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1918 Vol. 46 Octobre

SUR LA

THEORIE DU COURONOIDE

PAR

C. CAILLER

§ 1. — Les pages suivantes se rattachent & I'article paru dans
le dernier numéro des Archives® sur les rapports existant entre
la Géométrie non euclidienne de Riemann et la Cinématique des
figures sphériques mobiles & la surface de leur propre sphére.
Le but de ce travail était de mettre en évidence I'identité sub-
stantielle des deux théories.

Pour y parvenir il a fallu toutefois modifier sur un point
essentiel la physionomie de la Cinématique classique. Celle-ci,
en fait de mouvements, ne connait que ceux par le moyen
desquels la figure solide se déplace sur la sphere: elle ignore les
antidéplacements qui font correspondre & toute figure une autre
figure solidairement liée & la premiere. Il faut mettre sur pied
d’égalité ces deux catégories de mouvements: c’est seulement
aprés avoir composé un groupe général, avec les deux sous-
groupes des déplacements et des antidéplacements de la figure
sphérique, qu’il sera permis d’identifier la Cinématique et la
Géométrie de I'espace E; .

Parmi les avantages de ce passage & 1'espace E;, j'ai déja si-
gnalé la possibilité d’un classement rationnel des mouvements
a la surface de la sphere. C’est évidemment le degré de la
courbe ou de la surface représentatives du mouvement dans E,,
qui fournira la mesure de la simplicité.

A ce point de vue, la rotation autour d’un centre fixe, étant

1 Arch. 1918, vol. 46, p. 119-150.
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192 SUR LA THEORIE DU COURONOIDE

représentée par une droite de E;, constitue le mouvement le
plus simple a un degré de liberté: il y a ici accord entre les
anciennes et les nouvelles conceptions. Quant aux mouvements
A deux degrés de liberté, la Cinématique ordinaire les relegue
au second plan, et ne sait rien du plus simple d’entre eux, le
Couronoide.

Peut-étre, en raison méme du role important dévolu au
couronoide dans toute la théorie, n’est-il pas hors de propos
(’insister quelque peu, ne fat-ce que pour expliquer une diffi-
culté singuliére qu’on rencontre quand on aborde la théorie par
la voie analytique élémentaire. On prend alors, et tout natu-
rellement, pour point de départ la définition du couronoide
donnée par M. de Saussure, la seule valable en Géométrie plane,
suivant laquelle le couronoide est le liew de toutes les fleches qui
sont réflexes d'une fleche fize par rapport aux grands cercles de
la sphére, _ ,

Or le calcul indique d’abord que le couronoide ainsi défini
attache deux fleches & chaque point, et non pas une seule: ce
résultat paradoxal, contraire a la construction géométrique,
provient du fait que I'équation qui s’offre la premieére pour
traduire la définition précédente représente en réalité I'en-
semble de deux couronoides conjugués au lieu d’un seul cou-
ronoide. C’est ce que je me propose de montrer tout d’abord.

§ 2. — Une fleche est I'association de deux points = et y,
rangés dans un certain ordre, dont I'un fait fonetion d’origine,
Pautre d’extrémité de la fleche. Comme la longueur de la fleche
est arbitraire, rien n’empéche de prendre la distance sphérique
2y toujours égale & un quadrant. Nous définissons donc la fleche
ay par les formules

qui traduisent ces différentes conditions. 7
Avec la précédente, prenons une nouvelle fleche z'y’, et de-
mandons-nous comment on reconnait que les deux fleches sont
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réflexes, autrement dit, symétriques relativement & un grand
cercle de la sphere.
A une méme distance s des origines respectives, prenons sur
chaque fleche un point X, ou X’. Nous avons!:
X=uxcoss 4 ysins,

X'= ' cos s + 3" sins ;
le milieu £ des points X et X' est déterminé par les formules
of = (x + «’)cos s + (y + »’) sin s ,

ol p représente un facteur scalaire de proportionnalité.
Le lieu des points £, quand s varie, est évidemment un arc de

grand cercle, dont le pole est placé sur la sphére dans la direc-
tion du vecteur :
[ + 2"y + 2]

D’autre part, le pole de 'arc xx’, est placé suivant le vecteur
[zx]. Pour que les fleches (z, y) et (2, /') soient réflexes, il
faut que les poles des deux arcs précédents soient & la distance
d’un quadrant. On doit donc avoir:

([# + 2,y + ], [*, &]) =0,
équation qui moyennant quelques réductions faciles peut s’écrire
sous la forme : |
Zx(x + ) 2x' (y + y) = Zx(y + ) Bl (x 4 &) 2.
Or,ona
Extem Byt o= 8, BV By o ke, (1)
Duy = Daly! =0 .7 . . s (2)
Par suite, la relation ci-dessus se réduit a
(1 + Zxa') (Zx'y — Zxy') =0 .
On voit aisément que la condition Zzxz’— — 1 peut étre né-

! Ces formules, et la plupart des suivantes, possédent une signification
vectorielle; dans chaque équation, on peut mettre au pied de chacune des
lettres «, 2, X, ete., Pindice 1, 2, ou 3, le méme pour toutes les lettres.

> Les sommes sont relatives aux diverses ‘coordonnées de chaque point
ou vecteur. ' : :
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gligée, et ainsi, pour que les deux fleches soient réflexes, il faut
avoir :
(@y) = (") ; (3)

cette équation sera donc celle du couronoide, si on y considére ',
et ' comme donnés et constants®. Nous allons voir que cette
condition peut se décomposer en deux autres?

A cet effet, considérons 1'expression

A=1—(xx)?— ()’ =1 — (;);:r’)A2 —(a'y)?
ou

2 3 2 ’ ' r 2 ’ .2
A—x + =, + x, — (rx, + xx, + ra) — (2, + x,y, + x7,) -

En vertu de (1) et (2), ', " sont deux vecteurs unités rec-
tangulaires ; donc nous pouvons écrire sous forme carrée

A= gwl ('3 ], + 2y [2)')y + > [y, % ' (4)

et aussi, en raison de la symétrie qui existe entre les lettres
accentuées et les lettres simples

A= {a[m), + ool + ol (5)

Egalons les deux valeurs de /A, tirées de (4) et (5), nous
obtenons :

&y i@y &,
r ’
x, x, T, =0
r !
¥, oy 7 ¥, 0

De 14 résulte que si les fleches sont réflexes, on doit avoir,
soit les équations vectorielles

Y+ =ax + bx’ , (6)
soit encore
y—3y = cx —dx’ , ()

a, b, ¢, et d étant certains scalaires inconnus.

' Pour abréger, j’écris par exemple (x2') au lieu de a:lwi + xga:; -+ ccaa:; .

? Les équations Zy®> =1, Xoy — Zxy’, X2’y = Zxy/, ou les y sont
les inconnues, les autres lettres étant données, forment un systéme du se-
cond degré. 11 y a donc, ce semble, deux fleches y attachées & chaque point x
par le couronoide ; c’est le paradoxe dont j’ai parlé plus haut,
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Admettons, par exemple, le systéme (6) ; multiplions-le scalai-
rement par x — 2/, et employons les relations (1) et (2), 1l vient:

(®y') — (#'y) = (a — b) (1 — (xx")) .

En vertu de (3) le premier membre est nul, tandis que, en
général, (xx') est différent de I'unité. Ainsi on a a =0, et (6)
s'écrit en réalité

y4+3y =alx + ). (8)

La méme méthode, appliquée & la seconde équation vecto-
rielle (7), montre qu’elle doit étre de la forme

_y—y’:c(x-—x') : (9)

La détermination des facteurs de proportionnalité a et ¢ qui
figurent dans ces formules est immédiate. Par exemple, en mul-
tipliant scalairement la relation (8) par z, il vient

()) = a(l 4 (x2)) .
Dot
N L
T (ax) 41

Exactement de la méme maniére, nous trouvons

(xy”)
T jax’)— 1

A Tinspection de la formule (8), il est évident qu’elle traduit
la condition pour que les fleches (x, ) et (2, ') soient conju-
guées, ou symétriques par rapport & un certain centre; ce dernier
occupe la position moyenne entre les points d’application des
deux fleches.

De méme, la relation (9) exprime que la fleche (x, ) est con-
juguée a 'inverse de 'autre; ces fleches sont done »éflexes I'une
de l'autre, ou symétriques relativement & un certain arc de
grand cercle.

Et ainsi la formule
(xy') = (=)

correspond & la double condition®; cette relation représente a

I 11 est facile de le constater également par la Géométrie.
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la fois deux couronoides. L’un de ces couronoides admet la fleche
fixe (x', ¥’) comme fleche polaire, 'autre comme fleche réflexe.

La décomposition de la relation (3) en deux équations dis-
tinctes est d’ailleurs une conséquence directe des formules de
Rodrigues. : ‘

S1 on pose
2 2 2
x, =e, -+ 8 =il ¥, = 2(0102 —ee) .
. \ 2 2 2 2
x, = 2(ee + e,8,) Y, == e e e B
%, ‘== 2(_6163 — 8032) g, ¥, = 2(e,e, +ee) .
et de méme
: 2 2 13 12 rr U
=g O ey e €, = G Ji— 2(6182 i ?063) !
o [ A Y 2 o 12
x, = 2(ee, + ee.) . y,=¢ +e —e —e, ,
! r 7 s r r ! rr7
x, = 2(ee, — epe,) , ¥, = 2(ee, + ee)

on trouve, par un calcul facile,
(2'y) — (xy”) —-Q(ee'—}—ef"—l—ee"—l-eof) {'eefﬁepl—l— ee — ee)
of b= 00 11 2 g 38 ‘03 12 271 s o0 °

L’annulation des deux facteurs du second membre fournit les
deux couronoides représentés respectivement par les formules
(8) et (9).

§ 3. — Le couronoide attache une fleche & chaque point de
la sphére ; on peut donc distribuer ces »® points le long de oo!
courbes, de telle maniére que la fleche attachée & 'un quelconque
d’entre eux soit toujours dirigée suivant la tangente & la courbe
de la famille qui contient ce point: les dites courbes sont les
trajectoires du couronoide. Comme on sait, ces trajectoires sont
des cercles tangents entre eux en un point fixe'.

Les calculs développés plus haut fournissent d’ailleurs un
moyen treés rapide de retrouver ces trajectoires.

1 Je ne crois pas utile de reproduire ici la figure du couronocide. Le lec-
teur est prié de faire lui-méme le dessin appuyant les explications qui suivent.



SUR LA THEORIE DU COURONOIDE 197
Prenons I’équation du couronoide sous la forme (9), ou -

@)
F—Jr= (xx’) — 1

(€ — '),

et représentons en X,, X,, X, les traces sur la sphére des trois
axes coordonnés. La position de la fleche fixe f' (2/, ") étant
arbitraire, supposons cette fleche appliquée suivant X, X,, son
origine étant en X,, son extrémité en X,. Nous avons ainsi

= (1,0,0) , y.=10,1,40) .

Soient 7 et 0 les coordonnées polaires d'un point de la sphére,
ou

X = eos ;U= sin  cos 0 , Xy =— sin rsin b ;
si ce point est 'origine d’une fleche, ds 1'élément d’arc de la
trajectoive, les coordonnées de I'extrémité de la méme fleche
seront

©__d{cosr) _d . ‘ LA
e R A (sin 7 cos 0) =l (sin 7 sin 0) .
De plus
- : X o I (qu) - ‘ # " .
(xx. = cos 7 ;. {xy") = sinrcosb , e cot - cos 3

les équations différentielles, compatibles entre elles, des trajec-
toires sont ainsi
d cosr r

— — cot

ds 2

cos Br{cos ro— 1)

d si‘n rcos r g - :
—(——m—) — 1 = — cot 7 cos O . sin r cos §

d (siﬁ r sin 0 P ) i :
————— —= — ¢ot — cos 0 sinrsinl

En divisant la premiére de ces formules par la troisiéme nous
trouvons - o

d(l —cosr) 1 —cosr
d(sin r sin ) = sinrsin 6 °

d’ou, par intégration, - | o

1 — cos r — a sin r'sin 0
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ou encore
g5 r=asinib,

formule qui représente ! cercles tangents a l'arc X, X, au
point X, ; les ¢rajectoires affectent bien la forme qu’on leur
connait d’autre part.

§ 4. — La Cinématique des lamelles mobiles a la surface
d'une sphére est susceptible d’étre prolongée suivant deux di-
rections contraires, dans le sens extensif et dans le sens res-
trictif.

J'ai déja indiqué précédemment’ en vertu de quelles consi-
dérations la Cinématique de la figure sphérique comprend celle
du solide invariable se mouvant librement dans I'espace. Le
solide, quelle qu’en soit la forme, peut toujours se remplacer
par un feuillet, et le feuillet lui-méme est toujours assimilable a
une fleche dont les deux points extrémes se sont convertis en
droites par le passage du réel a I'imaginaire® Je ne reviens pas
sur ce point aujourd’hui.

La seconde généralisation sur laquelle je désire, au contraire,
m’arréter quelque peu est relative a la Cinématique des figures
planes se déplacant sur leur propre plan. Par rapport & la Ciné-
matique des figures sphériques, celle-ci n’est qu’une simple dégé-
nérescence ; pour arriver au nouveau cas, il faut, par un passage
a la limite, raisonner sur une portion infiniment pctite de la
sphére. '

Bien entendu cette hypothese relative & 'extension démesu-
rément réduite du corps solide mobile doit étre poursuivie d’'une
maniére conséquente; et cela ne va pas toujours sans certains
embarras. Citons-en un exemple particuliéerement génant.

De toutes les définitions du couronoide sphérique, la plus
naturelle est celle qui en fait le lieu des fleches conjuguées a
une certaine fleche fixe. Dans le passage au couronoide plan,

' Arch. 1918, t. 46, p. 122 et 123.

* Les points imaginaires de la Géométrie ponctuelle sont les droites
réelles de la Géométrie réglée. Quand Despace est euclidien, unité imagi-
-naire vérifie la condition * = 0.
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cette définition devient inapplicable: elle exige en effet que le
centre de rotation autour duquel doit chavirer la fleche du cou-
ronoide pour s’appliquer sur la fleche fixe soit & une distance
infiniment petite de cette derniére. On n’obtient de la sorte,
pour le couronoide plan, qu'une forme particuliére®.

C’est la raison pour laquelle on en est réduit, dans le cas du
plan, & considérer le couronoide comme le lieu des fleches réflexes
d’une fleche fixe, soit encore comme 1’ensemble des couronnes
ayant une fleche commune et dont les centres décrivent une
droite du plan. La méme raison fait disparaitre la notion des
couronnes conjuguées, et ne laisse subsister que celle des cou-
ronnes 7éflexes®.

Ce cas de la Cinématique de la figure plane se mouvant dans
son plan est assez important pour qu’il vaille la peine d’indi-
quer la forme limite que présente la théorie analytique: ce sont
les transformées des formules de Rodrigues qui joueront natu-
rellement ici le role principal.

§ 5. — Sur le plan de la figure, tracons deux axes coordonnés
X, X, et X,X, orthogonaux entre eux, et soient z,, x,, z, les
coordonnées homogeénes d’un point M, de maniere que ;2 repreé-

' el
sente ’abscisse, ;3 'ordonnée du dit point®.
;i
Soient, d’autre part, trois unités complexes i,, ¢,, ¢, jouissant

des propriétés suivantes

B e : _ (10)

W T Y — b A — iy 6 L == iy B 0.

Faisons correspondre au point M un vecteur du type

<Y

= &l = iTyty e Wl

! Toutes les fleches de ce couronoide particulier sont paralleles entre
elles : c’est le cas ol le point de contact des trajectoires du couronoide est
transporté a U'infini.

2 Sur ce point la nomenclature s’écarte de celle adoptée par M. R. de
Saussure. ,

3 Le lecteur est prié de s’aider d’un croquis.
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et & un mouvement du plan sur lui-méme un guaternion du type
P =P +7‘51P1 + Gpy + I3Py : 7 (11? ‘

Voici la définition de ce dernier. Si o est la grandeur® d'une
rotation qui s’exécute autour d’un point d’abscisse ¢,, d’ordon-
nee ¢, , NOUS avons

Po=cosw , py=sinw, py =c,sinw , p, = c;sinw ; (12)

si, au lieu d’étre rotatif, le mouvement était translatoire, et-que
le glissement fat paralléle et égal au vecteur 2a,; Qas, il faudrait
écrire a la place de (12) ‘

})0:1,p1:0,p2:—(13.1)3:c72. (13)

Dans les deux cas, le quaternion (11) est ummodulame ce qui
veut dire qu’on a dans le cas actuel

pte=1.

Cela posé, la formule du mouvement sur la sphére est encore
applicable ici, et 'on a de nouveau, dans le cas du plan,

E’:pfﬁ  ‘ (14)

Tout ealcul fait, les formules de changement d’axes qui viennent
se substituer aux formules de Rodrigues se preqentent 4 nous
comme suit '

a

x, = (p, + plla, = x, T
r 5 9 E
2 2(P1p3+P0P3)x + ( _Pl) “ZPUPIJJS d
. 5 2

,7,'3 — 2(p1p3 — pp)x, + 2p0p112 4 ( — p,)x,

La 1‘7 cmslatwn et la rotation des axes coordonnés sont traitees
dans ces équations d’une maniére toute semblable, il n'y a pas
a distinguer entre elles.

On trouve immédiatement, comme une conséquence des for-
mules qui préceédent, celles-qui fournissent la transformation
des coordonnées linéaires homogenes d’une droite (1¢,, u,, u,);
ce sont ' R

1 o est donc égal & la moitié de angle de'la rotation.
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11

= (p,+ P, 4, + 2(p,p,— PoP ¥, + 2(pp, + Py, u
(Pz_Pﬂuz _2Pop1“3 ’
2ppn,  + (P, — Py,

u

B I C R A

u

La non conformité de ces deux systémes, relatifs aux points et
aux droites, est un des embarras dont j'ai parlé plus haut: ils
rendent & certains égards la théoric des tleches plus complexe
dans le plan que sur la sphere1

§ 6. — Ilest clair désormais qu’ayant choisi une fleche initiale
/o pour compléter le systéme de repéres, toute autre fleche du
plan est caractérisée, relativement a (S, 7,), par le mouvement
qui amene f, sur f; autrement dit la fleche f est représentée
analytiquement a I’aide du quaternion

n=-e, + i,&, + ."292 —{-— ise, ,

soit de ses composantes e,. :
Quand on changera le S}steme de repeéres, les coordonnées
d’une fleche déterminéese transformeront suivant la formule

= rns .

Enfin la rotation qui conduit une fléche « sur une autre 4" a
pour représentant le quaternion

4

'n

Jusqu’ici, 'analogie avec la sphere est parfaite, les différences
des deux cas semblent inexistantes. Pour les mettre en évidence
il suffit toutefois d’opposer & la forme ancienne de l'invariant
de deux fleches, & quatre termes, ]a forme actuelle a- deux
termes seulement : o ' '

Cet invariant est égal & la partie qca!alre de la quantlte
1" n; en vertu des 10]8 de compomtlon contenueq dans les for-

' 1l est aisé de reconnaitre l’existence d’un invariant relatif a deux points,
cest (z, — y,)? + (2, — ¥,)% ou sous forme homogéne, (z,y, — ay,)*
+ (¥, — y,x,)°. Les coordonnées linéaires #, , u, , %, sont respectivement
égales aux déterminants @y, — Lt , LY, — T,Y; , LYy — LYy, €6 Uy, Uy
subissent évidemment une transformation orthogonale..
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mules (10), cette partie scalaire vaut
eoe; |- ele; s (15)

Qu’on projette donc les faits de la Cinématique plane dans un
espace E.: a une fleche correspondra un point de cet espace, de
maniere que le point et la fleche possédent les mémes coor-
données?’.

Mais I’espace F, est un espace non euclidien dégénéré; il n’ap-
partient ni au type de Riemann, ni au type de Lobatchewsky
ainsi que le fait voir I'’équation de sa quadrique fondamentale

(.’: e == 1.

La propriété métrique d’un tel espace, qui remplacera la rela-
tion trigonométrique de E;, se déduit immédiatement de la
forme de I'invariant (15).

Supposons que la fleche initiale £, subisse successivement deux

rotations d’amplitude « et «’. Nous aurons

e, == cosa , e1:sina ‘
' r ’ . I
e — cosa ¢ —sina ,
0 1
et de la
LA ! ’
€8, + elel_cos(q—x) .

Par suite, en revenant a I'espace E;; st un pownt P décrit deux
segments de droites, de grandeurs respectives o et o, la distance
qui sépare les positions finales est égale a « — o, cela quel que
soit Uangle des deux segments.

§ 7. — La propriété précédente est évidemment analogue a
celle qui appartient aux angles d’un triangle dans I'espace eu-
clidien ; mais, dans I’espace E;, elle concerne les cotés du tri-
angle, et forme le point de départ de la Géométrie de cet es-
pace, laquelle fait pendant 4 la Cinématique de la figure plane
mobile dans son plan.

Mais je remets 2 une autre occasion 'étude de cette Géométrie

! En vertu de la relation (14), la correspondance reste inaltérée quand
on change le systéme de repéres.
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particuliére, et je reviens & la théorie du couronoide plan pour
présenter une remarque a son sujet.

Au point de vue géométrique, il est évident que le couronoide
plan et la couronne correspondent au plan et & la droite de

Pespace E, ; mais la forme bindme de I'invariant
eoe; - ele'1 =0, (16)

entraine pour la théorie analytique de ces figures une petite
difficulté, qu’il est d’ailleurs facile de tourner.

L’équation générale du couronoide est celle d’un polynome
du premier degré & quatre termes

ayey + a,e, + aze; + azeg =0, (17)

elle ne saurait étre assimilée a (16) que dans des cas particuliers:
ce n’est donc qu’exceptionnellement, ainsi qu’on I’a vu plus
haut, que le couronoide plan se présente comme le lieu des flé-
ches conjuguées d’unc fleche fixe. Et il reste a trouver 'inter-
prétation géométrique d’une relation telle que (17).

Mais il est clair que le couronoide (17) admet, en fonction de
trois quelconques des fleches qui y sont vontenues, une repré-
sentation paramétrique du type

0= by + Ly 4 Igng (17%)

l,,1,,, désignant trois scalaires quelconques.

De méme la couronne, définie comme l'intersection de deux
couronoides, se représentera paramétriquement a laide de
deux fleches qui y sont contenues, comme suit

n = Ln, + by, . (17")

Les formules précédentes (17”) et (17") donnent ensuite
[“ql;l“] = ]2 [nl;]g] ’ (18)
et
["]1;1] — 12 [7117—12] -+ ]3 [7117_]3] ) ‘19)

dont I'interprétation est immédiate.
Suivant (18), I'intersection de deux couronoides est telle que
le centre de la rotation qui applique 'une sur I'autre deux quel-
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conques des fleches renfermées dans cette intersection est un
point fixe du plan'. (“est donc bien une couronne au sens viul-
gaire duw mot. ‘

De méme I’équation (19) signifie que les centres des t1‘01s
rotations (nyn,), (n,n5) et (a,n) se trouvent en ligne droite. Au-
trement dit, le couronoide est le lieu des positions d'une fleche «,
a laquelle on fait décrive successivement toutes les couronnes dont
les centres se trouvent en ligne droite®.

Si ’'on désigne par D I'axe commun de toutes les couronnes
en question, et par «, la fleche réflexe de =, relativement & D,
on voit immeédiatement qu'une fleche quelconque appartenant
au couronoide est symétrique de cette Héche 7, par rapport i
une certaine droite du plan.

De la sorte, on a retrouvé les deux deﬁmtlonq classiques du
couronoide plan.

§ 8. — Le principal intérét de la méthode que je viens d’es-
quisser, ¢’est qu’elle présente la théorie d’'une maniere stricte-
ment paralléle pour les deux cas des fleches situées dansle plan
ou sur laspheére:il n’ya de différence que quant aux propriétés
particuliéres qui caractérisent les quatel nions relatifs & chacun
de ces cas.

Mais celui du plan est susceptible de simplifications impor-
tantes. Quand on veut exposer la Cinématique des figures planes
d'une maniére indépendante, le mieux sera d’abandonner les
quaternions pour des moyens plus directs. Les quantités com-
plexes ordinaires suffisent en effet complétement pour présenter
la théorie analytique sous une forme a la fois claire et concise.

Le montrer dans le détail, en nous obligeant & des retours
superflus sur une foule de faits connus, allongerait ce mémoire
sans profit. Je me bornerai donc, pour conclure, & quelques
rapides indications concernant les équations du couronoide et

! 1l faut revenir ici & l’interprétation géométrique du quaternion re-
présentatif d’un mouvement, et se rappeler que 0,7 par exemple, est le
symbole de la rotation qui condultn sur 7.

? En changeant o, contre une autre fleche quelconque appartenant au
méme couronoide, la- description du couronoide suivant ce procédé sera
possible d’une double infinité de maniéres.
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de la couronne; elles suffisent pour faire comprendre le prin-
cipe de la méthode.

Soient, relativement & un systéme d’axes, = et y les coordon-
nées de I'origine de la fleche, z = x + yi la quantité complexe
qui en est Daffixe ; soient @ et b les cosinus dlrecteuls de cette
fleche, et A = a + bi.

Les quantités z et A caractérisent compléetement la fleche,
quant a sa position et & sa direction. Elles équivalent & trois
données réelles, car les cosinus a et b devant toujours vérifier la
condition a* 4 6* = 1, le module de A est égal & I'unité.

_ Cela posé, le groupe des déplacements (sous-groupe des mou-
vements au sens large) est représenté parles oc? transformations

z o0 ze™ ¢ A cv eWEA (20)

¢ est une quantité complexe quelconque qui représente la trans-
- lation des axes, tandis que o est réel et détermine leur rotation.

De son coté, le groupe des antidéplacements, autre sous-
groupe contenu dans le groupe général des mouvements, con-
tient les o transformations '

3z 4+ uA, A v eWiA Co(21)

avec deux parametres, I’'un " réel, 'autre  complexe quelconque.
Considérons une expression telle que

1 1
2

A EAT (z—2'), (22)

laquelle, outre les variables z et A, contient encore deux para-
melres complexes 2’ et A’, ce dernier unimodulaire comme A.
L’expression précédente est invariante par les substitutions du
groupe (20), pourvu que les paramétres subissent les transfor-
mations suivantes '

o ze 4, A’ o AleWl -, - (23)

tandis que les variables se transforment d’apres les formules (20).
Admettons en outre que les mémes parameétres subissent la
transformation *

1 Je désigne par u la conjuguee d’une quantité quelconque u, obtenue
en changeant ¢ en — 2.
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o uAd’, A~ A’ e™" (24)

alors que les variables se tr ansfmment selon le groupe (21) des
antidéplacements.

L’expression (22), invariante par le groupe des déplacements,
ainsi qu’on vient de voir, ne 'est pas pour celui des antidé-
placements; quand on lui applique les formules (21) elle aug-
mente de la quantité

1 1 1

1
A EATE (uA— ﬂA’) ,ou, tAA” ' — uA

wl =
(SR

AJ

Mais celle-ci, qui est la diftérence de deux quantités conju-
guées, est purement imaginaire. Ainsi, si 'on désigne par p_la
partie réelle d’'une quantité complexe p, on voit que I'’équation

1 1

[A_ﬂ Atz — z’j]r =0, (25

\

est invariante, relativement au groupe (20), comme relativement
au groupe (21); elle est donc invariante dans le groupe de tous
les mouvements au sens large.

Et puisque cette formule (20) représente évidemment une bi-
série de fleches, c’est ’équation générale du couronoide.

Quant & I'équation de la couronne, elle s’obtient d’'une maniére
plus immédiate encore.

Désignons par z, et v deux quantités complexes quelconques
constantes, il est clair que la relation

A g WA, (26)

ou A est la variable, représente une couronne; cette couronne
est centrée au point z,, son rayon est égal au module de la quan-
tité v, enfin les fleches qui lui appartiennent font avee le rayon
vecteur un angle égal et de signe contraire & 'argument de la
méme quantité v*.

Le couronoide (25) contient une double infinité de couronnes.
En effet, 2’ et A’ étant donnés, imposons aux parametres z, et v

! Pour transformer les unes dans les autres toutes les couronnes du plan,
il faut employer les antidéplacements et les déplacements, soit la totalité
de mouvements au sens large.
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de la couronne la condition!

— 2, +vA (27)

par le moyen de laquelle un de ces paramétres devient fonction
de 'autre arbitrairement choisi.

D’apreés les formules (26) et (27), nous avons
s—z =vA — A ;
et cette valeur, mise dans ’équation (25), la rend identique, car

1

- ?JA"":A'E‘L —0.

1
]

[VA': AT

Par suite, la couronne (26) appartient au couronoide (25) pourvu
que ses parameétres vérifient la condition précédente (27)%

Ainsi, si on prend deux couronoides de parameétres (z', A") et
(2", A") ils admettront toujours une couronne commune dont
les éléments (z,, v) se détermineront d’apres les conditions

’

4 ’

z + vA

- ” 14
z, +vA =3z

La dite couronne est I'intersection compléte des deux couro-
noides, ainsi qu'il est aisé de le montrer.

En cherchant enfin les équations des couronnes qui sont com-
munes, d’'une part aux couronoides (2, A'), (2, A”), de l'autre
aux couronoides (z', A") et (2”, A", on reconnait tout de suite
que les deux couronnes se rencontrent. Par suite, trois couro-
noides ont toujours une fleche commune, laquelle est d’ailleurs
unique. I1 est inutile de chercher les formules, trés simples, qui
fournissent explicitement en fonction des données la fleche com-
mune a trois couronoides, ou encore, car les deux problémes n’en
font qu'un seul, le couronoide contenant trois fleches données.

Mais j'avréterai ici ces bréves remarques suffisamment expli-

! 8i on regarde z et 2" comme deux fonctions des »ariables indépen-
dantes A et A’, les fleches correspondantes (z, A) et (¢/, A”) engendrent
deux couronnes (26) et (27) qui sont réflexes une de Pautre.

* Cette condition est nécessaire, en méme temps que suffisante, ainsi que
cela se voit facilement,

Arcnives, Vol. 46. — Octobre 1918. = 15
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cites pour tenir lieu de plus longs développements, et je ter-
mine par une derniére observation.

§ 9. — Les couronoides et les couronnes qui imitent la Géo-
métrie projective de la droite et du plan; jouissent d’une pro-
priété caractéristique, c’est d’étre invariants au sein du groupe
complet des mouvements, groupe formé, nous le savons, de la
réunion des groupes partiels (20) et (21) des déplacements et
des antidéplacements,

Or, on peat se demander si la méme imitation est possible en
employant, au lieu de la couronue et du couronoide, d’autres
monoséries et biséries de fleches qui ne seraient plus invariantes
que relativement a4 un seul des sous-groupes composants.

Sans traiter ici ce probleme qui admet une infinité de solu-
tions tant pour le groupe des antidéplacements que pour celui
des déplacements, je me borne A un exemple; il se rattache
immédiatement aux calculs ci-dessus,

Au lieu de’équation (25), qui est celle du couronoide, écrivons:

[A_m A’—m(:—z’—sA)] = (28)

r

m, s sont deux constantes données a priori, la premiere réelle,
la scconde complexe, tandis que A’, et 2', sont des parametres
variables. ' '
On reconnait immédiatement que les w? pseudocouronoides’
(28) se transforment les uns dans les autres par le groupe des
déplacements (20); ils sont tous, & la position pres, la reproduc-
tion de I'un quelconque d’entre eux. Par contre les pseudocou-
ronoides n'admettent pas le groupe des antidéplacements.
D’autre part, les intersections mutuelles deux a deux de ces
pseudocouronoides, au lieu de se disposer selon oo® monoséries,
ainsi qu'on devrait I'attendre a priori, n’en forment en réalité
que oo’ seulement; de méme I'ensemble des rencontres des o®

' J'étends a un cas plus général une locution que j’ai employée a pro-
pos d’un cas pazticulier dans mon premier mémoire sur la théorie du cou-
ronoide. Ce cas correspond & la valcur s — O du parameétre s. Si, en outre,

on a m—— -, le pseudocouronoide devient 'anticouronoide.

1
é,



SUR LA THEORIE DU COURONOIDE 209

plans de I'espace se réduit & o' droites seulement. Chacune des
pseudocouronnes admet pour équation la suivante!, avec les
parametres z, et v,

2m

=z, +sA + vAT | (29)

IR

et le pseudocouronoide contiendra o«® pseudocouronnes ; Ia con-
dition & vérifier pour cela se lit

-
=z, 4+ vA" .

On a ainsi, en apparence, reproduit les propriétés significa-
tives de la droite et du plan ;et il est vrai que, exclusion faite de
I'unicité des solutions qu’il faut expressément réserver, les
pseudocouronoides et les pseudocouronnes répéteront dans
leurs relations mutuelles les axiomes projectifs de la Géométrie
ordinaire. '

Toutefois, en raison de la structure du groupe des mouve-
ments, réduit a oo® substitutions au lieu de oo, il ne sera pas
possible de pousser plus loin I’assimilation, de I'étendre aux pro-
prieétés métriques; en un mot, on doit renoncer a projeter la
Géométrie nouvelle dans un espace E, dont les propriétés solent
analogues A celles de notre espace, ainsi qu'on le fait avec le
couronoide ordinaire.

! L'origine de la fleche qui déerit la pseudocouronne engendre une
courbe de espece des épicycloides.
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