}$ pour S_1 et un conjugué $S_{3,\,2}$ pour S_2 .

Pour en avoir la signification physique, il suffit de se souvenir que lorsque S_3 est formé de rayons lumineux, les formules (III) expriment une aberration. Or, dans la Théorie de la Relativité, il n'y a plus de distinction entre matière et énergie; il en résulte que S_1 et S_2 sont de même qualité que S_3 . Nous pouvons donc dire que nous avons affaire à une aberration généralisée; elle a pour effet que la position relative de trois systèmes dépend de celui sur lequel on se place, qu'il soit « matériel » ou « lumineux ». (Relativité de la localisation).

Quant aux détails, nous renvoyons au mémoire qui paraîtra prochainement dans les Archives.

G. ZICKENDRAHT (Bâle). — a) Sur un nouvel ondemètre.

L'auteur a construit pour la maison Klingelfuss et C^{ie}, à Bâle, un ondemètre qui peut avoir un grand nombre d'applications et qui, de ce fait, peut se recommander, en dehors de la radiotélégraphie, pour l'étude et l'enseignement. Il permet de déterminer des longueurs d'onde comprises entre $\lambda=250~\mathrm{m}$ et $\lambda=2500~\mathrm{m}$, en deux échelons. Une construction particulière (brevetée) éloigne les influences perturbatrices, telles que les oscillations parasites des extrémités des bobines, etc., lorsqu'il y a changement d'onde. On peut exécuter avec cet appareil et les instruments auxiliaires: lampe à incandescence, tube à vide, instrument à fil chauffé, détecteur, Summer et téléphone, toutes les mesures que l'on rencontre en radiotélégraphie, à savoir:

- a) Mesure des ondes au transmetteur et au récepteur;
- b) Prise de courbe de résonnance: mesures d'amortissement et d'accouplement.