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1918 . Vol. 46 . : Décemhre_

LA THEORIE DE LA BELAT_IVITE'

EN FONCTION DU

TEMPS UNIVERSEL

PAR

Edouard GUILLAUME

(Avec & fig.)

InTrODUCTION.

Nous avons exposé ici méme' les raisons qui permettent de
croire &4 la possibilité d’exprimer la Théorie de la relativité en
fonction du temps universel, ¢'est-a-dire d’'un parametre pouvant
représenter le temps, et indépendant du systeme de référence
anquel on rapporte les mouvements. Nous avons en outre indiqué
dans quel sens il convenait d’en chercher Ja solution analytique.

Nous nous proposons aujourd’hui de reprendre la question avec
plus de détails, et de faire un exposé qui ne laisse aucun doute
sur la possibilité du probleme.

Caractérisons d’abord en quelques mots le point de vue qui
nous a guidé dans ces recherches.

Depuis Huyghens jusqu’a Lorentz, en passant par Fresnel et
Maxwell, la théorie des phénoménes lumineux et. ensuite, des
phénoménes électromagnétiques, reposait sur le dualisme éther-
matiére, chacun de ces éléments ayant son existence propre, in-

! GemLavMe, Ed. Les Bases de la Physique moderne, Arch. 1917, vol.
43, p. 5, 89, 185 ; Sur la possibilité d’exprimer la Théorie de la relativité
en fonetion du temps universel, Ibid., vol. 44, p. 48.
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dépendante de I'autre; 1a matiere pouvait agiter 1’éther et y pro-
duire les ondes électromagnétiques & la maniére des cailloux
qui, jetés dans l'eaun, produisent des rides a la surface.

Cette théorie ne peut étre acceptable que s'il est possible de
mettre en évidence les mouvements de la matiére par rapport a
I’éther. Orl’expérience, maintes fois interrogée, a toujours répon-
du négativement: on ne peut constater que les mouvements de la
matiére par rapport a la matiere, fait que I’on exprime en disant
que le principe de la relativité des mouvements ne s’applique
qu’'a la matiere seule. Dés lors, une conclusion s'impose : il faut
rejeter le dualisme éther-matiére. Le plus simple, semble-t-il,
serait de revenir & la théorie de 1'émission, qui satisfait & cette
relativité. C'est ce qu’a tenté Walther Ritz. Faisant remarquer
que de I'équation des ondes de d’Alembert — base de la théorie
ondulatoire — on peut tirer un peu tout ce que I'on veut, Ritz
proposa de I'abandonner et de partir directement de certaines
intégrales de cette équation : les potentiels retardés, qui con-
tiennent les seuls résultats tangibles de la théorie. Si remar-
quable que soit la tentative, les résultats obtenus n’en présen-
tent pas moins un vice essentiel : Ritz ne peut expliquer d’une
facon simple la célebre expérience de Fizeau sur ’entrainement
partiel des ondes lumineuses par les milieux en mouvement.

Il faut donc trouver autre chose.

Pour le mathématicien, la notion de relativité est équivalente
a la notion de groupe. C’est pourquoi la relativité des mouve-
ments n’est nullement ’apanage exclusif de la cinématique clas-
sique, qui repose sur un groupe particulier : le groupe euclidien,
avec lequel Ritz voulait batir 1’électrodynamique. Il appartenait
a P'illustre physicien hollandais, H.-A. Lorentz, de découvrir un
nouveau groupe permettant de prévoir et de calculer les expé-
riences fondamentales de I’électrooptique des corps en mouve-
ment. La particularité de ce groupe consiste en ce que les trans-
formations portent non seulement sur les coordonnées, mais en-
core sur la variable qui représente le temps. On en a conclu
qu’a coté du temps universel, il devait exister des temps locaux
ou référenciels, seuls déterminables physiquement, et empéchant
de mettre en évidence le mouvement absolu de la matiére, c’est-
a-dire le mouvement par rapport & I’éther. Et 'on continua &
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raisonner comme si le dualisme éther-matiére existait, bien qu'il
échappat a toute expérience.

Ce fut Albert Einstein qui montra toute I'inconséquence de
cette attitude : il est tres choquant, remarqua-t-il, de considérer
un systeme de référence comme privilégié — comme symbolisant
T'éther — alors qu'il ne se distingue en rien de tout autre
systéme. Semblablement, il est vain de vouloir conserver la dis-
tinction entre « temps universel» et «temps local », du moment
qu’il sera toujours impossible de dire si I'indication d’une hor-
loge est universelle ou locale ; on parlera du « temps », tout court,
grandeur 4 détermination multiple. Puis, dégageant de la théorie
de Lorentz un postulat simple, le principe de la constance absolue
de la vitesse de la lumiére, Kinstein parvint a établir directe-
ment les transformations du groupe de Lorentz. Enfin débar-
rassée du dualisme fantome, la théorie prend une ampleur inat-
tendue. Matiére et énergie deviennent de méme nature et peu-
vent se fondre I'une dans 'autre. Les deux principes conserva-
tifs fondamentaux de la Mécanique classique : conservation de
Pénergie et conservation de la masse, n’en forment plus qu'un
seul. La synthese est imposante.

Mais, ainsi comprise, la théorie devient purement phénoméno-
logique; elle permet le calcul des phénomeénes; elle n’en fournit
aucune image. Bien plus : par la suppression du temps univer-
sel, suppression considérée comme essentielle, la possibilité méme
de créer une image des phénoménes est mise en question. C'est
14 une conséquence d'une portée incalculable pour le développe-
ment futur de la science; aussi convient-il de 1'examiner
avec soin.

“Au lieu de chercher, comme Ritz, & modifier la théorie pour
Padapter & une image simple, nous pensons que I'ampleur méme
du probléme exige qu’on I'attaque dans son essence : st le femps
universel est vraiment une forme a priori de notre entendement,
il doit étre possible de le faire apparaitre dans Uexpression méme
des transformations dw groupe de Lorentz.

En définitive, il s’agirait d’un changement de variables.

Jusqu’a présent, on pouvait distinguer, grosso modo, .deux
sortes de changements de variables : les changements purement
mathématiques et les changements physiques. Les premiers ont
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pour seul but de faciliter des calculs ou des raisonnements. C’est
ainsi, par exemple, qu’on étudie avantageusement les relations
de la géométrie hyperbolique & I'aide des quantités imagi-
naires. Aux seconds, s’attache toujours une signification con-
créte @ étant donné, par exemple, le mouvement d’un projectile
par rapport a la Terre, trouver son mouvement relativement au
systéme absolument fixe de Newton. C’est un probleme semblable
que ’on résoud, lorsqu’on applique la transformation de Lorentz.
Exemple : si des ondes lumineuses sont entrainées par un milieu
réfringent, comment ces ondes agiront-elies sur un observateur
ne participant pas au mouvement du milieu?

A ces deux sortes de changements de variables, nous en ajou-
terions un troisiéme, qu’on pourrait appeler psychologique.

Il aurait essentiellement pour but de nous faire voir les phéno-
meénes d’un autre « point de vue», sans que l'on pit dire que ce
« point de vue» conduise, quant aux grandeurs directement ob-
servées, a des résultats différents de ceux que donne le premier.

C’est & un changement de variables de cette espece qu’est
consacrée la présente étude.

Une comparaison, lointaine il est vrai, permettra de préciser
un peu notre pensée. On sait qu'en projetant tous les points
d’une sphére sur un plan & partir de son centre, on obtient une
carte de la surface, sur laquelle on peut étudier toute la géomné-
trie sphérique. On réalise ainsi dans le plan euclidien une repré-
sentation également justifiée de toute la métrique de la sphere,
représentation que 'on substitue a la surface qui lui a donné
naissance. De méme, nous tenterons de «projeter» dans un sys-
teme de variables comprenant le temps universel, les variables
ordinairement utilisées pour exprimer le temps dans la Théorie
de la relativité.

- Ce m’est un plaisir, avant d’aborder notre sujet, de témoigner
ici ma reconnaissance a M. Gustave Juvet, licencié és sciences
mathématiques, qui a bien voulu travailler avec moi ces difficiles
questions et m’a suggéré maintes idées heureuses.
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§ 1. Le TEMPS, LES GROUPES GEOMETRIQUES ET LES CINEMATIQUES.

On peut distinguer dans la notion de temps deux éléments
essentiels : un élément rationnel et un élément sensible. \
~ 1° L’élément rationnel est d’ordre purement mathématique.
Il est contenu tout entier dans la notion fondamentale de « fonc-
tion » ; car, comme le fait remarquer M. Hadamard', le mot « fonc-
tion » ne fait que traduire ceux de « variations simultanées». Les
étres mathémati_ques é(]igne », «surface», «variété» ou « mul-
tiplicité » ne sont eux-mémes, du point de vue devl’Analy)se, que
des synonymes de « variations simultanées». On énonce une
idée analogue lorsqu’on dit que les valeurs prises par les variables
d’un systéme de relations sont «simultanées», ou encore que les
points de plusieurs « multiplicités» sont exprimés en fonction
d'un parametre indépendant. Ce parametre symbolise le temps
universel, concept mathématique. |

Si nous imaginons qu’unc multiplicité se déplace par rapport
4 d’autres multiplicités ou encore qu’elle se déforme, il est com-
mode d’exprimer ces variations en fonction d’'un parameétre
unique, auquel nous pourrons toujours conférer le role de temps.
Les « vitesses » sont, par définition, les dérivées des variables par
rapport A ce paramétre. On peut imaginer, sans mutiler les re-
lations, que celui-ci varie aussi « lentement » qu’on veut, de sorte
qu’on pourra « prendre conscience», & chaque instant, de la con-
figuration entiére de la multiplicité envisagée. Nous acquérons
ainsi la notion de « représentation simultanée ».

On voit donc que le temps, élément rationnel, qui sert & ex-
primer les vitesses, n'en a point par lui-méme. On ne saurait
parler de la «vitesse d’écoulement du temps». C’est ce qu'on
énonce d’une autre facon en disant que le temps est relatif.

2° L’élément sensible a sa source dans le rythme, qui est une
des manifestations les plus profondes de I’étre humain. Il est trés
remarquable qu’un instrumentiste exercé, par exemple, arrive
a reproduire ¢ la fois des rythmes trés divers. Nous en tirons
la perception de la simultanéité sensible. L’homme a son corps

! I Enseignement Mathématique, 1912.
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comme premier instrument de mesure. Il le compléte ct le pro-
longe, pour ainsi dire, en construisant des instruments indépen-
dants, qui reproduisent d’abord les rythmes familiers, puis, de
proche en proche, des rythmes plus éloignés, qui vont lui per-
mettre la mesure physique du temps, c’est-a-dire la comparaison
des rythmes du monde qui I’entoure.

Cette mesure comportera la détermination de la « simultanéité
expérimentale», et cette détermination est extrémement com-
plexe. Elle se confond avec I’élaboration d’une cinématique ; c’est
dire qu’il est impossible de la définir en partant d’une expérience
simple, si bien imaginée soit-elle.

En effet, pour établir une cinématique, il faut posséder un
groupe géométrique ou groupe de déplacements, et la genese d’un
tel groupe échappe a I’analyse. Selon Poincaré, le concept géné-
ral de groupe préexiste dans notre esprit, au moins en puissance;
1] s’impose & nous, non comme forme de notre sensibilité, mais
comme forme de notre entendement.

Parmi les innombrables groupes de déplacements aujourd’hui
connus, il en est trois particulierement remarquables. Ce sont:
le groupe euclidien ou parabolique, le groupe hyperbolique et le
groupe elliptique.

I’étude analytique de ces groupes a donné naissance & un
algorithme d’une grande utilité, et qui devait prendre une place
importante, dans la géométrie analytique moderne, pour Iex-
pression de la métrique spatiale: ce sont les quantités homogénes.
Gaston Darboux, dans ses Principes de Géométrie Analytique,
aprés avoir indiqué le rdle primordial joué par les nombres
négatifs et les nombres imaginaires, releve ainsi I'importance
de cet algorithme: «...Mais il y a une autre convention, écrit-il,
ou plutdét un artifice tout a fait moderne, dont la portée et I'uti-
lité ne sont pas aussi bien appréciées, je veux parler de I'emploi
des quantités homogénes. Je suis loin de le mettre sur le méme
rang que l'emploi des nombres négatifs ou imaginaires; mais,
il se justifie par les mémes raisons et tend, comrae les conven-
tions précédentes, & donner plus de précision et de généralité a
I'instrument analytique. » 7

Vu la grande importance des quantités homogénes pour
notre objet, nous allons préciser un peu I'emploi des coor-
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données homogénes en examinant briévement un cas particu-
lier.

Considérons par exemple la correspondance homographique
entre deux plans II et II” (qui peuvent étre superposés). Comme
on sait, les coordonnées (X', Y') du point P’ correspondant du
point P(X, Y), s’expriment par les quotients de fonctions liné-
aires en X,Y, ayant tous deux la méme fonction au dénomina-
teur, — et vice-versa. Introduire les variables homogénes revient
A faire correspondre aux points P et P’ les points p (¢, ¢y, o)
et p' (o', cy’, ctt') — ol ¢ est un facteur de proportionnalité arbi-
traire — de deux espaces O (z, y, u) et O'(z', ¥', u’) & trois di-
mensions; les deux quotients sont remplacés par trois fonctions
entieres, et 4 'homographie primitive 4 deux dimensions se sub-
stitue ume homographie & trois dimensions, qui conserve les
éléments de linfini (Affinité). En général, on raisonnera plus
aisément sur cette derniére, d’ou la justification de son introduc-
tion. Pour obtenir les figures planes correspondantes cherchées,
il suffit, aprés tout calcul fait, de couper chacun des espaces &
trois dimensions par les plans II et II’ perpendiculairement aux
axes u et #’, ala distance 1 des origines O et O’. On voit donc
qu’utiliser les coordonnées homogenes revient a projeter les
plans 11 et II" & partir de O et O’ respectivement, c’est-a-dire a
substituer & la correspondance ponctuelle deux faisceaux projec-
tifs. Les coordonnées homogénes d'un point P d'un espace &
n dimensions, sont alors les coordonnées ordinaires d’un point
d’un espabe auxiliaire & » 4 1 dimensions, situé sur le rayon qui
projette le point P & partir de Porigine des coordonnées.

De ce qui préceéde, retenons bien ceci, qui nous sera treés utile
plus tard : « et «’ sont essentiellement des variables; mais I’ho-
mographie cherchée s’obtient en leur attribuant, & I'une comme
a lautre, la valeur particuliére 1 dans les formules finales.

Une fois en possession des expressions analytiques des grou-
pes de déplacements, il s’agit de construire les cinématiques
correspondantes, c’est-a-dire d’exprimer les coordonnées qui
définissent les déplacements particuliers a chacun d’eux en fonc-
tion d’un parameétre ¢, auquel nous pourrons attribuer le role du
temps.

Le probleme consiste & fixer la forme de ces fonctions. Or,
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les coordonnées sont toutes lies entre elles par les relations
analytiques qui représentent le groupe de déplacements envi-
'sagé. Si nous choisissons I'une d’elles comme variable indépen-
dante, toutes les autres sont déterminées par les équations de
liaison. Il arrive alors que cette coordonnée, que nous distin-
guons des autres en général pour des raisons suggérées par
I'expérience, est posée proportionnelle a4 ¢ Il en résulte qu'a
une méme valeur de ¢ correspondra un ensemble de valeurs
pour toutes les coordonnées, valeurs dites simultanées, et qui
déterminent la configuration du systéme cinématique envisagé a
I'instant ¢. La coordonnée que nous avons posée proportionnelle
au temps sera 'horloge fondamentale ou horloge-mére. Pour
étudier les phénomeénes, on se sert d’horloges auxiliaires;
elles sont fondées sur un phénomene quelconque, présentant un
parametre de déplacement variable 0 qui peut étre une fonction
quelconque de ¢. En pratique, on s’arrange pour que 6 = ¢, et
I'on dit que I’horloge est « synchronisée » sur I’horloge-mére.

Parmi toutes les Cinématiques que I'on peut imaginer, il en
est deux qui, & I'heure présente, tiennent la premiére place dans
la Physique moderne : ce sont la Cinématique newtonienne et
la Cinématique de Lorentz-Einstein.

La Cinématique newtonienne a pour base, comme on sait, le
groupe euclidien, et tous les déplacements qu’elle envisage sont
euclidiens. Pour définir I’ « horloge-meére », Newton lie aux
étoiles dites fixes un systéme d’axes qu’il nomme « systéme abso-
lument fixe », et il pose le temps proportionnel & I’angle dont a
tourné la Terre par rapport a ce systéme. Soit ¢ un angle, » une
constante; on a par définition :

et, par définition, la Terre est animée d’une rotation « unifor-
me », de vitesse angulaire o.

Cette convention, qui semble si immédiate et si naturelle, et
a laquelle 'Homme est parvenu apres des siécles de recherches
et de titonnements, entraine avec soi une foule de conséquences
dont on ne se rend en général pas assez compte. Voici un phé-
nomene ; me basant sur le principe de raison suffisante, je dé-
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-clare qu’il se déroule d’une facon « uniforme ». En ai-je le droit ?
Nullement, car en ce faisant, je le pose proportionnel a #, qui
‘n’est pas indépendant ; ¢ est une variable de Haison qui lie tous
les phénoménes & la rotation terrestre. Et cependant, c’est
ce que P'on fait quand on évalue les distances stellaires en
« années de lumiére ». On postule implicitement que la vitesse
des ondes Iumnineuses dans les espaces interstellaires est « cons-
tante ». Nous savons aujourd’hui que cela ne saurait étre rigou-
reusement exact. :
Si'on considere, dans un phénoméne quelconque, un para-
metre x variable avec le temps, la vitesse de cette variation sera
dx dx

Yy = = W
dg

dt

Lorsque, pour mesurer le temps, on se sert d’'une horloge auxi-
liaire marquant un temps.quelconque =, on aura :

, — dx dt

=g

ainsi, la vitesse par rapport a I’horloge-mére, est égale au quo-
tient des vitesses du paramétre et de la Terre relativement &
I’horloge auxiliaire.

Il est bien digne de remarque que le parameétre ¢ ainsi défini,
et qui doit sa définition & la rotation de ce petit sphéroide ou le
sort nous a jetés, jouisse justement de la propriété de donner
aux équations de la Mécanique une forme aussi simple, en parti-
culier, qu’il aif, conduit & la loi de Newton®. « 11y a des raisons,

! A ce propos, il est intéressant de citer les réflexions suivantes de
Tannery, Jules. Science et Philosophie, p. 24: « Si 'on veut appliquer
ces sciences (la Géométrie et la Cinématique) & la réalité, le temps ne
pourra plus étre une variable quelconque, ce sera une variable déterminée,
qu’il faudra évaluer sur une pendule déterminée. Théoriquement, on pour-
rait mesurer le temps avec n’importe quelle pendule, pourvu que les
aiguilles marchassent toujours dans le méme sens: ayant choisi cette pen-
dule, on dira que deux intervalles de temps sont égaux quand, pendant
ces intervalles, I’aiguille aura tourné d@’un méme angle; par définition, le
mouvement de I’aiguille sur cette pendule sera dit uniforme. Une autre
pendule, réglée différemment, marquera un autre temps ; des durées qui,
évaluées sur la premiére pendule, étaient égales, ne le seraient plus si on
les évaluait de méme avec la seconde : peu importe, si U'on sait, & chaque
instant, les deux nombres que marquent les deux pendules, si, connaissant
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dit quelque part Jules Tannery, tirées de Ja Mécanique méme,
pour croire que si on 'appliquait & des périodes extrémement
longues, extraordinairement plus longues que celles que I'obser-
vation nous permet de considérer, cette définition ne permet-
trait plus de conserver aux équations de la Mécanique leur
forme simple ; c’est elle, non les équations, qu’il conviendrait de
changer, si la science embrassait un jour des périodes aussi con-
sidérables. » Le jeu des marées, par exemple, produit un « frei-
nage » de la rotation terrestre, qui, a la longue, pourra faire
sentir ses effets. C’est 14 un phénomeéne extra-mécanique,
étranger aux équations différentielles de la Mécanique céleste,
et dont on ne pourrait tenir compte qu’en modifiant la définition
de la durée. -

La détermination dutemps ne se borne pas a celle dela durée,
il faut encore déterminer la simultanéité, détermination qui se
confond avec I'établissement d’une cinématique. Or, la cinéma-
tique newtonienne repose principalement sur des observations
astronomiques; elle n’a done pu étre établie qu’en faisant appel
4 la lumiére et a sa vitesse, postulée constante, c’est-a-dire 3 un
phénoméne étranger a la Mécanique. Et, comme Poincaré le

'un de ces nombres on peut en déduire Pautre, soit au moyen d’un tableaun
convenablement dressé, soit au moyen d’une formule; on aura alors tous
les éléments nécessaires pour faire ce que 'on appelle en mathématiques
un changement de variable. Mais il arrive que ce changement de variable
modifie profondément les équations de la Mécanique ; si elles étaient sim-
ples avec la premiére variable, elles seront compliquées avec la seconde. Ces
équations acquiérent toute leur simplicité, quand on fait choix d’une
pendule spéciale, la pendule sidérale, réglée sur le mouvement apparent
des étoiles, ou, si 'on veut, sur le mouvement de la Terre.-Pour passer de
I’heure marquée par la pendule sidérale, a celle que marquent nos pen-
dules ordinaires, il n’y a d’ailleurs qu’un changement insignifiant a faire,
insignifiant parce qu’il n’altére pas P'égalité ; deux durées qui sont égales
quand on les évalue avec une pendule sidérale, sont encore égales quand
on les évalue avec une pendule ordinaire, qui marque ce qu’on appelle le
temps moyen. Il n’en serait plus de méme si on se servait d’une pendule
réglée sur le mouvement apparent du Soleil : les lois de la Mécanique, sim-
ples avec la pendule sidérale, se compliqueraient singuliérement avec la
pendule solaire : ¢’est cette simplicité qui a déterminé le choix. Comment
est-on arrivé a le reconnaitre ? Par de nombreuses observations dont quel-
ques-unes sont trés vulgaires. Nous sommes habitués a la répétition d’une
foule de phénomeénes, qui se ressemblent tellement que nous les regardons



THEORIE DE LA RELATIVITE 291

reléve, on a adopté pour cette vitesse une valeur telle que les
lois astronomiques compatibles avec cette valeur soient aussi
« simples » que possible.

On voit que le terrain est mouvant. Le probléme de la simul-
tanéité sensible est posé avec toute son ampleur par Poincaré'
dans ’hypothése simple suivante. « Considérons trois astres, dit
Iillustre géometre, par exemple le Soleil, Jupiter et Saturne;
mais, pour plus de simplicité, regardons-les comme réduits a
des points matériels et isolés du reste du monde. Les positions
et les vitesses des trois corps & un instant donné suftisent pour
déterminer leurs positions et leurs vitesses a 'instant suivant,
et par conséquent 4 un instant quelconque. Leurs positions &
I'instant ¢ déterminent leurs positions a I'instant ¢ 4 &, aussi bien
- que leurs positions & l'instant {— A. Il y a méme plus; la posi-
tion de Jupiter & I'instant ¢, jointe & celle de Saturneal'instant
t +-a, détermine la position de Jupiter 4 un instant quelconque
et celle de Saturne & un instant quelconque. L’ensemble des po-
sitions qu’occupent Jupiter & P'instant £ 4 < et Saturne & I'instant
i+ a+ ¢ est lié a I'ensemble des positions qu’occupent Jupiter
a l'instant ¢ et Saturne & 'instant ¢ 4 a, par des lois aussi pré-

presque comme identiques. Il est commode de dire qu’ils demandent le
méme temps pour s’accomplir ; cela signifie, au fond, qu’on suppose I’exis-
tence d’une pendule marchant de telle facon qu’elle marquerait toujours
des temps égaux pour la durée de ces phénoménes. Voici un sablier ; j’ad-
mets bien volontiers qu’il mettra le méme temps & se vider, aujourd’hui ou
demain, dans cette chambre ou dans cette autre : de méme pour une foule
de phénoménes physiques. Cette habitude est si familiére qu’on a prétendu
trouver la une définition de I’égalité de deux durées: deux durées sont
égales, dit-on, si pendant chacune d’elles, s’accomplissent deux phénomeénes
identiques. Cette proposition, prise comme définition, contient un non-sens,
ou tout au moins un cercle vicieux : tout d’abord, il n’y a pas, & propre-
ment parler, deux phénoménes identiques ; s’ils sont deuz, si on les dis—
tingue, c’est qu’ils différent par quelque chose: pourquoi ne différent-ils
pas par leurs durées? Ce qui caractérise un phénomeéne, ¢’est comme l’on
dit, les circonstances de ce phénoméne, et la durée du phénomeéne est
une de ces circonstances; pourquoi l'isoler des autres ? Veut-on dire que
si toutes les circonstances de deux phénomeénes, autres que la durée, sont
les mémes, les durées aussi seront les mémes? On aurait grand’peine a
trouver de pareils phénoménes ; et la définition, ainsi comprise, serait peu
applicable ; c'est sans doute quelques circonstances qu’on veut dire ; les-
quelles ? »
! Revue de Métaphysique et de Morale, 1898, p. 1.
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cises que celle de Newton, quoique plus compliquées. Dés lors
pourquoi ne pas regarder I'un de ces ensembles comme la cause
de Pautre, ce qui conduirait & considérer comme simultanés
I'instant ¢ de Jupiter et I'instant ¢ + a de Saturne? Il ne peuty
avoir & cela que des raisons de commodité et de simplicité, fort
puissantes, il est vrai. »

Cet exemple du grand géometre francais montre parfaitement
combien flottantes sont pour nous les notions de temps et de
simultanéité expérimentales. C'est en ce sens qu'on peut donner
pleinement raison & Einstein lorsqu’il parle de la relafivité de
la simultanéité. Toutes ces questions n’ont pas de sens, dit-il.
C’est vrai; mais rien ne nous empéche de leur en conférer un!
Il est bien évident, en effet, qu’étant donnée la tournure de notre
esprit, nous pourrions certainement, dansl’exemple de Poincaré,
introduire un parametre = qui jouerait le role du temps; » ne
~varierait pas proportionnellement & < ;la dépendance serait plus
compliquée, voila tout.

Vue sous ce jour, la simultanéité apparait comme une con-
vention,unartifice mathématique, introduit pour nous permettre
‘de jeter un coup d’eil d’ensemble sur des corps en mouvement,
d’établir des figures, telles ces images du systeme solaire que
I'on voit dans les traités d’astronomie.

Comme le dit Poincaré, nous voulons nous représenter le monde
extérieur, car ce n’est qu’a ce prix que nous croirons le connaitre.
C’est pourquoi nous aimons tout au moins a imaginer une «in-
telligence » trés puissante, une sorte de grande « conscience »
qui se représenterait a la fois, & chacun de «ses» instants, tous
les points d’une portion immense de I'univers.

Cette image proposée par Poincaré est excellente. Elle nous
donne une véritable définition de la « représentation » du monde
sensible, Elle est suggérée par l'extension & un étre fictif des
phénomeénes qui permettent & notre étre de prendre conscience
de son ambiance. Cette « conscience » serait celle de quelque im-
mense pieuv, e pénétrant tout I'Univers avec ses tentacules sub-
tiles et innombrables, et dont I'influx nerveux se propagerait
avec une vitesse infinie jusqu’a ses centres conscientiels.

L’étre ainsi imaginé a une existence indépendante du monde
physique qu’il est appelé & juger; il est extra-phénoménal. Alors
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que nous accordons une vitesse infinie & son influx nerveux, il
nous répugnerait d’en attribuer une a4 quelque manifestation
«naturelle». Mais ici, parler d’une telle vitesse n’est qu’une autre
maniére de dire que le temps sensible est relatif, relativité qui
résulte immédiatement de I'extension au monde extérieur de la
relativité du temps rationnel. On admet, en effet, que tous les
mouvements de l'univers physique pourraient étre « ralentis»
dans un méme rapport sans que les positions relatives des
« points physiques » soient altérées. A la limite, toutesles vitesses
sont nfiniment petites, et nous pouvons imaginer qu’on examine
a son aise les configurations successives. Or, évidemment, ces vi-
tesses ne peuvent étre «infiniment petites » que par rapport a
un étre de comparaison, qui conserverait la notion de vitesse
finie, ce qui revient exactement & comparer les vitesses finies &
une vitesse infinie.

On pourrait dire aussi que l'univers extérieur a été quasi-
solidifié, et retrouver de la sorte une extension du principe de
solidification déja employé dans la mécanique des fluides.

On voit ainsi réapparaitre le corps solide, qui joue un role
fondamental dans la notion de simultanéité, comme on I’a sou-
vent relevé. Il n’y a pas lieu de s’en étonner. Un solide, en effet,
est une portion de I’étendue géométrique, c’est-a-dire un en-
semble de multiplicités, et nous avons vu que, par définition,
«multiplicité » était synonyme de « variation simultanée».

Ce qui précede paraitra, en général, relativement simple et
clair. Nous allons nous en servir pour es<ayer de pénétrer les
difficultés que I'on rencontre dans la compréhension de la Théorie
de Ia relativité'.

Auparavant, nous attirerons I'attention sur les inconvénients
de certaines habitudes de langage.

Il est d’'usage courant en Mathématiques de donner aux points
une existence absolue et de dire que 'on rapporte un « méme»
point P tantdt & un systeme d’axes tantdt & un autre. Si ce lan-
gage n’a pas d’inconvénient lorsqu’il s’agit d’objets dénués de
qualité comme les points des géométres, il peut en avoir de
grands dans une théorie physique ol les points acquiérent cer-

! Voir GuiLLaume, Ed., loe. cit., Arch. 1917, p. 5 et suiv.
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taines propriétés. Dans la Théorie de la relativité, chaque point
est caractérisé non seulement par les valeurs que prennent, en
ce point, trois coordonnées z, ¥, 2, mais aussi par les valeurs
d’un parametre t indiquant le temps local. Tout systéme de va-
leurs des quatre quantités (z, ¥, 2, =) est appelé « événement
élémentaire »; il est représentable par un point de I'espace &
4 dimensions. Le mot « événement », malheureusement, évoque
a tort I'idée que I'on se fait d’un événement dans la vie courante,
et le fait qu’il est représentable par un point géométrique con-
tribue encore plus & lui conférer une existence absolue. Aussi,
lorsqu’on fait un changement d’axes, il nous semblera tout natu-
rel de dire que c’est le « méme » événement que 1’on rapporte a
un autre systeme de référence; on pense tout naturellement a des
observateurs qui assisteraient d’endroits différents a quelque
manifestation naturelle. Ce langage, admissible dans les des-
criptions grossiéres de tous les jours, peut ne plus I’dtre, Jorsque,
par exemple, on comparera entre elles des sources lumineuses
servant d’horloges, comme nous le verrons plus loin.

C’est pourquoi nous préférerons dire que les événements ob-
servés sont conjugués, affirmant par 1a qu’ils ne sont pas parfai-
tement identiques, qu’ils different en quelque chose®. Tout évé-
nement élémentaire d’'un systéme S aura ainsi son conjugué
dans un systeme S’. En particulier, ces événements pourraient
étre confondus.

Ce langage est d’autant plus indiqué qu’un physicien n’ad-
mettra pas, en général, la compénétration de tous les systémes
de coordonnées, comme le font les mathématiciens. Pour lui,
« systéme de référence » sera synonyme de « portion d’un milieu
physique », et changer de systémes reviendra a établir une
correspondance entre tous les événements conjugués de ces diffé-
rentes portions.

Nous allons illustrer immédiatement ce qui précéde sur un
exemple célebre : I'expérience de Michelson et Morley. On sait
— et nous le verrons plus loin — que le temps employé par la
lumiéere au parcours des distances d entre les miroirs est, pour
I’observateur au repos relativement aux appareils:

! Voir la note pages 289-291.
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At, = —
2 04
¢, étant la vitesse de la lumiére. Pour un observateur qui voit
passer les appareils devant lui avee une vitesse uniforme v, le
temps de parcours serait :

2d
2

l/c — 2
0

Ainsi done, voici un « méme » événement dont la durée dépend
du systéme de comparaison, autrement dit, qui a une infinité de
durées différentes! Il est bien évident que ce qui nous choque
provient du mot « méme », malencontreusement introduit, et
qu’il vaut mieux parler d’« événements conjugués ».

Une remarque analogue peut étre faite au sujet de la trajec-
toire, dans I'espace & quatre dimensions, du point représentant
un événement élémentaire, trajectoire que 1'on a appelée « ligne
d’univers ». Cette trajectoire n’a d’existence que pour le groupe
des systemes — en nombre infini et en translation relative
uniforme — qui ont la méme fonction-accélération par rapport
au point envisagé. En particulier, si I'on se place sur ce point,
c’est-a-dire si I'on est au repos relatif avec lui, la ligne d’univers
considérée s’évanouit, et est remplacée par une droite. Le « temps
propre» du point, qui est par définition proportionnel a la
longueur de la ligne d'univers, ne saurait donc non plus avoir
une existence absolue ; il dépend du groupe de systémes de
comparaison.

Ces remarques faites, nous considérerons, d’une facon générale,
deux systemes S et S', que nous supposerons, pour plus de sim-
plicité, réduits & deux axes Ox et O'z’. Nous admettrons qu’on
ait défini des horloges % (z) et qu’il y en ait une en chacun
des points de Ox pour donner le temps = dans le systéme S.
Nous ferons la méme hypothése en ce qui concerne les horloges
h'(z") indiquant le temps <’ du svstéme S’. Nous supposerons
enfin qu’a tout événement élémentaire (x, t) de S se conjugue
un événement élémentaire (z', <') de §', la conjugaison se faisant
au moyen des relations:

A%, =

1

’ ’

N e —E I (1)
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I1 se passe alors des choses curieuses que nous allons examiner.
Placons-nous sur le systéme S et donnons & = une valeur déter-
minée <,. Toutes les horloges de S indiquent le temps =, ; on dit
qu’elles sont « simultanées ». Or, en général pour cette valeur =,
les horloges de 8’ marqueront chacune des temps <" différents,
variables avec x', et que les relations (1) permettront de
calculer ; autrement dit, les horloges de S seront simultanées,
tandis que les horloges de S’ ne le seront pas;le systéne S aura
un temps bien déterminé, le systéme S’ n’en aura pas; il aura
en général tous les temps possibles. Mais, d’autre part — et c’est
ce qu’il y a de trés curieux — nous pourrons faire un raisonne-
ment identique en nous placant sur S', et en donnant & <’ une
valeur déterminée <.

En d’autres terines, la simultanéité perd son sens absolu ; elle
devient relative aw systeme de référence sur lequel on se place.
Au lieu de la « conscience » universelle de Poincaré, nous
devrons imaginer une « conscience » particuliére 4 chaque
systéme, servant a définir la simultanéité de celui-ci, et percevant
les différentes parties des autres systémes a des instants qui ne
sont pas simultanés pour les « consciences » de ces systémes.
Toutes ces « consciences » sont ainsi complétement impénétrables
les unes aux autres. |

Dés lors, 'on peut se poser la question fondamentale suivante:

Toutes ces « consciences », réciproquement impénétrables,
excluent-elles I'introduction de la « conscience » universelle
imaginée par Poincaré ? En termes moins mystiques : ne peut-on
faire un changement de variables et exprimer = et <’ en fonction
de deux autres variables r et ¢ auxquelles on attribue: a Ia
premiére un role « spatial » et a la seconde un role « temporel »

Qu’est-ce que cela veut dire exactement ?

Avant de poursuivre, remarquons que nous avons supposeé les
points x et " au repos relatif dans leurs systémes respectifs. Si -
ce n’était pas la cas, les choses seraient plus simples encore. Kn
effet; le probléme ‘consisterait a se donner, par exemple, le
mouvement de x en fonction de = et & déterminer z’ en fonction
de <" au moyen des relations (1). Il n’y a plus qu’une variable
indépendante que nous pourrons exprimer a laide de ¢
seulement.
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Cela dit, reprenons notre question. Pour ne pas compliquer
outre mesure, supposons que les relations (1) sont développables
en série de puissances et que les termes linéaires ne sont pas
nuls. Nous pourrons toujours nous arranger pour que les coeffi-
cients des termes en « soient de dimension nulle (nombre pur);
2 étant homogene a une longueur, les termes en x seront alors
eux-mémes homogeénes a une longueur. Il devra en étre de
méme des termes en ¢, autrement dit, leurs coefficients devront
étre homogenes a une vitesse. On peut toujours décomposer ces
coefficients en un produit d’'un nombre pur par une méme vitesse
constante ¢,, de sorte que, finalement. on pourra définir deux
nouvelles variables

Bt wl=an (2)
homogénes a des longueurs. Ainsi, aux variables - et <" qui
symbolisent le temps, on peut substituer les variables spatiales
w et u’'. En d’autres mots, il est possible de se passer de la notion
de temps et de ramener toutes les mesures & des constatations
de coincidences spatiales. Les durées en soi ne jouent aucun role.
Tout ce qui nous intéresse, c’est la connaissance de I’ensemble
des systemes de valeurs simultanées — au sens mathématique
— qui satisfont aux relations (1). Ce qui est essentiel, c’est de
savoir que lorsqu’un mobile a parcouru la distance Az, un
autre mobile a parcouru la distance Au, et que les mobiles
conjugués ont parcouru respectivement les distances Az’ et Au'.
Que cela ait duré une seconde, une heure, un jour, un siécle, ...,
que cela se soit passé « régulierement » ou non, que cela ait eu
lieu «en méme temps » dans le monde sersible, peu importe.

Nous donnerons le nom d’« horloge-meére du systeme S» a la
coordonnée u, et celui d’« horloge-mére du systéemeS’ » a la
coordonnée .

Une « vitesse » sera, par définition, proportionnelle au quo-

tient différentiel du chemin parcouru par rapport & I’horloge-
_ L . P W 4. . dx . dx’
mere du systéme envisagé, c'est-d-dire & — pour S et & 17

di

pour S’. ' )
Nous nous trouvons ainsi en présence d’'une nouvelle repré-
sentation analytique des points de l'espace, et d’une nouvelle
correspondance ponctuelle. A tout point du continu linéaire Oz,
par exemple, correspondent deux nombres z, % de méme espece,

Arcmves, Vol. 46. — Ddécembre 1918, 22
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mais ces nombres ne peuvent pas étre considérés comme des
coordonnées du point, au sens habituel, comme des coordonnées
homogénes, par exemple.

Or, d’autre part, nous aurions pu parfaitement ne faire appel
qu’a la notion de temps, et rendre tous les termes du dévelop-
pement homogéne & cette grandeur. Dans ce cas, les longueurs
eussent été mesurées par les temps employés & les parcourir.

Concluons : rationnellement, nous pouvons travailler soit
avec U'une, soit avec U'autre exclusivement, soit a la fois avec
Pune et Uautre des notions temporelle et spatiale. Des lors, notre
choix ne peut étre dicté que par des convenances psychologiques,
et nous devrons introduire le temps et l'espace dans nos théories
de facon telle, que celles-ci sorent aussi intuitives que possible.

Remarquons du reste qu’en pratique toutes les mesures tem-
porelles se raménent & des mesures spatiales, tandis qu’en
perception, nous concevons mieux leslongueurssi on les exprime
en temps. Les anciennes bornes routiéres portaient les distances
en heures ou en lieues, distance parcourue a pied en une heure.

Ce qui précede trouve sa confirmation dans I'extension de la
Théorie de la relativité a la gravitation®: on n’y distingue méme
plus les quatre coordonnées en coordonnées spatiales et coor-
donnée temporelle. Ce sont quatre nombres x,, x,, x,, x,, qu’'on
peut représenter par un point dans un espace fictif a quatre
dimensions et sans signification physique. Toutes les mesures
deviennent spatiales.

Il nous est facile maintenant de répondre & la question primi-
tivement posée: Faire le changement de variables envisagé,
revient & décomposer deux variables spatiales « et u’ en deux
autres variables spatiales, dont I'une jouera, par convention, le
role d'horloge. Celle-ci, & son tour, sera décomposée en un pro-
duit d’une vitesse par une variable ¢ indépendante du systéme
de référence. Ce sera le temps auxiliaire universel. Alors les
vitesses seront, par définition : '

-_dx v __dx’ du , _du’

r,x_-d—t- : qx—ﬁ T Pt — a0 (3)

! Voir par exemple : EInsTEIN, A, Ueber die spezielle und die allgemeine
Relativititstheorie, Sammlung Vieweg, Heft 38, p. 64 et suiv.
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et les vitesses par rapport a4 I’horloge-mére correspondante
seront : '

1 dx - 1 dx’ (/;c

s Al el o 7ok (4)
o 4t ¢ &, ¢

D’autre part, on a, en différentiant (1) et tenant compte de

(2):

dx’ — Adx 4 Bdu

du’ = Cdx 4+ Ddu L

ou A, B, C, D sont, en général, des fonctions de z, z', u, u'.
Divisons tous les termes de (5) par dt et faisons le quotient des
deux équations ; il vient :

q;: . Aq, + Be

e (6)
4, + Dec

C’est I'expression analytique de la composition des vitesses ; elle
est homogéne par rapport aux vitesses. Un cas important est
celui ou A, B, C, D sont des constantes ; alors (6) représente une
transformation homographique. Si, de plus, nous remplagons
dans (6) ¢ et ¢’ par ¢,, nous obtenons une expression en relation
projective simple avec la premiére, comme s'il s’agissait de
coordonnées homogenes.

En résumé, nous voyons que nous allons avoir affaire & un
nouvel algorithme: les vitesses homogeénes, qui va donner naissance
a une branche nouvelle de la Science du mouvement; on peut
I'appeler si Pon veut Cinématique projective. La Cinématique
classique n’en est qu’un cas particulier ; ¢’est celui ou

uv=u; c=c

§ 2. — ETUDE DE LA TRANSFORMATION DE LORENTZ DANS
LE CAS-OU TOUS LES POINTS SONT AU REPOS RELATIF
DANS LEURS SYSTEMES RESPECTIFS.

La Théorie de la relativité part, comme toute Cinématique,
d’un certain groupe de déplacements.

Le groupe particulier qui est a la base de cette théorie est
appelé groupe de Lorentz, du nom de son inventeur;il est appa-
renté au groupe hyperbolique.
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Il serait absolument vain d’essayer de le déduire de considé-
rations simples, comme tentent de le faire les relativistes, car,
inventé pour condenser un complexe d’expériences et de con-
ventions trés diverses, il a justement la prétention d’étre I'ins-
trument le mieux approprié & son analyse. Il ne faut pas
commencer a rebours. Comme M. Bouasse le dit avec tant de
bon sens, on pose une formule et I'on en déduit les consé-
quences; si celles-ci concordent avec 'expérience, on aura par la
méme montré powurquoi on I'a posée. Quant & savoir comment on
est arrivé a la poser, c’est une question différente, d’ordre tout
historique, et qui n’entre pas dans notre objet. Bien entendu
par la nous ne préjugeons en rien des « explications » qu’on
essayera certainement de donner un jour des phénomeénes clas-
sifiés par la Théorie de la relativité, « explications » qui seront
a celle-ci ce que la Mécanique statistique est 4 la Thermodyna-
mique.

Nous prendrons la transformation de Lorentz sous la forme
quon lui donne habituellement. On considéere deux systémes
d’axes rectangulaires S, (x,, ¥,, 2,), S,(x,, ¥,, 2,) qui se dé-
placent I’'un par rapport & 'autre de facon que les plans x, ¥, et
x,Y, solent superposés, I'axe x, étant contre l’axe z, et de méme
sens; les plans x, 2, et 2,2, d’'une part, et les plans y,z, et ¥, 2,
d’autre part restent alors constamment paralleles. A chaque
point de S, on fait en outre correspondre une valeur déterminée
d’une coordonnée u, qui représente 'horloge-mére du systéme
S, ; de méme u, sera une coordonnée représentant I’horloge-mere
de S,. Al’événement élémentaire (z,, ¥,, 2,, %,) de S, correspon-
dra I’événement conjugué (z,, y,, 2,, #,) de S,. Ces événements
sont alors supposés liés par la transformation suivante, due &
Lorentz :

e ‘G('TA + ooy iouy = fluy Foary) 5 =00 FH =5
(I o, 1
: ou = Vﬁ o == conslanie.
—_— O

Observons d’abord que cette transformation est syméirique,
c’est-d-dire qu’on 'obtient résolue par rapporta x,, ¥,, 2,, %, en
permutant les lettres x, et x,, ¥, et v,, 2, et 2,, 4, et u,, et en
changeant « en — a.
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Dans ce qui suit, pour simplifier, nous ferons abstraction des
axes ¥,, Y, et 2,, 2,, et nous admettrons que les deux systemes
S, et S, se réduisent aux axes z, et x, glissant I'un contre l'autre.
Nous n’emploierons donc pour le moment que les deux premiéres
équations (I).

Tout d’abord, nous ferons le «métrage » des systémes, c’est-a-
dire nous tracerons, en déplacant une régle rigide par exemple,
des échelles sur les axes z, et 2,, afin qu'aux nombres z, et x,
qui satisfont & (I) correspondent des points bien déterminés sur
les axes. Les échelles ainsi tracées sont, par définition, identiques
sur les deux systémes.

Puis, nous procéderons au « chronométrage » des systémes. A
cet effet, nous commencerons par remarquer que les horloges-
meéres u, et 1, ne sont pas autre chose que les chemins parcou-
rus simultanément par la lumiére, les « chemins optiques », dans
les systemes S, et S, respectivement. Ainsi, alors que dans la
Mécanique classique, il n’y a qu’une seule horloge-mére, la rota-
tion ¢ de la Terre, qui est une horloge circulaire, dans la théorie
qui nous occupe, chaque systéme a son imrloge-mére, et celle-ci
est une horloge linéaire, une sorte de clepsydre lumineuse. Nous
supposons, en effet, que les rayons se propagent dans le vide et
que cette propagation est rectiligne. Le maniement de ces clep-
sydres n’est pas trés commode, méme en imagination; c’est
pourquoi nous exemplifierons le temps a I'aide d’horloges aux:i-
liaires, fondées sur un phénomene périodique, et supposées en
synchronisme parfait avec I’horloge-mére. Pouvons-nous prendre
comme instrument auxiliaire n’importe quelle manifestation
postulée «uniformément» périodique en vertu du principe de
raison suffisante? Evidemment pas; mais il est permis de sup-
poser que les sources lumineuses, plus généralement les sources
d’énergie rayonnante, sont naturellement synchronisables sur

I’horloge-mére, autrement dit que le rapport % de la vitesse de
la lumiére & la fréquence de la source envisagée, ne dépend pas
du temps. En fait, si 'on examine les applications de la Théorie
~ de la relativité, on verra que comparer des horloges revient tou-
jours & comparer des couleurs.

Nous envisagerons, pour étre précis, des raies spectrales de
fréquences bien déterminées. Considérons, par exemple, la raie
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D du sodium. A cette raie correspond un nombre v, qui désigne
sa fréquence par rapport a la rotation terrestre. N'ayant pas
affaire ici & des phénomenes mécaniques, nous ne pouvons utiliser
cette horloge, et le nombre v, devient arbitraire. Par contre,
nous pouvons comparer au spectroscope les autres raies A, B, ...,
G, ... & la raie D, et déterminer les rapports :

qui seuls importent.

Cela posé, nous imaginerons que 1’on a doté chaque point des
systémes de sources-horloges identiques, ayant méme fréquence
lorsqu’on les compare cote a cote an repos. Enfin, on peut sup-
poser qu’on adjoigne & chaque point de ’espace un « démon-
compteur », chargé d’enregistrer le nombre de vibrations lumi-
neuses, et, d'indiquer ainsi les durées écoulées.

De la sorte, nos systémes sont parfaitement identiques. Rien
ne permet de les distinguer 'un de l'autre. S’ils étaient pure-
ment mécaniques et animés d’une translation relative uniforme
de vitesse v, on passerait de I'un & 'autre au moyen de la trans-
formation dite galiléenne :

xr =y, vt .

Supposons que nous nous placions sur S, et que tous les points
de S, soient au repos relatif. Alors de

Ax, = Arx, 4+ vAl
on tire évidemment :

B

=10
Ax, A

:‘({Ix:" .

Voyons ce que donnent les équations (I) dans I’hypothése ot
Az, est nul. Entre les accroissements concomitants Au, et Au,
des chemins optiques, on obtient la relation :

Au,

|/1—a3

qui nous montre que Au, est plus grand que Au,. Vis-2-visde ce

Au, =
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fait, on peut avoir deux attitudes simples, également remar-
quables :

1° On admet que la vitesse de la lumiére ¢, dans S,, pour I'ob-
servateurlié a S, , est inférieure a la vitesse ¢, que cet observa-
teur mesure dans son systeme’, et cela suivant la relation:

(:2:60‘/'1_— a? . (1)

2° On admet que la vitesse de la lumiére dans S, est mesurée,

pour S,, par le méme nombre ¢,, mais que les horloges de S,
vont plus vite que celle de S, dans la proportion :

(g

T 1

Ay, YT=a

; (2)

T, et -, étant les temps donnés par les sources-horloges.

Comme la forme symétrique de la transformation de Lorentz
permet de faire des constatations et des hypothéses identiques
en ce placant sur S,, nous pouvons dire qu’elle est compatible
avec les deux points de vue simples suivants :

1° Dans le vide, la vitesse d’un rayon lumineux mesurée dans
le systéme auquel appartient le rayon et par un observateur au
repos dans ce systéme, est une constante universelle ¢;. C’est ce
que nous appellerons le Principe de la constance relative de la
vitesse de la lumiére.

2° On accorde & la vitesse de la lumiére dans le vide non
seulement la valeur constante ¢, pour les rayons qui sont dans
le systéme portant ’observateur, mais aussi pour les rayons qui
se trouvent dans d’autres systémes, quels que soient les mouve-
ments de ceux-ci par rapport au premier. C’est le principe de la
constante absolue de la vitesse de la lumiére,

On sait qu’en partant de ce dernier principe et en postulant
la relativité, c’est-a-dire la symétrie de la transformation, Ein-
stein parvint directement & la transformation de Lorentz. Dans

! 11 est bien clair que par ¢, nous désignons un nombre fixe et déter-
miné. On posera par exemple :

k
¢, = 300000 — 2
sec-lumiére
définissant de la sorte une nouvelle unité de temps: la « seconde-lumiére »»

-distincte de la « seconde-terrestre ».

=
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ce cas, les chemins optiques «, et u, sont liés aux temps locaux
t, et 7, des systemes S, et S, par les équations

M, 26T § W= s (3)
Il en résulte pour la vitesse relative v des systémes :

Dy oy B
Ar, T Ax,

= ke, . (%)

Supposons qu'on ait mesuré sur S, une longueur (x, — z,)e
‘avec une regle-unité rigide. C’est ce que nous appellerons une
longueur géométrique. La longueur cinématique correspondante
est obtenue en déterminant sur S, les points , et z, qui coin-
cident respectivement avec les extrémités du segment (x, — x,)a
a un méme instant <,, et en mesurant ensuite, avecla régle-unité
ci-dessus, la distance x, — z,. Les équations de transformation
donnent alors, entre les longueurs géométrique et cinématique
d’un segment, la relation :
(.1.': — x;)_:: (T: — x;)G V1 — o (5)

qui exprime la célébre «contraction » de Lorentz.

Voyons maintenant quelles sont les représentations qu’on peut
lier aux mouvements des systémes. Supposons toujours que nous
sommes sur S,. A un instant quelconque, les aiguilles de tous
les compteurs de S, marquent la méme heure; elles sont «simul-

~ tanées» par définition, affirme Einstein. Prenons pour simplifier

7, =0 .

1

Toutes les aiguilles sont au zéro. La transformation (I) montre
alors qu’il n’y a qu’une seule horloge de S, qui est au zéro a ce
moment-1a; c’est celle située & I'origine de S ,, car si

£, =0, =10
on a:

=0 a0,

Toutes les autres horloges de S, marquent un temps =, = 0
donné par :

o 18
(33

=1
o
<
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Elles avancent du coté des x, positifs et retardent de ’autre.
En d’autres termes, alors que toutes les horloges de S, sont
simultanées, celles de S, ne le sont pas. Mais cela n’est vrai que
pour la «conscience » partielle C, qu’on attribue & S,. La «con-
science » partielle C, supposée liée 4 S, fera, de son c6té, exactement
les mémes réflexions. C’est ce que I'on constate en permutant les
accents et changeant le signe de « dans les formules précédentes.

Ainsi, la simultanéité est purement relative. Alors que le
systeme entier sur lequel on suppose que 'observateur est placé,
a, a chaque instant, un temps unique et bien déterminé, le
systeme quil voit passer devant lui, a, au méme instant, tous
les temps possibles, selon les points envisagés. Cet observateur
est dans l'incapacité compléte de repérer simultanément dans
son systéme, deux points simultanés du systéme en mouvement ;
c’est ce qui crée la « contraction » de Lorentz.

On voit donc clairement de quelle facon essentiellement sub-
jective on utilise la transformation de Lorentz dans la forme ha-
bituelle de la théorie, c’est-a-dire en y adjoignant le principe de
la constance absolue de la vitesse de la lumiére. Par convention,
on fait exprimer aux variables (x,, 7,) —respectivement (x,, t,)
— les longueurs et les temps « réels» du systéme sur lequel on
suppose l'observateur placé; alors (xz,, t,) — respectivement
(z,, =,) — expriment les longueurs et les temps «apparents » de
Pautre systéme pour ce méme observateur.

Il est aisé maintenant de montrer pourquoi cette interpréta-
tion nous choque. Supposons-nous toujours sur S,. La transfor-
mation n’a de sens que si v est inférieure a ¢, ; toute vitesse de
S, supérieure ¢, est exclue. Or, par convention, nous déclarons
simultané 'ensemble des points de S, lorsqu’on pose:

T, = constante.

Ceci entraine — par définition méme — la possibilité de
communiquer avec une vitesse infinie entre deux points quel-
conques de S,, par exemple de transmettre instantanément a
laide d’une tringle rigide des signaux entre ces deux points,
en contradiction manifeste avec I’impossibilité de donner a S,
une vitesse supérieure a ¢,. En d’autres termes, la conven-
tion représentative est inadéquate. Puisqu’aucune vitesse in-
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finie n’est possible, il faut purement et simplement renoncer a
la représentation d’un domaine fini. Tout se bornme a cette
constatation que lorsqu’en x, I’horloge marque =, enx, I’horloge
marque =,. Autrement dit, non seulement nous ne pouvons faire
appel & une conscience fictive universelle pour définir la repré-
sentation, mais méme les « consciences partielles» s’accordent
mal avec les variables -, et «,. Tout, dans la transformation,
est essentiellement local. On interdit en quelque sorte & la pensée
d’aller d’'un point & I'autre avec une vitesse supérieure a ¢,'!

C’est cette antinomie qu’il faut essayer d’écarter.

Les relativistes se défendent de faire la distinction entre
«réel» et «apparent», soutenant qu’elle est vaine puisque des
observateurs entrainés chacun avec son systéme, ne pourront que
comparer ce qu'ils percoivent, soit le « réel » avec « 'apparent ».
et jamais deux « réels» ou deux «apparents». Or, cela n’est pas
tout & fait exact. 11 est bien vrai que, physiquement, ils ne pour-
ront comparer que ce qui est au contact le plus immédiat. Mais
en dehors de ces comparaisons physiques, il y a des comparaisons
mathématiques, sans lesquelles tout raisonnement, tout calcul
serait impossible. C'est ce qu’a exprimé M. Darlu en termes
excellents ? : « On nous parle, dit-il, de deux groupes d’observa-
teurs qui mesurent, chacun de son coté, la durée d’une série de
mouvements. Il y a nécessairement un tiers, un savant, si I'on
veut, qui s’assure qu’il s’agit de la méme suite de mouvement et
qui, rapprochant les deux mesures, trouve qu’elles donnent des
temps diftérents. Ce tiers a donc dans son esprit une notion dé-
terminée du mouvement, une notion déterminée du temps qu’il
applique également aux deux expériences. Les expériences dif-
ferent, mais en quoi sa notion du temps est-elle changée? Par
hypothése méme, elle est la méme, puisqu’elle lui permet de rap-
procher, de comparer les deux expériences, d’en énoncer le ré-
sultat. La différence est dans les faits, dans les expériences. Il
lui appartient de chercher sil'une est plus vraie ou plus illusoire
que 'autre. Les vérités les plus opposées s’accordent fort bien
quand elles ne sont que relatives. »

Selon nos prémisses, nous avons posé que les deux systémes

! Voir la note sur le paradoxe &’ Ehrenfest, p. 321.
2 Bulletin de la Société frangaise de Philosophie, n° 1, 1912.



THEORIE DE LA RELATIVITE 307

sont identiques, métrés et chronométrés identiquement, avec
des instruments identiques ; ils sont indiscernables, parfaitement
équivalents, animés d’une translation purement relative. Or, je
le demande, toutes ces affirmations ne sont-elles pas univer-
selles, je veux dire indépendantes du systéme sur lequel on se
place? Et pourquoi, dés lors, ne pourrait-on passer d’un systéme
a lautre a 'aide de la transformation galiléenne? N’est-ce pas,
une fois de plus, une question de « point de vue », et ne pourrait-
on imaginer qu’on concrétise le point de vue universel par une
«conscience » C, servant & définir le temps universel ¢?

Voyons si cela est possible. Nous devrons commencer, bien
entendu, par abandonner le principe de la constance absolue de
la vitesse de la lumiére et le remplacer par celui de la constance
relative; autrement dit, au lieu d’exprimer les chemins optiques
u, et u, en fonction des variables =, et -, introduites par les
relations (3), nous devrons les exprimer en fonction de deux
autres variables £ et », dont I'une jouera, par convention, le role
de temps universel et I’autre, », sera une fonction spatiale, ¢’est-
a-dire une fonction de z, et de «,, selon le systéme envisagé. Il
est alors naturel de poser, pour les relations cherchées, les formes
linéaires simples suivantes :

u, =cil+4r; uUy=et—r, (6)

ou ¢, et ¢, sont deux quantités dont nous disposerons en suppo-
sant — dans le cas spécialement envisagé au présent para-
graphe — qu’elles ne dépendent pas de ¢. Substituons les valeurs
(6) dans la seconde équation (I) ; nous obtenons :

af
E"|‘1T2.

Supposons d’abord que nous sommes sur S,, et disposons de
¢, et ¢, de facon que I’équation (1) soit satisfaite. Désignons par
c,etc, les valeurs qu'elles prennent dans cette hypothése. On
aura :

¢y — C
J":B2 14

.
e (7)

(1)

ry (¥g) = Ty (8)

ou x, ne dépend pas de ¢ par hypotheése.
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Pour étudier commodément ces relations, le plus simple est
de tracer un graphique. A cet effet, I'on posera :

o= ia ;

alors les deux premieres équations (I’) expriment une rotation
des axes (z,, ¢,t,) et (x,, ¢,7,) d’un angle A autour de I'origine,
tel que

a=1tg A ,

et la figure 1 montre que I'on a alors :

b:—i—l—_—cosA; ab — sin A
V1 + a?
ab __’_l—-h_t A
T+b6~ ab 873

Si, maintenant, nous nous placons sur S,, nous pourrons ré-

& ez,

Fig. 1.

péter identiquement le raisonnement précédent, et ’on par-
viendrait aux relations corrélatives :

¢, = ¢, = fc, (1")

2
B—1
rle)=—"—u, . (8')

af
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On voit sur la figure que :

PR;:PR;:cot; PRIZPR2:—Z—; PR =r3 B Bi=w.

En définitive, nous pourrons écrire le systéeme de relations
suivant, formé a 'aide des deux premieres équations (I) et des
équations (3) et (6) :

z, = f({x, + ac,T;)

€Ty = PBleTy + axy)

(I’l Co B — 4
T, = —t = x
‘o™1 5 + aj 1

¢ L —1

Ce systéme remarquable résoud le probléeme. Il se compose
de quatre équations entre les cinq variables z, , z,, ,, t,, ¢; mais
comme 'une quelconque des équations est la conséquence des
trois autres, nous avons toujours deux variables indépendantes.
En remplagant ¢, <, dans la premiére équation par sa valeur tirée
de la quatriéme, nous obtenons en tenant compte de (4), la rela-

tion fondamentale :
x, =, + v , (9)

Ainsi, du point de vue de C, les systemes se meuvent bien
comme des touts rigides ordinaires, conformément aux prémisses.
La vitesse v sera toujours, évidemment, inférieure a ¢,. Mais
cela ne saurait géner notre compréhension, la transformation
galiléenne étant elle-méme indépendante de cette restriction;
elle ne doit étre utilisée que dans un certain domaine de validité,
voila tout.

La figure 2 montre immédiatement dans le systeme de variables
imaginaires, pourquoi la «contraction» disparait lorsqu’on in-
troduit le parametre ¢, et que ’on a effectivement :

" ’ " I
& —idy =@, A

Il convient de bien remarquer que nous n'avons nullement
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«mutilé» la transformation de Lorentz, exprimée par les deux
premiéres équations (I'), Nous n’avons fait qu’un « changement
de variables », traduction en langage mathématique de « chan-
gement de point de vue ». Les équations nouvelles, c’est-2-dire les
deux dernieres du systéme, permettent d’exprimer le temps
local en fonction du temps universel, et vice versa. Pour le ma-
thémacien, la question de savoir si I'un des points de vue est
plus «vrai» que lautre ne se pose pas; ils sont équivalents —
également justifiés, dirait Einstein — en ce sens qu’on peut pas-
ser de 'un & I'autre, traduire I'un dans l'autre, simplement en

CO’T,, Cotz.
t
1 / W x1
X, x4
¥’ t=0
&7
2
<
Fig. 2.

fixant celles des variables que I’on conviendra de regarder comme
indépentantes.

Pour C,, par exemple, le temps =, ne dépend pas de z, , tandis
que ¢ en dépendra. Ce sera le contraire pour C. Les « consciences »
C, et Cou C, et C sont aussi «impénétrables» I'une a I'autre
que les «consciences » C, et C, entre elles, ce qui est une facon
imagée d’exprimer ce fait mathématique, que lorsqu’on aura fixé
le choix des variables indépendantes, on ne pourra, au cours de
la méme question, en choisir d’autres. Quant au physicien,
jamais aucune expérience ne lui permettra de trancher le diffé-
rend entre I'un ou l'autre des points de vue.

Les «consciences» ont toutefois certaines perceptions com-
munes. De (I') on tire encore les relations :



THEORIE DE LA RELATIVITE 311

8 —1
T mm — v
€Ty =¢,t + — X, 2

(10)
gy et B et
02— "0 afa 1
Sil’on est sur S,, on a
Ady =10
d’ou
Ay = Al ;

ainsi, les horloges vont également vite pour C, et C. Mais il y a
plus; C et C, par exemple, peuvent chronométrer leur systéeme
S, en envoyant des signaux brefs, de vitesse quelconque. Dans
ce cas en effet, puisque les signaux sont brefs, le systéme S, que
nous utilisons pour les produire se réduit & un point: P'origine
0,, et 'on aura :

c’est-a-dire

En d’autres mots, lorsque C, ne fait que se contempler lui-
méme, il se voit comme C le voit. Par contre, lorsque C, regarde
a la fois et lui et un autre systéme, il change sa physionomie
pour s’adapter en quelque sorte a celle du systéme qu’il regarde
passer; il posséde, pour ainsi dire, un certain « pouvoir d’accom-
modation». C’est ce qui résulte du reste de I’équation (5), qui
exprime la «contraction » de Lorentz. Le premier membre,
comme le second, est une fonction de o, ¢’est-a-dire de la vitesse
relative des deux systémes, ce qu’on peut exprimer en disant que
le systéeme de comparaison S, a un pouvoir mensurateur variable,
au lieu de dire, comme on le fait communément, que c’est le
systéme mesuré qui subit une contraction, — dont, au demeurant,
il ne s’apercoit pas. Nous retrouvons sous une autre forme cette
subjectivité que nous avons déja signalée, et qui introduit «un
degré de relativité de plus», selon I'expression de M. Darlu (Toc.
cit.). C'est par cette sorte de double relativité que la transfor-
mation de Lorentz différe profondément de la transformation
galiléenne, simplement relative, quoique, physiquement, la pre-
miére n’exprime rien de plus que la seconde lorsque tous les
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points soht supposés au repos relatif dans leurs systémes
respectifs.

§ 3. -~ CAS OU LES POINTS SONT EN MOUVEMENT DANS LEURS
SYSTEMES RESPECTIFS.

Ce qu’il y a de vraiment nouveau dans la transformation de
Lorentz n’'apparait que dans le cas ol les points de chaque
systéme sont eux-mémes en mouvement. On peut alors déduire
de la transformation une regle remarquable pour la composi-
tion des vitesses, qui conféere & la Théorie de la relativité son
caractére cinématique propre. Ce sera le grand mérite d’Eins-
tein d’avoir mis en lumiére cette regle simple, qui contient les
résultats fondamentaux de I’Electrooptique. Il nous reste & en
donner D'expression en fonction de la variable . Auparavant
quelques éclaircissements s’imposent

Si l'on dérive I'équation (9) par rapport a £, on obtient évi-
demment, en désignant par ¢, et ¢,,les dérivées de z, et de x,
relativement & cette variable :

Qiz = Gap T ¥ (11)

soit la reégle ordinaire, cas particulier de la regle du parallélo-
gramme. Il semble donc que nous n’avons rien gagné, et que
nous ne sortirons pas de la cinématique classique. Ce serait
vrai si 'on voulait que z, et x, se rapportassent au méme point
de I’ « Espace », au sens que I’on donne habituellement a cette
expression. Il n’en est plus ainsi lorsqu’a un point , d’un syste-
me on fait correspondreun « conjugué » z, dans autre; la liaison
entre les mouvements de x, et de x, peut alors étre absolument
quelconque; a un point z, de 8, il est possible de faire corres-
pondre ainsi une infinité de conjugués dans S,. Illustrons ceci sur
un exemple. Imaginons qu’un minuscule ver luisant se promene
sur une surface transparente agencée rigidement a une lentille,
et supposons que nous déplacions le tout au-dessus d’une feuille
de papier. Si I'on veut calculer la projection sur la feuille de la
trajectoire absolue de I'insecte, nous appliquerons évidemment
la régle du parallélogramme ; si, par contre, nous voulons avoir
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la courbe décrite par son image, nous devrons appliquer une
autre regle, etil sera parfaitement possible d’établir une formule
qui permette de calculer directement la vitesse de cette image
lorsqu’on donne la vitesse de Pinsecte sur la surface et celle du
systéme surface-lentille par rapport au papier.

Cela dit, envisageons la transformation (I). Nous allons en
déduire deux regles fondamentales pour la composition des
vitesses. Appelons respectivement q,,, @,y Qiz» €45 Qaxs Qays Qazs Co
les dérivées par rapport & ¢ des variables x,, ¥,, 2, %,; Z,, ¥,,
2y, U,; ces dérivées seront elles-mémes, dans le cas général,
des fonctions de ¢. Nous obtenons le systéme :

() Gz = B(Gox + acg) 5 ¢, = Bleg + agoz) 3 ¢y = Gsy >

91z = G2z »

qui donne ce que nous appellerons la regle de composition exté-
rieure des vitesses. ,

La regle de composition inférieure s’obtient en rapportant les
vitesses & Jeurs horloges-meres respectives. A cet effet, nous trai-
terons les vitesses comme des quantités homogénes. Le systeme
(II) représente alors une homographie, ce qu’on pourrait nom-
mer une « homographie cinématique» dans un espace représen-
tatif & quatre dimensions. Pour avoir les vitesses dans I’espace &
trois dimensions, nous formerons les quotients par rapport a
¢, et & ¢,, et nous donnerons a ces dernieres la valeur particu-
liére ¢,, comme on le ferait pour des coordonnées spatiales. On
obtient ainsi le systéme:

(III} 955 — &x L % — Qs Q2 Q.

o ot ®Qur ' € B+ %Qux) | €4 Ble + aQun)

Cest la regle de composition des vitesses d’ Finstein exprimée
en fonction du parametre t, comme il est facile de le vérifier di-
rectement.

La figure 3 montre les relations projectives entre les g, @, c,,
€,, €y, toujours i I'aide d'un systéme de variables auxiliaires
imaginaires. |

Les formules (II) forment un groupe identique au groupe de
Lorentz.. Les formules (II1) forment un nouveau groupe, prove-

Arcmives, Vol. 46, — Décembre 1918, 23



314 THEORIE DE LA RELATIVITE

nant de la propriété additive de la tangente hyperbolique,
comme nous le verrons un peu plus loin.

Les vitesses homogénes contiennent ce qu’il y a de vraiment
nouveau dans la Théorie de la relativité, et qui est irréductible
au dualisme éther-matiere qu'on a essayé en vain, pendant un
siecle, d’adapter aux phénomenes. Aussi convient-il de bien se
rendre compte de la signification du nouvel algorithme. A cet
effet, nous allons examiner les applications les plus importantes
des formules ci-dessus. Nous commencerons par les formules
(III). Les relations (II) trouvent leur signification dans ’expé-

Cq, \i
Z
€A
]
Co \ Co
gr*
Qa
1]
Q sz Qax

Fig. 3.

rience toute particuliére de Michelson et Morley, dont nous par-
lerons plus tard. '

Pour fixer les idées, considérons d’abord I'illustration la plus
remarquable du systeme (ILI): la célébre expérience de Fizeau
sur I’entrainement « partiel » des ondes Jumineuses par les mi-
lieux en mouvement.

Expérience de Fizeau. — Débutons par quelques remarques.
Si T'on envisage un point X, et son conjugué X,, tous deux en
mouvement uniforme dans leurs systémes respectifs, nous
aurons les relations

Xim= Quat 1 Xgo= Qupid o

ol Q,, et Q,, sont liés parla premiere des équations (III). On
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voit qu’a I'instant ¢ = 0, les points sont aux origines O, et O,,

qui coincident; puisils se séparent, X, prenant de ’avance sur

X,, et leur distance relative augmente proportionnellement au
vQ1.’r QE.’E

temps, le facteur de proportionnalité étant — . o1 X, se

%

meut avec la vitesse de la lumiere ¢, dans S,, il en sera de méme
de X, dans S,, L'écart entre les fronts lumineux est alors cons-
tamment égal & la distance 0,0, = vt des origines des systemes.

Cela dit, supposons que le systéme S, soit un milieu d’indice
n. La vitesse de la lumiére dans ce milieu, pour I'observateur
lié au systeme S, , sera:

sz =

S |»

Quant & S, , peu lui importe de savoir ot sont « réellement » les
ondes vues par S,. en entendant par 1a les positions que don-
nerait la Cinématique classique. Ce qui importe, c’est de savoir
comment le train d’ondes va se comporter pour S,;il y a alors
une sorte de phénomene d’aberration, une « pseudo-aberration »
dans les vitesses. En appliquant la premiére des formules (III),
on trouve en effet :

Bt g
le:“ﬁf“v_z%'f‘v('l—%g) )
¢ PEP y
en négligeant les termes en v?. Et 'on voit que tout se passe
pour S, comme s8'il y avait entrainement partiel des ondes par le
milieu en mouvement. On retrouve le coefficient d’entrainement
de Fresnel.

Aberration. Phénomeéne de Doppler. — Si 'on pose :

Qr =1 0089, ;3 Qpp=1c, cos g ; Q,y = ¢, cos $, ;

Q;y = ¢, cos g 3 wee

on obtient en substituant dans (III) :

cos o, + « cos ¢
S T2 " | - 2 o
cos o, =— z_ cos §, =
1= + a cos g, ’ T BT+ «cos gp)
cos 7
cos 7, = 7 ks

(I + o cos g) °
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formules qui expriment 1’aberration. On trouverait encore ces
formules en identifiant deux vecteurs lumineux proportion-
nels & :

2r 2x

sin - (u, — Lx, — myy, — nyz) ;5 sin — (uy — Ly, — myyy — nyz,),

y Xy

oul,, m, n,, l,, ... représentent, pour abréger, les cosinus ci-
dessus. On trouverait, en plus, la relation suivante entre les
longueurs d’onde %, et %, dans le vide par rapport a chacun des
systémes :

e h = ¢, A

171 2 °

Divisons cette équation par ¢,, et posons :

qui exprime le phénomeéne de Doppler dans sa forme générale.
Il est tres satisfaisant, au point de vue physique, que ce phéno-
méne soit rattaché aux variations de la vitesse de la lumiére.
Dans la théorie sous sa forme ordinaire, le phénoméne de Doppler
reste inexplicable.

Electrodynamique. — Les équations (I) et (III) laissent inva-
riantes les équations du champ électromagnétique de Maxwell-

Lorentz :

oX
Q].’)?Pl + O—I -

U,

oN, oM,

byl 0z

1

ou X, Y, Z sont les composantes du champ électrique et L, M, N
celles du champ magnétique; ¢ est la densité électrique. L’'appli-
cation de la transformation conduit aux expressions connues:

52:[3“ — aQ, ) e, » X2:X1 ’ Y2: 5(Y1 ——och) ,
Z, = B(Z, + aM,) .

dont la premiere donne la relation remarquable

Ea

’
C

e P
¢ 2

entre la densité électrique et la vitesse de la lumiére.
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~ Comme nous n’avons pas la contraction, le volume est un in-
variant, mais la quantité d’électricité n’en est pas un, contraire-
ment & ce qui a lieu dans la théorie ordinaire. Pour une charge
e, liéed 5,,ona:
& = e, 5

Equations de la Dynamique de Uélectron. Accélérations rap-
portées aux horloges-meres. — On établit ces équations par un
passage & la limite. On suppose que la forme newtonienne :

masse > accélération — force

est valable, et ’on cherche comment la masse du point varie
avec la vitesse. Soient m, la masse, e, la charge d’un électron
pour un observateur au repos par rapport au point, I', et T, les
accélérations par rapport a S, et S, respectivement. Placons-
nous sur S, et supposons que le point a la vitesse » & I'instant
considéré; il est alors au repos relatif sur S, et coincide avec son
conjugué sur S,. Le probléme consiste & chercher comment on
peut passer des équations :

m,\Lyre = €X, 5 mDyy = €,Y, ;3 m [y = €,Z,
valables pour S,, c¢’est-a-dire au repos, aux équations :
mel'yy = X, 5 mylyy =Y, ; m;I'; = e,

valables pour S,, c’est-a-dire lorsque le point est animé d’une
vitesse v. Pour résoudre la question, dérivons par rapport a ¢,
dans nos hypothéses, la premiére, la troisiéme et la quatrieme
des équations (II). On obtient simplement :

Yex = BYiz i Yoy = Ty 5 Yoz = iz s

ol les ¢ désignent les dérivées des ¢ par rapport a¢. D’autre part,
on a dans notre cas :
Be, =g -

Pour avoir les accélérations I', et T',, rapportées a leurs horlo-
ges-meres respectives, il faut diviser les trois premieres de ces
relations par le carré de la quatriéme, et, dans le résultat ob-
tenu, remplacer ¢, et ¢, par ¢,, comme nous I’avons fait pour les
vitesses, Cela donne :

Py = Bl 5 sz = @2F1y ;0 Dy = BTz .
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En tenant compte des relations ci-dessus, on en déduit les
formules suivantes connues entre la masse au repos m,, la masse
longitudinale m, et la masse transversale m, ou m, :

m m
9 my =— m; = 0

mx:m_:‘-—‘:?a;

Ces relations sont bien vérifiées par I'expérience *.

Kxpérience de Michelson et Morley. — Cette expérience tient
une place spéciale et doit son importance & une question histo-
rique. Pour bien en fixer la signification, envisageons d’abord
un phénomeéne trés simple : la propagation des ébranlements
lumineux émis par une certaine source. Cette propagation
mesurée dans le systéme S, a la valeur c¢,; mesurée dans le
systéme S,, elle a également la valeur ¢,. Mais on peut se de-
mander quelle est la valeur de la vitesse dans S, pour S,, com-
patible avec la théorie. Cette valeur spéciale n’est pas, bien en-
tendu, directement accessible a ’expérience. L’expérience inter-
rogée donnera toujours c¢, pour la vitesse de la lumiére. Néan-
moins, théoriquement, la question comporte une réponse. Voici
comment le probléeme se pose. On installe sur le systeme S, des
appareils pour faire une certaine expérience d’interférences. A
cet effet, il y a un miroir & I'origine O, et deux autres miroirs
M, et M, sur les axes z, et y, respectivement, & la méme distance
d de O,. Si des rayons lumineux vont et viennent entre ces mi-
roirs, il est évident que I'intervalle de temps a?,, employé par un
faisceau lumineux pour parcourir la distance O,M, 0, = 2d,
est égale a I'intervalle de temps at,, employé par le faisceau qui
parcourt le chemin O,M_O, = 2d, pour les observateurs en-
trainés avec S,, puisque la vitesse de la lumiére est invariable-
ment ¢,, et ’on a simplement :

Y a-t-il encore égalité pour un observateur qui se trouverait
sur S, et verrait passer les appareils devant lui? Ce sont les
équations (II) qui permettent de répondre & la question posée.

! Goyr, Ch.-Eug. et Rarnowski, S. Arch. 1911 ; Guye, Ch.-Eug. et
Lavaxcay, C. Arch. 1917.
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Les deux premieres donnent :

Gox = BlGya — ac;) ; ¢, = Blc, — ag,y) -
1° Faisceau O, M 0,. — Dans leur direction, on a :
. Gz =0 Gz = ac, = ag,
d’ou :
iy = Py (1 — @) = l/c: — 2
donc :

2d
Ve
0
2° Faisceau O,M_0,. — On a tout de suite, puisque dans
ce cas '

At]?} —_—

Q=0 =0 4
, (Ca) gy = Bleo — ) 5 (e)_p = Bleg + ) ;
donc :
2d

et 'on a bien

Ainsi, non seulement les durées sont égales entre elles pour
S,, mais elles sont données par les mémes expressions que dans
la théorie sous la forme habituelle. Suivant cette théorie, les
longueurs sont « contractées » ; on applique la régle du parallélo-
gramme — parce que les vitesses sont rapportées au méme sys-
teme de comparaison — et I'on remplace la longueur 4 par la

longueur moindre - d . Selon notre point de vue, les longueurs
restent intactes, malb les vitesses ne s’additionnent plus selon la
régle classique; elles sont augmentées dans le rapport 3. Les
résultats sont identiques; en particulier, les durées pour les ob-
servateurs liés a S, et ceux liés a S, sont différentes et conformes
a ce que nous avons dit plus haut (page 295).

§ 4. — SIGNIFICATION PHYSIQUE DE LA THEORIE
DE LA RELATIVITE.

En conclusion, nous voyons qu’on peut répondre par l'affir-
mative & la question que nous nous étions posée: les résultats
de ]a théorie de la relativité peuvent s’exprimer indifféremment
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en temps local ou en temps universel. Les deux points de vue
sont également justifiés et physiquement indiscernables. L’intro-
duction d’un parameétre ¢ pour exprimer le temps conduit de
plus & des représentations simples :

1° Lorsque les points sont au repos relatif dans leurs systémes
respectifs, ces systemes se meuvent comme des touts rigides
ordinaires.

2° Lorsque les points sont en mouvement dans leurs systémes,
a un point de 'un correspond un conjugué dans l'autre. La cor-
respondance est univoque et. réciproque.

Il convient maintenant de voir s’il est possible d’attribuer
une signification physique a la théorie sous sa nouvelle forme,
en d’autres mots, s’il est possible de la stigmatiser par une
umage simple. '

Commencons par quelques remarques. Lorsque deux systémes
S, et S, se meuvent conformément  la transformation galiléenne:

x, = x, + vt ,

nous disons qu’ils se meuvent comme des touts rigides ordinaires.
De plus, nous postulons que les abscisses x, et x, se rapportent
a4 deux points de S, et de S,, qui sont au contact & 'instant con-
sidéré, ou encore, imaginant quelque systeme absolument im-
mobile, nous affirmons que ces abscisses concernent le « méme »
point de I’ « Espace ». Or, rien ne nous oblige a tenir un pareil
langage. Nous pouvons parfaitement admettre que I’équation
précédente n’exprime qu’'une correspondance ponctuelle entre
les points des deux systémes, indépendamment de leurs posi-
tions « réelles » dans ’Espace, c’est-a-dire conformes a celles du
groupe euclidien, en supposant qu’elles soient déterminables.
C’est ainsi par exemple que des observateurs enfermés dans un
wagon et regardant passer un autre wagon sur une voie paral-
lele, ne verront pas celui-ci 1a ot il est « réellement », §’ils font
leurs observations & travers des milieux réfringents. Si les
observateurs ne peuvent sortir de leur wagon et faire des expé-
riences qui permettent de repérer les positions relatives des
wagons conformément aux regles de la Mécanique classique, ils
en seront réduits a considérer comme « réelles » les positions
que nous appelons « apparentes ». '
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D’autre part, envisageons la régle de composition des vitesses
(II). Au premier abord, on pourrait se demander s’il ne serait
pas possible de ramener cette regle a une régle d’addition linéaire,
en se placant dans un espace a courbure convenable. On sait
que lorsquon substitue les arcs aux tangentes, on obtient une
semblable régle. Mais, si précieuse que soit cette transformation
pour I'analyste, elle n’intéresse guére le physicien. L’expérience
cruciale de Fizeau, a laquelle il faut toujours revenir, est 'expres-
sion concrete immédiate du théoréme d’addition (I1I), et non pas
de l'addition des arcs.

Quoi qu’il en soit, imaginons pour un instant qu’on ait ré-
solu le probléme, et qu’on ait trouvé un espace courbe tel que
les tangentes elles-mémes s’y additionnent linéairement. Qu’en
résulterait-il? On voit aisément que nous retomberions sur I'une
de ces diffficultés essentielles que nous nous sommes justement
proposé d’écarter ici en supprimant la « contraction » de Lorentz.
En effet, les observateurs dans chacun des systémes peuvent me-
surer ceux-ci, déterminer les angles, comparer les longueurs, etc.,
et, par définition méme, le résultat de leur étude ne pourrait les
conduire qu’a une seule conclusion : les systémes de coordonnées
sont des systémes trirectangles euclidiens. Deés lors, il faudrait
admettre que les systémes « apparaissent » euclidiens, tandis
qu’ils ne le seraient pas « en réalité », conséquence qui répugne
au meéme titre que la « contraction » de Lorentz’.

' C’est M. Ehrenfest qui, avec son célébre paradoxe, a le mieux montré
a quelle bizarrerie méne I’introduction du temps relatif et de sa compagne
la « contraction ». On sait que ce paradoxe est présenté par un cercle tour-
nant uniformément autour de son centre ; les éléments phériphériques, di-
rigés dans la direction du mouvement, subissent la «contraction », tandis
que les éléments radiaux conservent leurs longueurs, puisqu’ils sont per-
pendiculaires au mouvement. Il en résulte une figure inintelligible pour
tout observateur non entrainé avec le cercle. Car 1’observateur se forme sa
représentation en parcourant instantanément, par la pensée, tout Pespace,
alors que les mesures, conformément anx formules, sont basées sur le
« temps relatif », c’est-d-dire sur 'impossibilité de créer des vitesses supé-
rieures & une limite fixe (cf. p. 306). Seule Vintroduction du temps uni-
versel résout le conflit en supprimant la « contraction », partant, le para-
doxe. Quant & invoquer le champ de forces centrifuges pour expliquer le
paradoxe, c’est 1a un argument que nous ne saurions accepter. N’entrent
en jeu ici, en effet, que la transformation de Lorentz, c’est-a dire des con-
sidérations de cinématique pure.
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11 faut donc trouver autre chose.

Pour simplifier, bornons-nous a des systémes linéaires, en sup-
posant que ceux-ci se réduisent aux axes O, x, et O,x,, et con-
sidérons la premiere des équations (III). A premiére vue, il
semble que la vitesse v y joue un role privilégié. Pour bien
montrer qu’il n’en est rien et que la relativité est sauvegardée,
c’est-a-dire que nous avons a faire a un groupe, il suffit de po-

ser .

Qg:z: Qix
a=Q ; — = Qyy ;5 — = Qy -
€y €o

Nous avons alors trois systémes S,, S,, S,, dont les vitesses
relatives sont Q,,, Q,;, Q,;, liées par la formule :

Qup + Qu

), —
W =1 10,0,

(Qij = Qji)

qui montre effectivement qu’aucune d’elles ne joue un role spé-
cial. Entre deux quelconques des systémes, on peut établir une
correspondance telle qu’ils se meuvent I'un pour I'autre comme
des touts rigides ordinaires, conformément aux relation :

Xio = X5y + Qpt )
Xp3 = X33 + Qut (Xe; #= Xj4) -
Xg1 = X, 3 + Qq¢

A ces trois formules correspondent trois représentations difté-
rentes, selon le systéme sur lequel on se suppose placé. Repre-
nons pour un instant ’expérience de Fizeau. Le milieu réfrin-
gent, consistant en un courant d’eau, forme le systéme S,, tandis
que les parois du tube parcouru par le courant et liées aux appa-
reils optiques composent le systéme S,; le systeme S, est alors
formé des ondes lumineuses qui cheminent dans I’eau, La posi-
tion de ce dernier systéme, & un instant donné, est différente,
selon qu’on le considére dans ses relations avec S, ou avec S, ;
il y a «aberration», dirons-nous, et pour S, tout se passe comme
¢'il y avait «entrainement partiel », tandis que pour S,, S, est
totalement entrainé.

Or, ce que nous venons de dire du train d’onde peut — en
vertu de la symétrie des formules — étre répété exactement soit
pour I’eau, soit pour les parois du-tube, selon le systéeme sur le-
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quel on se suppose placé. Ceciexige, physiquement, qu’il n’y ait
pas de différence essentielle entre la nature des ondes lumi-
neuses et celle de la matiére, liquide ou solide. Et en effet, dans
la Théorie de la relativité, la masse matérielle est variable avec -
la vitesse relative, et I’énergie posséde de la masse d’inertie.
Ainsis’évanouitle dualisme éther-matiére, d’une part,et, d’autre
part, 'idée primitive de la matiere considérée comme un tout
parfaitement délimité et éternellement immuable. L’interpréta-
tion que nous proposons s’accorde donc bien avec les conclusions
généralement admises dans la théorie.

Nous pouvons faire un pas de plus et symboliser d’un mot la
signification physique de celle-ci. Les équations (III) représen-
tent I'aberration, lorsque le systeme S, se compose de rayons
lumineux, comme nous I'avons vu plus haut. Si nous nous pla-
cons sur ces rayons S,, I’ensemble des systémes S, et S, offrira
une certaine configuration, et comme nous admettons que notre
systéme S, ne differe pas essentiellement, quant & sa nature, des
systemes 8, et S,, nous pourrons encore dire que ceux-ci pré-
sentent, pour nous, une certaine aberration. Généralisant ainsi
la notion d’aberration, nous parviendrons & la conclusion fonda-
mentale suivante :

La Théorie de la relativité exprime, physiquement, une aber-
ration généralisée.

La figure 4 montre, dans le cas spécial envisagé, les trois con-
figurations que forme ’ensemble des systémes S,, S,, S; les uns
par rapport aux autres, selon le systeme sur lequel on se place.
I1 est aisé de voir que les 3 cas représentés correspondent aux
3 bissectrices £ = 0 des angles x,0x,, x,0x,, 2,0, du gra-
phique analogue a celui de la fig. 1 et établi pour 3 systémes.
Nous laissons au lecteur le soin de faire les figures dans le cas
plus général de I'aberration astronomique (p. 315), ou les sys-
témes sont la Terre, une étoile et un rayon lumineux.

« Aberration » signifie phénoméne qui met en évidence les
mouvements autrement qu’ils ne s’effectuent « réellement ».
Nous pouvons dire que les positions relatives des systémes, exi-
gées par la Théorie de la Relativité, sont les positions acfives pour
tous les phénomenes classifiés par cette théorie. Il s’introduit
ainsi une nouvelle relativité, qu’on appellera, si I'on veut, « re-
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lativité de la localisation », mais qui a un sens concret facile-
ment accessible, ce qui n’est pas le cas pour la « contraction ».
Quelles sont maintenant les positions « réelles » des systémes,
c’est-a-dire conformes a la cinématique euclidienne ? Il est bien
évident qu’il ne peut y avoir aucun phénomeéne rentrant dans
le cadre de la théorie et permettant de répondre & cette ques-
tion. Mais rien n’empéche d’espérer qu'on découvrira un jour
quelque phénoméne entierement étranger a la théorie et qui
rendra possible la solution de la question. On sait, par exemple,
que la vitesse de propagation d'une discontinuité dans ’air est
supérieure a la propagation du son. Peut-étre trouvera-t-on le
moyen de créer des ébranlements se propageant dans le vide

S,

51_5

23 b
Fig. 4.

bien plus rapidement que les perturbations électro-magnétiques.
La théorie de ces nouveaux phénoménes nous conduirait alors
A assigner des positions « actives » aux systémes de référence,
différentes de celles qu’exige la Théorie de la Relativité. Si, de
proche en proche, nous étions capables de produire ainsi des
ébranlements animés de vitesses de plus en plus grandes, nous
pourrions arriver a assigner aux systémes des positions actives
de plus en plus voisines de celles que postule la cinématique
euclidienne, qui correspond au corps solide parfait et a la pos-
sibilité d’échanger des signaux avec une vitesse infinie. A la
limite, les trois configurations offertes par I’ensemble des sys-
temes S,, S,, S, se confondraient en une seule, comme c’est le
cas dans la Mécanique classique. Du reste, pratiquement, la vi-
tesse de la lumiére est déja si grande vis-a-vis des vitesses mé-
caniques, que les trois figures ci-dessus different tres peu les
unes des autres.
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Mais, théoriquement, nous ne serons satisfaits que lorsque
nous aurons atteint le cas limite, car ce n’est qu’d ce moment-
12 que nous pourrons affirmer que nous possédons une image
de 1'Univers répondant sans restriction au principe de solidi-
fication. Dans ce cas, en effet, on obtiendra toujours la méme
configuration pour I'Univers entier, quel que soit le mouvement
du systeme sur lequel on se trouve & l'instant ¢ de la solidifi-
cation.

Dans la Mécanique des milieux continus on envisage déja
trois sortes d’opérations: la translation, la rotation et la défor-
snation. Par les considérations développées ici, nous ajoutons
une quatrieme et nouvelle opération aux précédentes: 'aberra-
tion. Dans la Théorie de la Relativité, les systémes subissent
une aberration sans déformation. On peut se demander si, dans
la généralisation proposée par Einstein pour englober les phé-
nomenes de gravitation, I'aberration avec déformation suffira a
la description des phénomenes, ou §’il y aura lieu d’introduire
encore de nouvelles opérations.

CONCLUSION.

Résumant les résultats de notre étude, nous voyons que l'in-
troduction du Temps universel dans la Théorie de la Relativité
permet de substituer aux concepts trés abstraits de « temps
relatif » et de « contraction » de Lorentz, les notions physiques
claires de phénomenes de Doppler pour la marche des horloges
et d’aberration pour la localisation des systémes, lesquels se
meuvent deux & deux comme des touts rigides euclidiens indé-
formés*.

! Faisons remarquer que cette importante conclusion délivre la Physique
des corps «relativement » solides, « relativement » élastiques, ete., qu’on
avait dt inventer pour satisfaire au temps « relatif ».
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