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1918 . : Vol. 46 Septembre

SUR UNE INTERPRETATION EUCLIDIENNE

DE LA

GFOME[RIE DE -RIEMANN

A TROIS DIMENSIONS

ET SUR LA

CINGMATIQUE DES FIGURES SPHERIQUES
se déplacant sur leur propre sphére

PAR

C. CAILLER
(Avec 3 hig.)

§ 1. — GENERALITES.

Tout le monde connait I'interprétation de la planimétrie de
Lobatchewsky selon Beltrami; chacun sait que cette planimétrie -
exprime, dans le domaine euclidien, les propriétés des surfaces
a courbure constante négative, telles que la pseudosphére. Bien
plus immédiate encore est I'interprétation de la Géométrie rie-
mannienne & deux dimensions ; faits et formules transcrivent
simplement les propriétés classiques de la Géométrie ordinaire
sur les surfaces & courbure constante positive, la sphere par
exemple. ‘

Quand on passe du plan a I'espace, la réduction des Géométries
non euclidiennes a la Géométrie euclidienne est beaucoup moins
directe, il faut ’avouer. Pour rester dans le méme ordre
d’idées qui a réussi & propos du plan, il faudrait se figurer les
espaces plats de Lobatchewsky ou de Riemann sous l’aspect
d’espaces a courbure constante localisés dans I'espace euclidien
a4 dimensions. La méthode reste pareille, mais — inconvénient
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120 GEOMETRIE DE RIEMANN

majeur — l'imagination n’y trouve plus son compte, incapable
qu’elle est de se reconnaitre dans 'espace & 4 dimensions.

. Aussi ne faut-il pas s’étonner si les interprétations eucli-
diennes des deux stéréométries construites sur ce modele sont
presque inconnues; pour éviter I'inconvénient dont je viens de
parler, il faut en imaginer d’'une tout autre nature, et parmi
celles-ci je citeral celle qu’a donnée Poincaré, pour la Géométrie
de Lobatchewsky, dans Science et hypotheése' .

En cet endroit, Villustre auteur se borne & déerire la corres-
pondance des deux espaces, sans indiquer la méthode qui sert &
la réaliser. Mais 'omission est facile a réparer.

Une transformation birationnelle, semblable & U'inversion des
éléments de la Géométrie, permet de faire correspondre un point
de I’espace ordinaire & un autre de I’espace hyperbolique. Tous
les points transformés se trouvent d’un seul et méme c¢6té d’un
certain plan fixe®. Les plans et les droites non euclidiens
deviennent des spheres, ou des cercles, les uns et les autres
orthogonaux sur le plan fondamental. Et tout théoréme, valable
pour la Géométrie de Lobatchewsky, en fournit un nouveau, de
Géométrie ordinaire, relatif & des systéemes de cercles ou de
sphéres perpendiculaires & un méme plan fixe.

Il est curieux que Poincaré n’ait rien dit non plus, dans le
passage que je viens de rappeler, au sujet de la réduction &
Tespace ordinaire de la Stéréométrie riemannienne. Peut-étre
a-t-il pensé que son lecteur n’aurait pas besoin d’aide pour
imaginer tout seul la transformation stéréographique qui rem-
plit aI’égard de I’espace sphérique le méme office que celle dont
je viens de parler a propos de 1'espace hyperbolique; et, en fait,
la premiere de ces transformations s’offre bien plus immédiate-
ment, et a certainement servi de modéle & sa congénere.

Quoi qu’il en soit, ces représentations des deux stéréométries
dans I'espace euclidien sont assez détournées, malgré leur
élégance. En ce qui concerne I’espace riemannien, sa planimétrie
s'interpréte, d’'une maniére tout élémentaire, sur la spheére, la
plus simple des surfaces apres le plan. Ce fait méme devait

! Pages 56 et suivantes.
2 1l est loisible de substituer une sphére a ce plan.
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faire croire & la possibilité d’une représentation également simple
dans le cas de Ja géométrie & 3 dimensions. Le présent article
qui reprend & un point de vue plus restreint, et aussi plus appro-
fondi, des questions que j'ai déja traitées ici méme dans toute
leur étendue* a pour principal objectif de montrer, et I'exacti-
tude de la prévision, et I'intérét de la représentation euclidienne
dont il s’agit. '

Chose extrémement singuliére. Cette représentation eucli-
dienne directe de la Stéréométrie riemannienne est a la fois .
banale et méconnue. Qu’on ouvre un traité de Cinématique:
c'est elle qui forme, de maniére implicite, et non sans une cer-
taine mutilation des faits géométriques, la substance du cha-
pitre consacré aux déplacements finis d’une figure sphérique
sur sa propre sphére.

La loi de la composition des rotations finies, conforme de tout
point & la formule de la Trigonométrie sphérique, est le premier
indice, le plus frappant aussi, d’une correspondance existant
entre les deux domaines. Qu'on suive ce fil conducteur, de dé-
couverte en découverte, on finira par s’étonner d’avoir fait si
longtemps, sous le nom de Cinématique des figures sphériques,
de la Géométrie non euclidienne sans le savoir.

Il est & coup stir trés intéressant de voir une transition natu-
relle s’établir soudain entre deux sujets dont l'un paraissait
devoir rester toujours « un vain exercice de Logique », tandis
que le second fait des longtemps partie intégrante des éléments
de la Mécanique, c’est-a-dire d’une science concréte entre toutes.

Mais on concoit assez que tout ne se borne pas & une consta-
tation de cette espéce d’un intérét purement théorique. Iei.
comme dans tous les cas semblables, un profit plus direct dé-
coule de la corrélation posée entre les deux domaines pour la
connaissance de 'un et 'autre. Kt je ne pense pas m’avancer
trop en affirmant que c’est la Cinématique des figures sphé-
riques qui a le plus & gagner dans cet échange de services réci-
proques.

Quoi de plus simple, par exemple, sitot percu le lien de la
Cinématique avec la Géométrie ponctuelle & 3 dimensions, que

I Voir en particulier mon article « Géométrie des corps solides et Géomé-
trie imaginaire », Arch. 1916, vol. 42, nos d’aotit, septembre, octobre. -
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de classerles mouvements d’une lamelle sphérique selon le degré
de la courbe représentative? Cette idée de répartir les mouve-
ments algébriques en catégories naturelles de complexité crois-
sante est bien étrangere a la Cinématique usuelle. .

Ou bien encore, que les couronnes décrites par la lamelle
puissent engendrer des complexes, des congruences, ou des sur-
faces de tous les ordres reproduisant trait pour trait les lois de
la Géométrie réglée, le fait s'impose avec une entiére évidence
& qui sait reconnaitre dans la couronne le parfait équivalent
de la droite non euclidienne.

Sans qu’il soit nécessaire d’insister, on comprend assez que,
de méme que les mouvements & un degré de liberté se repré-
sentent dans I’espace riemannien E;, & I'aide d’une courbe, les
mouvements & deux degrés de liberté correspondent & une sur-
face. Et ainsi, la totalité des notions de la Géométrie infinitési-
male des courbes et des surfaces trouveront leur place marquee
d’avance dans le domaine de la Cinématique: il suffira de les y
transporter par une simple transcription.

Une particularité-nouvelle, en étendant & la Cinématique gé-
nérale d’un corps solide quelconque librement mobile dans
I’espace la réalité du rapport existant déja entre l'espace E, et
la Cinématique de la figure sphérique, vient en accroitre singu-
lierement la portée et en multiplier les applications. 1l y ala un
fait des plus remarquables, et bien que je n’aie pas & y revenir
dans la suite de ce travail, il ne me parait pas inutile d’en indi-
guer ici sommairement les causes.

La lamelle sphérique admet pour forme canonique la plus
simple une fleche, c’est-a-dire ’ensemble de deux points rangés
dans un ordre déterminé. I'un servant d’origine & la fleche,
lautre d’extrémité, le premier a la distance d’un quadrant du
second.

D’une maniere absolument analogue le corps solide peut étre
ramené a un fewuillet, soit le systeme formé par deux demi-
droites issues d'un méme point, et orthogonales entre elles.

Or, en vertu d'un théoréeme fondamental de la Géométrie
réglée, les droites de I’espace sont assimilables, tant en ce qui
concerne leurs propriétés métriques que leurs propriétés projec-



GEOMETRIE DE RIEMANN - 123

tives, aux points imaginaires' de la sphére. Ainsi donc, abstrac-
tion faite de la réalité des objets, la fleche et le feuillet appa-
raissent comme des éléments identiques: de ce point de vue
général, la lamelle sphérique et le corps solide invariable sont
deux variétés d’une seule et méme chose.

On comprend par la le rapport étroit qui existe entre les
Cinématiques de la lamelle sphérique et du solide librement
mobile dans 'espace, et I'on s’explique par quel singulier con-
cours de circonstances, la méme Géométrie de Riemann a trois
dimensions puisse servir d’image a 'une et & I'autre. Ce sont
des faits d’Algébre qui servent de support aux géométries non
euclidiennes ; il n’y a pas lieu d'étre surpris si la nature réelle
ou complexe des variables ne joue le role que d’un détail acci-
dentel sans influence sur le fond de la théorie.

Mais je le répete: je laisse aujourd’hui de coté le cas général
du corps solide se déplacant dans l'espace, et avec lui les quan-
tités complexes. Je m’en tiens a la lamelle sphérique mobile sur
sa propre sphére: c’est le cas primitif, qu'il faut d’abord bien
comprendre. Nous allons essayer de justifier ce qui précede tou-
chant la correspondance de la Cinématique qui s’y rattache avec
la Géométrie de l'espace E!; nous emploierons & cet effet une
méthode nouvelle, extrémement simple, ot la part du calcul se
trouve considérablement réduite aa profit du raisonnement syn-
thétique. Cette méthode, me semble-t-il, est la plus propre a bien
faire saisirla nature du rapport qui existe entre les deux espaces.

C’est I’essentiel de mon sujet: bien loin d’en épuiser la ma-
tiere, sur plusieurs points assez fondamentaux je me bornerai a
I'effleurer. Dans un second article, j'aurai & revenir sur un cer-
tain nombre de questions accessoires qui en dépendent plus ou
moins directement. La Cinématique des figures planes nous y
occupera notamment ; le peu que jen dirai suffira, je pense, &
montrer les profondes différences qui séparent ce cas de celui
que je traite aujourd’hui, et a faire sentir dans quelle direction
les recherches ultérieures auront & s’orienter.

! Suivant la nature de l’espace E,, 'unité imaginaire aura des pro-
priétés différentes. Selon que cet espace est euclidier, hyperbolique, ou
elliptique, il faut faire ? =0, 2= — 1, #=1.
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§ 2. — SYSTEME DE REFERENCE ET COORDONNEES.

Considérons une spheére fixe, et soit a sa surface une figure
invariable donnée, polygonale ou curviligne : c'est la lamelle,
elle peut se déplacer en prenant une triple infinité de positions.

La forme de la lamelle est quelconque : sans la changer au-
trement qu'en apparence, nous pouvons toujours la réduire a
une fleche. La fleche est un petit vecteur attaché a I'un des
points de la lamelle, dans une direction donnée relativement a
celle-ci; c’est aussi, si on préfere, un arc de grand cercle unis-
sant l'origine de la fleche a son extrémité située 90° plus loin.
La lamelle étant donnée, il est clair que son remplacement par
une fleche est possible d’une triple infinité de maniéres difté-
rentes, et que deux fleches représentatives de la méme lamelle
sont toujours solidairement liées I'une a l'autre.

Commencons par nous demander par le moyen de quelles
coordonnées nous pourrons représenter la position de la lamelle
L (ou de la fleche f) mobile & la surface de la sphére.

Pour définir des coordonnées, il faut d’abord un systéme de
reperes fixes, ensuite un moyen d’y rapporter I’élément mobile.

Constituons le systéme de repéres par le procédé suivant; il
y entre deux objets de nature différente, il le semble du moins
a premiere vue.

Le premier de ces objets est un triedre coordonné S, dont les
trois axes OX,, 0X,, OX,, rectangulaires deux & deux, partent
du centre de la sphere; les extrémités de ces axes a la surface
de la sphere, X, X,, X, forment un triangle de points conju-
gués, triangle qu’on peut, si on préfere, employer enlieu et place
du triedre S.

Le second élément du systéme de référence est une lamelle
wmitiale Ly, ou fleche initiale f,, placée & volonté sur la sphere.

Dans la Géométrie riemannienne de 'espace, & I'inverse de ce
qui précede, le systeme de référence est formé d’une maniére
parfaitement symétrique. On prend, pour remplir cet office,
les quatre sommets d’'un tétraedre comjugué, dont les sommets
sont deux & deux orthogonaux. Et ainsi les éléments du systeme
de référence, qui sont des points, non seulement sont homogeénes



GEOMETRIE DE RIEMANN 125

entre eux, mais ils le sont encore aux éléments ponctuels de
Pespace qui doivent leur étre rapportés. Ces caractéres sont
absents dusystéme disparate(S, f,) que nous venons de construire
comme repére des fleches portées par notre sphére; et ainsi il
semble que 1'analogie, manifestée par 'identité des dimensions
des deux espaces, oo® dans I'un et 'autre cas, s’arréte aux pre-
miers pas.

Mais il est aisé de voir que la divergence est purement artifi-
cielle; elle s’évanouit quand on donne au systeme de référence
une forme symétrique, équivalente en fait, quoique légérement
moins précise que la précédente.

A cet effet, faisons pirouetter la fleche initiale f,, chaque fois
de 180°, autour des trois axes 0X,, 0X,, OX,, de maniére & la
transporter dans trois nouvelles positions £, f,, ou /. Il est
facile de reconnaitre que les fleches £, 75, /5. qui sont & 180°
de distance' de la fleche f,, sont aussi & 180° de distance les
unes des autres. En outre, si I’on cherche quelles rotations ame-
nent une quelconque des quatre fleches sur une autre également
quelconque, on trouve que les axes de ces 6 rotations reforment
constamment le méme triédre aux arétes OX,, 0X,, 0X,.

Ainsi dong, il revient au méme de substituer au systéme de
référence primitif (S, f,), un systéme nouveau qui comprend les
4 fleches f,, 11, f. 5, ovthogonales deux a deux : toutefois la
forme symétrique du systeme de référence ne permet pas de
retrouver le sens des arétes du triedre S, et de ce fait la pre-
miere forme est presque toujours a préférer.

Le systéme de référence étant défini comme dit plus haut,
comment lui rapporter une fleche quelconque f placée sur la
sphere ? Considérons le mouvement de rotation autour du centre
de la sphére, par le moyen duquel la fleche initiale vient s’ap-
pliquer sur la fleche donnée £.

' On prendra bientét, pour la mesure de la distance, la moitié de ’angle
de rotation.

* Le sens de ce terme, au lieu duquel j’emploierai souvent celui de con-
Jugué, se comprend immédiatement par ce qui précéde. Sont orthogonales
ou conjuguées deux fleches qu’une rotation de 180° améne en coincidence.
Le procédé employé dans le texte pour construire un systéme de 4 fléches
orthogonales deux i deux est général.
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On sait que ce mouvement est caractérisé par 4 parametres de
Rodrigues, e,. ¢,, €,, e, liés ensemble par 1'identité

o

ettt =1. (1)

Ces constantes e,_seront pour nous les coordonnées de la fleche f
relativement au systéme de référence (S,, f). Leur signification
est bien connue, et la voici.

Soient 20 la grandeur de la rotation qu’il faut faire subir &
7o pour I'appliquer sur f, et a,, a,, @, les coordonnées du centre
de cette rotation* par rapport au triédre S, nous avons

é, = €08 & e, = @, sin w . (2)

Au point de vue de la précision de ces formules, il faut remar-
quer que la rotation est toujours supposée s’exécuter dans le cas
direct, lui-méme déterminé par la disposition dextrorsum ou
sinistrorsum du triedre S. Cette rotation admet une période égale
a 2=; enfin son centre A (a,, @,, a,) pourrait étre échangé contre
le point diamétralement opposé A, (— a,, — a,, — a,). De la ré-
sulte immédiatement que la fleche £ étant donnée, le choix des
coordonnées comporte une indétermination quant au signe des
4 lettres e correspondante ; deux systemes opposés tels que
+ e, et —e,,(h =0,1, 2, 3) caractérisent une seule et méme
fieche .

Prenons maintenant dans I'espace riemannien un tétraedre T
de 4 points conjugués entre eux. Tout point de 'espace possede
4 coordonnées, & savoir les cosinus de ses distances aux 4 som-
mets du tétraédre; comme on sait, les 4 cosinus e, vérifient la
relation (1), ou {-'92 =1.

Il est donc loisible de faire correspondre & chaque fleche de
notre sphére le point de I’espace E. qui posséde les mémes coor-
données. Il importe toutefois d’observer que la correspondance
dont il s’agit n’est pas biunivoque : en effet, deux systemes de
quantités e, et e_, déterminent une seule et méme fleche, nous
lesavons, tandls que ces mémes systemes définissent dans E; deux
points distincts, diamétralement opposés.

! On suppose désormais le rayon de la sphére pris pour unité.
? Je rappelle que les formulesde Rodrigues, d’olt dépend la situation rela-
tive de deux triédres fixement liés & £ et £, , contiennent les e au second degré.
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I1 résulte de 1a que si une fleche unique est associée & un point
donné de E], réciproquement & une fleche donnée sur la sphere
correspond un couple de deux points, toujours placés a 180° I'un
de I'autre. Cette circonstance qu’il ne faut pas perdre de vue,
ne joue cependant qu’un role secondaire ; fort souvent on peut,
sans faire aucune entorse aux principes de la Géométrie rieman-
nienne, traiter comme s'ils ne formaient qu'un point unique,
Pensemble de deux points diamétralement opposés. Cela a lieu
notamment quand le point mobile dans E; décrit une ligne
composée de deux parties symétriques par rapport a 'origine.
La seconde partie apparait comme la répétition de la premiére,
et 'une et 'autre se représenteront sur la sphére par une méme
monosérie de fleches deux fois décrite. Si, par exemple, une
fleche décrit une couronne, au premier tour, le point correspon-
dant trace la moitié d’une droite située dans E, au second tour
l'autre moitié opposée a la premiére. Et rien n’empéche d’iden-
tifier par la pensée les deux parties de la droite qui correspon-
dent ainsi & la méme monosérie de Hieches.

Mais il ne suffit pas, pour affirmer I'identité de la Géométrie
des figures sphériques avec la Géométrie riemannienne, d’avoir
établi une correspondance plus ou moins arbitraire entre les
coordonnées d’une fleche f et celles d’'un point P. Un role essen-
tiel parait appartenir, dans cette correspondance, aux systémes
de référence respectifs des deux espaces, (S, f;,) pour la spheére,
le tétraedre T pour E; : pour que la corrélation conserve une si-
gnification réelle,d’ordre géométrique, il est indispensable que les
repéres n’interviennent pas en fait, ou que la relation instituée
entre les deux espaces possede un caractére invariant par rap-
port aux éléments de référence. C’est cette invariance qu’il s’agit
de mettre en lumiére maintenant.

§ 3. — INVARIANCE DE LA CORRESPONDANCE ENTRE LES
DEUX ESPACES.

A cet effet rappelons quelques propriétés élémentaires qui se
rattachent aux formules de Rodrigues; elles ne s’expriment
aisément que grice & l'intervention du calcul des quaternions
dont je n’ai pas & rappeler ici les principes.
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Si un point de la sphére a pour coordonnées z,, x,, x, par
rapport a S, faisons-lui correspondre un quaternion (vecteur)

E = a11; 4+ x50 + 25103 . (3)
Soit d’autre part

P=pPo+ pris+ pats + pats 2p;:1,

un quaternion unimodulaire, dont les composantes, relativement
au systeme S, soient égales aux parameétres de Rodrigues défi-
nissant un mouvement de la sphére autour de son centre. Alors

1° Si la rotation p est appliquée au point £, elle le transfor-
mera en un nouveau point £’ de coordonnées x/, x,, z,

F=a i + .1';1'2 -+ .r; Iy
et 'on aura
B iep ., (&)

ol p désigne le quaternion conjugué de p, & savoir
P = Po— Priv— psis— pais .

2° La succession de deux rotations p et ¢, exécutées dans cet
ordre, équivaut & une nouvelle rotation de quaternion

-

gp (9)
Selon les propriétés du calcul des quaternions 'ordre des fac-
teurs, dans cette composition des rotations, ne peut étre alterné.
3° Entrainons le triedre S de référence, et changons-le en un
nouveau triedre S’ par le moyen d’une rotation dont le quater-
nion soit ¢ relativement a S.
Dans ces conditions, si une rotation admet p pour quaternion
représentatif quand on la rapporte au premier triédre de réfé-
rence, le quaternion deviendra

apq (6)

quand on rapportera la méme rotation au nouveau triédre S'.

Voici maintenant les conséquences a tirer de l1a. On a rap-
porté les fleches de la sphére au systeme de référence (S, f;), et

! Remarquer qu’on pourrait mettre le signe — devant ces deux for-
mules, sans changer le résultat.
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caractérisé chacune de ces fleches par le quaternion
N = €o 4 e1ly + exis + €gi5 ; (7)

c’est, relativement au triedre S, le symbole de la rotation ame-
nant f, en coincidence avec /. Comment va se transformer ce
quaternion v lorsque les éléments du systéme de référence, S et
7o, se remplaceront par d’autres éléments semblables S et f;?

Si S seul change, venant en 8’ sous I'influence de la rotation
», tandis que f, reste en place, les nouvelles coordonnées
' (e, €, e,, ¢,) de la fléche 7, seront telles que

o= pnp ; (8)
¢’est la propriété n° 3 ci-dessus,

Conservons au contraire le triedre S, et imprimons & la fléeche
initiale f, une rotation ¢ qui I'améne en f;; dans ce cas, les
coordonnées 7' devront représenter la rotation £,f, elle-méme
équivalente & la succession des deux rotations f; f.; et fof. Donc,
d’apres la regle de la composition des rotations

‘=g . (9)

Si enfin les deux éléments du systeme coordonné sont changés
T'un et I'autre, par le moyen des rotations p et g, la transforma-
tion cherchée résulte de la combinaison des deux précédentes ;
elle sera donc en général

W= pngp ,
ou, si 'on veut
W =rns , (10)

en désignant par r et sles quaternions unimodulaires quelconques

I
=
=

e ll_) ; s
d’ott on déduit inversément

)

w

I

p=r ="

En prenant, par exemple, s =1, ou ¢ == p, on voit que la
transformation ’

=pn, (11)

!

"

symétrique de (9), est celle que subissent les coordonnées de la
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fleche 4, quand on déplace a la fois S et f,, par une méme ro-
tation p, apres les avoir rendus solidaires I'un de 'autre.

Or, on reconnait immédiatement dans la formule de transfor-
mation (10) celle de la transformation des axes dans 'espace E;.
La chose est d’ailleurs évidente en soi:-car cette formule (10)
est linéaire quant aux coordonnées e, et e, ; elle renferme au-
tant de parametres que le mouvement général de I’espace I, trois
par quaternion unimodulaire » ou s, soit six en tout. Enfin la
méme formule laisse invariante la forme fondamentale

2 2 2 2
en—}—el—l—cz—l—efa
Kt voici la conséquence de tout cela.

On amis en correspondance, par la coincidence de leurs coor-
données, d’'une part une fleche f appartenant & la sphére, de
Pautre un point P situé dans E;; si on savise de changer le
systeme de référence auquel est rapportée la fleche (S, f,), le
point associé a f dans E., w’a pas bougé; seul le triedre coor-
donné T s'est déplacé dans Uespace. C'est la propriété d’inva-
riance dont j’ai parlé plus haut.

Toute Géométrie particuliére n’est au fond que I'étude des
propriétés d’un certain groupe, le groupe des mouvements. Un
groupe commun — quelle que soit la forme spéciale des éléments
de deux géométries, point ou droite par exemple, — fait de ces
géométries un seul et méme corps de doctrine, I'une n’étant que
I'image de 1'autre. Telle est bien la circonstance que nous offrent
la Géomeétrie de 'espace E; et celle des lamelles mobiles & la sur-
face de la sphére.

Nous sommes encore au point de départ de I'une et I'autre, et
le peu que nous avons emprunté i leurs théories respectives
suffit déja pour affirmer a priori leur identité substantielle.
D’avance il est certain que nous pouvons imiter avec les lamelles
de la sphére toutes les propriétés, métriques et projectives, de
I'espace ponctuel E;.

Il ne s’agit que d’'un décalque; je vais y procéder sans m’at-
tacher & suivre un ordre rigoureusement logique ni prétendre
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étre complet. Je désire seulement montrer quelle clarté s’ajoute,
du fait de la copie exécutée & la surface de la sphére, aux no-
tions fondamentales de la Géométrie riemannienne, et récipro-
quement avec quelle évidence s’interpretent dans E; les pro-
priétés élémentaires de la Géométrie des fleches.

§ 4. LE COURONOIDE ET LA COURONNE SPHERIQUES'.

Comme E contient o points, la sphére contient oo® fleches
différentes. Par le moyen d’une rotation, deux fieches quelcon-
ques f'et /" peuvent étreappliquées ’'une sur I’autre ; nous dirons
que f et f’ sont conjugres lorsque 'angle de la dite rotation est
égal & 180°; cela revient a dire que ces fleches sont symétriques
par rapport & un certain centre. De méme, dans E_, deux points
sont conjugués, quand leur distance est d’'un quadrant; dans ce
cas I'invariant

ee + ee, + e,e, + "s”; =0 . (12)

Dans E;, le plan est ’ensemble des points conjugués d’un
- point fixe, le pole du plan; I'analogue du plan pour la sphere
sera donc le couronoide, c’est-a-dire la bisérie engendrée par
une fleche mobile £ qui se meut en restant toujours conjuguée
a une fleche fixe /7. On obtient le couronoide en faisant chavirer?®
le pole /" autour de tous les centres pris & volonté sur la sphére.

Une autre définition est & remarquer pour le couronoide: voici
sur quelle propriété elle se base.

Si deux figures sphériques se correspondent point par point
de maniere que les points correspondants soient diamétrale-
ment opposés, nous les nommerons irverses 'une de P'autre: des
figures inverses sont égales dans toutes leurs dimensions sans
étre congruentes, elles ne peuvent étre amenées en coincidence
que moyennant un retournement préalable®.

1 Je rappelle que c’est & M. R. de Saussure qu’est due la notion de couro-
noide. On connait ses travaux fondamentaux sur le sujet publiés ici méme.

2 Clest-a-dire tourner de 180°.

# A noter que ceci n’est vrai qu’en donnant a1’une des figures une forme
tout & fait générale. La figure inverse d’une tléche, par exemple, est une
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~ Cela posé, il est facile de voir que deux figures inverses étant

données, si on prend la symétrique de la premiére par rapport a
un grand cercle, et la symétrique de la seconde par rapport au
pole du grand cercle précédent, ces deux symétriques coincident.

Des figures (ou fleches) qui sont symétriques par rapport & un
centre sont conjugudes, suivant la terminologie adoptée plus
haut; elles sont toujours congruentes. Nommons de méme
figures (ou fleches) réflexes celles qui sont symétriques par rap-
port & un arc de grand cercle; 'une d’elles estcongruente &
I'inverse de 'autre.

Tout ceci étant bien compris, la deuxiéme définition du couro-
noide est immédiate ; et voici les deux définitions réunies dans
un seul énoncé.

Le couronoide est le liew des fleches conjuguées a une fleche
fixe t', c’est aussi le liew des fleches réflexes d'une seconde fleche
fixef,. Les fleches {' et f, (qui s'appellent respectivement la fleche
conjuguée et la fleche réflexe du couronoide) sont inverses 'une de
Uautre.

L’analogue de la droite riemannienne est la couronne : ¢'est le
lieu d’'une fléche qui tourne autoar d’un centre fixe ¢. La cou-
ronne possede deux centres puisqu’on aurait pu faire tourner
la fleche autour du centre ¢’, opposé & ¢, plutét qu'autour de
¢ lui-méme, sans changer la couronne.

Il v a évidemment ? couronoides différents, autant que de
plans dans E;. Les droites de I'espace sont au nombre de o*; et
de méme, il existe sur la sphere o * couronnes, se distinguant
les unes des autres par leur centre, leur rayon, et I'angle cons-
tant suivant lequel la fleche mobile rencontre la circonférence
décrite par son origine.

L’analogie qui existe entre les couronnes de la sphére et les
droites non euclidiennes n’est point évidente a priori. Pour la
manifester, une construction, corrélative de celles des droites
conjuguées de E; | est indispensable, celle de la fig. (1).

Deux couronnes C et C’ sont dites conjuguées, si identiques

autre fleche égale & la premiére et qui peut s’appliquer sur celle-ci sans
retournement ; il y a 14 une circonstance & remarquer, dont ’omission peut
devenir une source d’obscurités.
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entre elles par leur forme intrinseque, elles sont tracées autour
de deux centres diamétralement opposés tels que c et ¢’. De la

e I ¢

.
\

-

-

-

e - e-—— -
-— = = — -
— — — -

Fig.2

sorte, si on unit invariablement la couronne C a son centre c,
puis qu’on ameéne ce centre en ¢’ par un déplacement convenable,
la couronne C se sera transformée dans sa conjuguée C’.

Si on construit la figure Cs, inverse de C’, on obtient une
nouvelle couronne, la couronne #»éflexe de C; celle-ci, repré-
sentée dans la fig. (2), posséde la méme base que la couronne C,
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leurs fleches respectives sont également inclinées sur la circon-
férence de la base, de part et d’autre de la normale.

On reconnait immédiatement 1’exactitude des propriétés sui-
vantes : )

1° Deux fleches quelconques respectivement placées sur les
deux couronnes conjuguées sont elles-mémes conjuguées; le
centre de la rotation amenant I’'une sur 'autre est en y au mi-
lieu de 'arc qui joint les points d’application. Les couronnes
conjuguées sont ainsi ’'analogue des droites conjuguées de I'es-
pace E | dont les points respectifs sont aussi conjugués deux a
deux.

Toute droite posséde une conjuguée, toute couronne pareil-
lement.

2° Deux fleches quelconques prises dans deux couronnes ré-
flexces sont aussi réflexes entre elles. L’arc de grand cercle par
rapport auquel elles sont symétriquement placées divise en deux
parties égales celui qui unit leurs points d’application.

3° Si 'on fait chavirer® une fleche fixe f” successivement au-
tour de tous les centres placés sur 'équateur vy, elle engendre
une couronne C. Autrement dit, le lieu des symétriques d’une
fleche fixe par rapport aux différents rayons d’un faisceau plan
est une couronne *.

4° Une couronne est encore le lieu des symétriques d’une
fleche fixe £, par rapport a tous lesarcs de grand cercle passant
par un méme point.

De ces propriétés découle une série de conséquences ressem-
blant trait pour trait aux propriétés classiques de la droite et
du plan non euclidiens ou euclidiens; au fond, elles leur sont
identiques, le couronoide étant I'image du plan, la couronne
celle de la droite®.

! Tourner de 180°.

* Toute couronne peut étre engendrée de oo! maniéres, tant par le pro-
cédé n° 3, que par le procédé no 4. La fleche f’ sera empruntée comme on
voudra & la couronne conjuguée, la fleche f; a la couronne réflexe. Le point
c est au centre de la couronne donnée, I’équateur y est paralléle a sa
base.

# Le lecteur pourra aisément reconstituer les raisonnements dans le dé-
tail; je me borne a les esquisser seulement olt besoin est.
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5° Par deux fleches distinctes /et /7 passe une couronne et
une seule.

6o Par deux fleches f'et f passent une simple infinité de cou-
ronoides; les poles de tous ceux-ci sont situés & volonté sur la
couronne conjugude 2 celle qui joint f et #*; chacun des couro-
noides qui passent par 7 et /' contient dans son entier la couronne
qui joint ces fléches.

7° Un couronoide contient une infinité de couronnes. Pour
obtenir une de ces couronnes il suffit de faire chavirer la fleche
polaire' du couronoide autour des droites d’'un faisceau plan
quelconque mené par le centre de la sphére.

8° Si deux couronnes sont contenues dans un couronoide de
pole £, clles posseédent une fleche commune, et une seule.

Par le centre de la sphére, menons deux plans respectivement
paralleles aux bases des couronnes données, puis faisons chavirer
fautour de la ligne d’intersection de ces plans, nous obtenons
une fleche commune aux deux couronnes, ¢’est la seule.

9° Réciproquement si deux couronnes différentes possédent
une fleche commune f7, elles appartiennent toutes deux & un
méme couronoide, lequel est d’ailleurs unique. '

En effet, par le centre de la sphére, menons deux plans I' et
I respectivement paralléles aux plans de base de nos couronnes
C et C', et faisons chavirer /” autour de la droite d'intersection
de I' et I'', en f. Construisons enfin le couronoide ayant / pour
pole, il contiendra les deux couronnes C et C"; C, par exemple,
sera engendré en faisant chavirer f autour de toutes les droites
issues du centre et contenues dans le plan I'.

10° Par trois fleches £/, f”, /" non contenues dans une méme
couronne passe un couronoide et un seul.

C’est celui déterminé par les deux couronnes (' /) et (7 /')
qui se rencontrent sur f”.

11° Trois couronoides différents, qui ne passent pas par la
méme couronne, possedent toujours une flecche commune et une
seule.

Théoréme identique au précédent par dualité, en substituant
aux couronoides leurs poles, et & la fleche le couronoide polaire.

! J’emploie aussi ce terme de polaire comme équivalent & conjugué ; on
rencontrera aussi plus loin expression de pdle i la place de fléche polaire.

ARCHIVES, Vol. 46. — Septembre 1918. 10
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12° Deux couronoides se rencontrent suivant une couronne.
C’est la couronne conjuguée de celle qui joint les péles des deux
couronoides donnés.

13° Un couronoide C et une couronne ¢ quin’y. est pas conte-
nue ont une fleche commune et une seule.

Par la couronne ¢ menons un nouveau couronoide C’, lequel
rencontrera C suivant une couronne ¢’. Les couronnes ¢ et ¢’
appartenant toutes les deux au couronoide C' admettent une
fleche commune (proposition 8).

Les propriétés précédentes, qui sont toutes projectives, repro-
duisent dans leur ensemble les axiomes de la Géométrie tou-
chant les relations unissant entre eux les points, les droites, et
les plans *: elles sont seulement formulées & propos de nouveaux
objets, les fleches, les couronnes et les couronoides.

§ 5. — NOTION METRIQUE FONDAMENTALE.

La Géométrie de E; connait, relativement a un.couple de
points n et »', un seul invariant, towjours compris entre — 1
et + 1. C'est le suivant,

eoe; + ele; -+ eze; - e”c; ; . (13)

il représente, comme on sait, le cosinus de la distance des deux
points.
L’interprétation, dans la Géométrie des fleches, de cette no-
tion métrique fondamentale n’offre aucune difficulté.
Considérons en effet deux fleches /£, /' ? dont les quaternions
représentatifs soient les suivants )

n=e + esil + e b, 1 e,
' r. L L
1=e + e + e, + e,
par rapport au systeme de référence (S, f,).

1 Ce sont les axiomes « der Verkniipfung » selon Hilbert (Grundlagen
der Geometrie).
2 Je rappelle qu'une méme fleche peut étre représentée par des coor-

données ¢, ou — e, égales deux a deux et de signes contraires.
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La rotation (ff') qui transporte f sur /' peut étre remplacée
par la succession des deux rotations (ff,) et (f,/'); ainsi donec,
d’apres la regle de la composition des rotations, le quaternion
représentatif du mouvement (f') vaudra

7N .

D’une part, 'invariant (13) est la partie scalaire du produit
précédent ; de 'autre, cette méme partie scalaire, conformément
aux relations (2), est égale au cosinus de la moitié de I’angle dont
la fleche doit tourner pour s’appliquer sur f’. En rapprochant
ces deux faits, nous sommes conduits a la définition suivante :

Par convention, nommons amplitude, grandeur, ou mesure
d’une rotation, la moitié de I'angle de cette rotation ; nommons
encore distance de deux fleches 'amplitude de la rotation qui
applique 'une sur 'autre. '

Alors, 'invariant

eoec,r i3 P181I + e’e; A esP; !
lequel, dans E;, mesure le cosinus de la distance de deux points
7 et n', mesurera dans la Géométrie des fleches, le cosinus de la
distance de deux fleches, savoir celles qui correspondent aux
points et 4.

La distance n’est pas une quantité admettant une détermina-
tion unique; les fleches étant données, elle possede deux valeurs
=+ w, auxquelles on peut encore ajouter des multiples quelcon-
ques de =. Et ainsi, 'invariant possede deux valeurs égales et
de signes contraires; le changement de signe, dans (13), cor-
respond & celui d’une des séries e, ou ¢, .

Quant a la partie vectorielle du méme quaternion [n’ﬁ], elle
n’est pas invariante dans le changement d’axes, mais sa signifi-
cation n’en est pas moins remarquable.

En écrivant cette quantité sous la forme

(3 0] = (eris + caia + caig) sinw , (14)

les trois lettres c,, c,, c; représentent, relativement au triedre S,

les coordonnées du centre dela rotation qui amene la fleche o sur
la fleche " 1.

! Je représenterai souvent par la méme lettre une fléche et le quater-
nion correspondant.
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Employons ce résultat pour compléter sur un point important
la définition du couronoide.

Nous savons que par un point choisi & volonté dans un plan
passe un faisceau de droites. Ainsi, grice & la corrélation existant
entre le plan et le couronoide, et & celle qui relie la droite et la
couronne, parmi les «* couronnes contenues dans un couronoide,
il y en aura tout juste «' qui contiennent une fleche arbitraire-
ment choisie dans le couronoide.

Il est facile de déterminer toutes ces couronnes, et leur cons-
truction fournira méme une nouvelle description pourle couro-
noide.

Soit (12), ou (»'n) = 0, Péquation du couronoide.

Prenons une des fleches du couronoide, 1", et puisque la condi-
tion (n'n”) = 0 exprime que la grandeur de la rotation « vaut
90°, posons d’aprés I’équation (14) |

oo v oY ——
NN = ¢y + ol + glg =¢

ol ¢ désigne le centre de la rotation qui-conduit sur " la fleche
polaire ='.
On a ainsi
1= (el + iz = el 0" = en”

transportant cette valeur dans I'équation du couronoide, celle-ci
s’écrira sous la forme

(en"n) = (¢[q"n]) =0 .

Mais, sauf un facteur scalaire, [+ ] représente le centre de la
couronne qui joint n & 4" : I'équation ci-dessus exprime que ce
centre est a la distance d'un quadrant du point c. La réciproque
a évidemment lieu.

Done, si autour du point ¢ on trace un arc de grand cercle
ayant ce point pour pole, et qu’on fasse tourner la fleche «" au-
tour d'un point quelconque ' appartenant a ce grand cercle, la
couronne engendrée de la sorte est entierement contenue dans le
couronoide de pole +'. Il 'y a pas d’autres couronnes renfer-
mées dans le couronoide.

En définissant le coironoide parle moyen de sa fleche réflexe,
on peut présenter encore la méme construction comme suit :
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Soit D) 'are de grand cercle relativement auquel la fleche fixe
7, est réflexe d’une fleche 4" choisie & volonté dans le couro-
noide. Sion fait tourner cette derniére d'un angle quelconque
autour d'un point T' pris ot Uon veut sur D, les »* positions
qu’'elle occupera se répartissent selon = couronnes, et chacun des
éléments de chacune de ces couronnes appartient au couronoide’.

§ 6. — LE GROUPE DKS MOUVEMENTS.

Nous avons déja parlé plus haut du changement du systéme
de reperes ; ¢’est méme, on s’en souvient, la théorie du mouve-
ment qui nous a servi de point de départ pour établir la corréla-
tion entre ’espace K. et la Cinématique de la figure sphérique.

Je vais reprendre ici la méme théorie en restant sur le ter-
rain de la Géométrie des fleches et en adoptant surtout la mé-
thode synthétique. Cette méthode explique en effet avec une
grande netteté la propriété primordiale des substitutions ortho-
gonales & 4 indéterminées ; le groupe des mouvements mis, par
exemple, sous forme quaternionienne

7= rqgs

affecte une structure binaire, tout a fait caractéristique, avec
ses deux facteurs droit et.gauche dont les roles ne peuvent étre
alternés.

La théorie géométrique rend compte, d’'une maniere parfaite,
de cette conformation particuliere qui constitue le caractere le
plus saillant du mouvement dans I'espace E; .

Revenons aux fleches, et nommons mouvement — au sens
large du terme — une opération qui associe & toute fleche £,
une nouvelle fleche £/, de telle maniére que la distance (f”, ¢)
de deux fleches quelconques apres le mouvement reste la méme
que la distance (f, ¢) qui séparait les mémes fleches avant le
mouvement.

En somme la définition précédente est conforme & celle du
mouvement dans I’espace ponctuel : seulement, pour ce dernier

' Ce second énoncé est & préférer au premier parce qu’il a encore lieu
pour le couronoide plan.
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espace, la définition est trop large, parce qu’elle comprend les
retournements qui changent une figure en une figure égale
quoique non congruente.

Pour exclure les retournements, il faut ajouter que I’ensemble
de tous les mouvements doit former un groupe continu de trans-
formations. Une pareille restriction est inutile pour les mouve-
ments des systemes de fleches.

En effet, si une figure ponctuelle correspond par retourne-
ment & une autre figure, il suffit de changer dans 'une de ces
figures un seul des points en son diamétralement opposé pour
obtenir deux figures congruentes. Or un tel changement n'en
entraine aucun dans le systéme de fleches corrélatif a la figure
ponctuelle qui I’a subi; pour les flaches il est donc superflu de
compléter la définition de mouvement donnée plus haut.

Parmi les mouvements, au sens large, des systemes de fleches,
deux catégories s'imposent d’abord a I'attention, ce sont les
rotations et les antirotations’.

Faisons tourner la spheérc autour d’'un axe quelconque issu
du centre; cette rotation, au sens ordinaire du mot, est un
mouvement au sens large. Ce n’est pas le seul, et pour bien
distinguer, nous désignerons ce mouvement au sens étroit* sous
le nom de déplacement, ou simplement de rotation.

La rotation s’opére autour d’un centre ¢, fixe sur la sphére,
ou, ce qui revient au méme, autour du centre ¢’, diamétralement
opposé & ¢; le centre étant placé, il faut, pour achever de dé-
finir la rotation, donner son amplitude, ¢'est-a-dire, comme il a
été convenu plus haut, la moitié de I'angle de rotation.

Il est clair que toutes les rotations forment un groupe de «*
opérations; car le centre de la rotation peut recevoir «? positions
a la surface de la sphere, pendant que la grandeur de la rotation
dépend d’un nouveau parameétre. La propriété de ces «* opéra-
tions de former un groupe résulte immédiatement de la compo-
sition des rotations qui nous permet de remplacer par une seule

' Le choix d’une bonne terminologie est une des difficultés du sujet. Je
n’ose me flatter d’en avoir adopté une qui soit toujours claire et exclusive
de toute confusion.

? La rotation, comme on sait, est le mouvement le plus général au sens
étroit.
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rotation la suite de deux autres. Je représenterai souvent une
rotation quelconque par le symbole R.

Contrairement & ce qu’on pourrait imaginer d’abord, les
rotations R n’épuisent pas I’ensemble de tous les mouvements
possibles aw sens large.

A coté des rotations R, nous pouvons distinguer de nouvelles
opérations qui ne modifient pas non plus la distance de deux
fleches quelconques, et que j’appellerai les antidéplacements, ou
les antirotations (R.. Leur définition cst la suivante®.

Associons a toute fleche £ une autre fleche /' qui lui soit inva-
riablement liée, de maniére qu’on obtienne f’ en faisant tour-
ner f, d'un angle déterminé, autour d’'un centre I', dont la
position relativement & la fleche £, soit donnée a priori, tandis
que sa position sur la sphére fixe est variable avec celle de la
fleche £.

Il est clair que I'antirotation n’est pas un mouvement au sens
ordinaire du mot; dans ce dernier cas en effet, c’est par rapport
a la sphére donnée que le centre de rotation est fixe, non par
rapport aux diverses fleches de la sphére.

Je dis que I'antirotation définit au contraire wn mouvement
au sens large. Car supposons deux couples de fleches solidaire-
ment liées, le couple (f, /") d’'une part, le couple (¢, ¢") en
second lieu, de telle sorte que la figure (f, ") soit la méme que
(¢, ') & la position pres. De la résulte que si une rotation R
amene [ en coincidence avec ¢, la méme rotation appliquera /'
sur ¢, et ainsi la distance finale des deux fleches (f”, "), qui ont
subi une antirotation R = (f, f') = (2, ¥'), est restée égale a
la distance initiale (£, ¢) qui séparait les mémes fleches avant le
mouvement.

La figure (3) suggére immédiatement une remarque essen-
tielle. Les deux opérations R et (R, exécutées 'une apres Uautre,
amenent une fleche quelconque f dans la méme position, quel que
soit leur ordre de succession : autrement dit, ces opérations sont
permutables, et l'on a RR = R R. |

En effet, si on transforme f par R, cette fléche vient en ¢, elle

! La rotation correspond a 'opération n" = pm, Vantirotation a I'opé-
ration n" = 7gq.
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!

se transporte ensuite en ¢’ aprés 'opération R. Si I'ordre des
opérations est interverti, f's’applique d’abord sur f”, puissur ¢’ .

Il est clair que les antirotations forment, elles aussi, un groupe
de «? transformations non permutables?: ¢’est un nouveau sous-
groupe contenu dans le groupe général des mouvements au sens
large. En combinant une série queleconque de rotations et d’anti-
rotations, nous obtenons des mouvements que nous appellerons
rotations ou déplacements mixtes; d’apres les propriétés étudiées
a I'instant, nous savons que toute rotation mixte s’obtiendra en
composant une seule rotation R avec une seule antirotation R.

/‘)

i

#
7. 3

L’ordre des facteurs est arbitraire, et la décomposition ne
peut étre effectuée que d’une seule maniére. En effet une égalité

comme

RAR = R'R'
donnerait

RTTR=R R,

ce qui est faux, le premier membre étant une rotation, le second
une antirotation.

En résumé le groupe G = R®R des rotations mixtes, est a six
parametres; nous allons montrer qu'un mouvement quelconque
au sens large est contenu dans le groupe G, de sorte que I'en-

! Cette propriété est la méme que celle des translations euclidiennes :
c’est sur elles que se fondent les propriétés du parallélogramme de Clifford,
analogues & celles du parallélogramme euclidien dont je parle plus loin.

2 La succession de deux antirotations est équivalente & une certaine
antirotation, la propriété s’établit immédiatement.
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semble des rotations mixtes se confond avec celui des . mouve-
ments.

La démonstration que nous allons présenter pour établir cette
propriété caractéristique de la Géométrie des fleches est sans
doute un peu lente : inconvénient racheté par I'intérét propre
qu’offrent les diverses propositions qui lui servent de base.

§ T — ANALYSE DU MOUVEMENT.

La définition des couronnes et des couronoides — observons-le
d’abord — comporte un élément métrique ; elle repose tout
entiére sur la notion des fleches conjugudées, et deux tleches sont
conjuguées quand leur distance est égale & 90°.

Par conséquent, tout mouvement (aw sens large) change un
couronoide en un autre couronoide, et une couronne en une autre.
couronne.

De plus, deux couronnes qui sont conjugudes avant le mouve-
ment le restent apres le mouvement.

Cela posé, remarquons que la position d’une fléche sur la
sphére dépend de 3 paramétres et que, par suite, une fleche est
déterminée a la surface de la sphére quand on donne ses distances
A trois autres arbitrairement choisies®.

Le théoréme a4 démontrer affirme que tout mouvement, au
sens large, est équivalent & une rotation mixte; pour I'établir,
il suffit de faire voir qu'il existe toujours une rotation mixte
transformant un triangle de fleches (£, /7, /*) en un autre
(¢, 9, ¢"), pourva que ces triangles soient congruents entre eux,
autrement dit, pourvu que les distances (£7"), (f' "), (f" ) soient
respectivement égales & leurs correspondantes (99'), (¢'9") et
(¢"9) % '

! Pour donner au raisonnement toute la rigueur nécessaire, il est sou-
vent utile de le projeter dans I'espace K. Ici, par exemple, les trois fleches
ne doivent pas appartenir & une méme couronne, comme les trois points cor-
respondants ne sauraient étre choisis sur une méme droite. De méme, les 4
distances étant données, il leur correspond deux figures ponctuelles non
congruentes; les figures corrélatives de fleches sont congruentes.

? Nous particulariserons plus loin, en supposant (") = (f'f") = 90°.
Cela n’a pas de conséquence; on pourrait ajouter méme I’hypothése sup-
plémentaire (") = 90°.
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Soient deux fléches déterminées choisies a volonté dans deux
couronnes, de rayons quelconques, mais de méme centre. Quand
on fait tourner ces fléches ensemble autour du centre commun,
elles engendrent respectivement les deux couronnes sans que leur
situation relative ait changé. Ainsi, étant donné une couronne
C, il existe toujours une antirotation qui transforme cette cou-
ronne en une autre de forme quelconque?; il suffit que la seconde
couronne soit concentrique a la premiére.

Cela posé, reprenons les fleches £, /', f” et ¢, ¢, ¢"; construi-
sons les couronnes C et I' unissant £, /' d’une part et ¢, ¢
d’autre part. Puis transformons I' par le moyén d’une antiro-
tation (R qui la convertisse en une couronne y identique a C, a
la position prés. Soient @ et @' les positions dans y des trans-
formées des fleches ¢ et ¢,

En faisant glisser v & la surface de la sphére par le moyen
d’'une rotation R, on peut 'appliquer sur C, cela de maniére que
les fleches £ et @ coincident. Et alors, a cause de la relation

(Ff') = (99) = (D)

f' et ®' coincideront aussi?

La construction précédente, qui ne nous renseigne pas sur la
position définitive de la fleche 3", est possible d’une infinité de
manieres. Montrons-le.

Prenons une couronne quelconque. 11 est évident qu’une rota-
tion » d’amplitude quelconque, exécutée autour de son centre
la laisse invariante; ne fait qu'échanger les unes contre les
autres les fleches de la couronne. D’autre part, comme les fléches
de la couronne peuvent étre associées deux a deux de maniére
que la situation relative des fleches de chaque couple soit con-
stante d’'un couple a 'autre, il existe une infinité d’antirotations
¢ qui laissent invariante la méme couronne tout en permutant
entre eux les éléments qui la composent.

Admettons que 7 et ¢ possédent la méme amplitude; il est

! Cela est possible d’une infinité de maniéres. Je vais y revenir.

* On peut toujours imaginer que les sens suivant lesquels £, " et o, ¢’
se succedent sur leurs couronnes respectives sont identiques; il suffit
d’échanger, si besoin est, le centre ¢ d’une des couronnes contre le centre ¢
diamétralement opposé.
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clair que dans ce cas la rotation mixte ¢ ou ¢~'7 non seule-

ment laissera la couronne invariante dans son ensemble, mais
que chaque fleche appartenant a la couronne restera méme inal-
térée, sous l'effet de I'opération complexe rz™*

II existe done, dans le groupe G, une infinité de mouvements
qui ne modifient aucunement les fleches d’une couronne donnée'.

Sous l'effet de I'opération »¢7*, la couronne conjuguée de C
reste invariante, mais c'est seulement considérée en bloc; quant
aux fléches qui constituent-C’, il est facile de veir que chacune
subit autour du centre ¢ un déplacement d’amplitude 2w,

Cette derniére remarque suffit pour achever la démonstration
que nous cherchons.

En effet supposons, ce qui est toujours possible, que f” fasse
partie de la couronne conjuguée & f et & 7, de sorte que

M= (/'f) = 90° .

Alors, quand fet /' ont été mis en coincidence avec ¢ et ¢
par le moyen d’une rotation mixte, la fleche ¢” n’a pas encore
recu de position fixe; elle décrit, dans sa totalité, une couronne
conjuguée a celle menée suivant f, f*, couronne qui comprend
aussi la fleche f”.

Et ainsi, parmi les diverses rotations mixtes, qui ameénent {
sur o, et f' sur ¢, il en existe stirement une amenant auss: {" en
coincidence avec o'.

Cette propriété est équivalente 4 celle que nous avions en
vue : tout mouvement est identique a une certaine rotation mixte.

Je dis qu’il existe, pour un mouvement quelconque, un couple
et un seul couple de couronnes, telles que, sous l'effet du mouve-
ment, les fleches qui composent chacune de ces couronnes ne fassent
que s'échanger entre elles. Les deux couronnes invariantes sont
d’ailleurs conjuguées entre elles; elles représentent par rapport

! Les mouvements rp—!, d’amplitude arbitraire w, sont, avec leurs in-
verses 7—'p, les seuls qui possédent cette propriété en ce qui concerne la
couronnc C.

? Ce mouvement particulier 7z—* correspond dans E; & une rotation
autour d’un axe fixe. Les points de I’axe restent immobiles, I’axe conjugué
glisse sur lui-méme.
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a la sphere I'image des axes conjugués caractérisant un mouve-
ment de 'espace E; .

En effet tout mouvement des fleches résulte de la rotation
mixte RGR. Soit ¢ le centre de la rotation R sur la sphere fixe,
¢’ le point diamétralement opposé. Soient encore v, f'la figure
formée par le centre de I'antirotation (R et par une fleche quel-
conque soumise a cette antirotation.

Les seules couronnes dont la forme reste inaltérée sous I'in-
fluence de la rotation mixte RQR sont congruentes a celle qu’en-
gendre £ en tournant autour de y. Pour que la situation de la
couronne n’ait pas changé non plus, il faut que son centre se
trouve en ¢ ou en ¢’. Ces conditions qui sont nécessaires pour
I'invariance sont aussi suffisantes.

Il existe donc précisément deux couronnes qui se reprodui-
“sent par le mouvement; elles sont centrées en ¢ et ¢', et leur
conformation est identique a celle de la figure (f, y)'.

Réciproquement, pour quun mouvement soit complétement
déterminé, il ne suffit pas de se donner le couple de couronnes
conjuguées C et C' qui reste invariant sous l'effet du mouve-
ment ; il y faut ajouter les glissements 2w, 20" subis par chacune
de ces couronnes. Les choses se présentent comme suit :

Prenons une rotation R et une antirotation (R , chacune d’am-
plitude »" en sens contraire, qui laissent I'une et l'autre '
inaltérée; prenons encore une rotation R’ et unc antirotation
R, d’amplitude o, laissant la couronne C invariante dans son
ensemble, non dans ses éléments. Les 4 opérations R, R, R, R’
exécutées simultanément définissent un mouvement qui ne
change pas la position des couronnes C et C’ sur la sphére. tout
en les déplacant le long d’elles-mémes de quantités respectives
w et w'. Il n’existe évidemment pas d’autre mouvement produi-
sant cet effet.

Nous avons ainsi obtenu une image concrete du mouvement le
plus général dans I'espace E,; tout déplacement dans cet espace
est complétement caractérisé a I'aide de deux di-oites conjuguées

! On sait que si un mouvement non euclidien laisse immobile un certain
point de E; , le mouvement se réduit & une rotation autour d’un axe issu
de ce point. Un semblable résultat est évident d’apres ce qui précede. Si
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invariantes dont chacune glisse le long d’elle-méme d’une lon-
gueur déterminée’.

§ 8. — MOUVEMENTS SPECIAUX.

Une description complete du mouvement exigerait des déve-
loppements dans lesquels je ne puis entrer ici faute d’espace.

On connait I'importance dans E; des transformations ortho-
gonales 717, et sns, associés & la transformation ponctuelle 5.

Ces deux transformations sont celles des coordonnées pliické-
riennes des droites de 'espace; d’avance il n’est pas douteux
qu’elles n’interviennent encore dans la Géométrie des fleches.
Ce sont elles qui définiront le mouvement des couronnes; quand
on traite celles-ci comme des objets autonomes, elles se définis-
sent par le moyen de coordonnées pliickériennes, et celles-ci se
décomposent en deux séries qui subissent respectivement les
transformations orthogonales en question r=n7 et sus 2.

Je ne puis insister. Mais il est impossible, aprés avoir parlé
du mouvement au point de vue le plus général, de ne pas nous
arréter un instant sur ces mouvements spéciaux, la rotation et
Vantirotation que nous avons vus jouer le role de facteurs dans
le mouvement général. Pris isolément ils présentent, dans I’en-
semble des déplacements, un caractére distinctif trés remar-
quable: c’est de laisser invariantes non plus deux couronnes
seulement, mais une infinité. '

Ce fait est étroitement lié avec le phénoméne du parallélisme

une fleche £, aprés avoir subi une rotation mixte ROR. est revenue dans
sa position primitive, les deux mouvements R et (R ont lieu autour du
méme centre ; ils sont opposés et d’intensité égale. 1l existe alors nécessai-
rement une couronne dont les fleches n’ont pas bougé, et cette couronne
contient la fleche donnée.

' Le déplacement d’un point de l'espace E ne dépend, comme on sait,
que de la situation du point par rapport aux droites invariantes, w et ’
étant donnés. Au point de vue algébrique le cosinus du déplacement du
point 7 est égal & la quantité scalaire (rns1).

2 Formons les six déterminants qui constituent les seules combinaisons
bilinéaires gauches ol entrent les coordonnées de deux fleches choisies &
volonté, ces six déterminants sont les coordonnées pliickériennes de la cou-
ronne joignant ces fleches. '
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de Clifford dans P'espace E; et en fournit une interprétation
extrémement claire. :

1° Considérons toutes les couronnes, au nombre de »* ayant
un centre donné ¢ a la surface de la sphére; chacune reste inal-
térée, quelle que soit la rotation qu’on fait subir & la sphére au-
tour de c.

A moins de coincider, deux pareilles couronnes ne se rencon-
trent jamais, ou n’ont aucune fleche commune : autrement dit,
elles n’appartiennent pas & un méme couronoide.

Les «? couronnes dont il vient d’étre question sont I'image,
dans E;, d’un faisceau de droites, qui sont paralleles entre elles,
a gauche. L’analogie des deux espaces montre & l'instant que
deux droites semblables, paralléles entre clles, ne sont pas con-
tenues dans un méme plan. Ilexiste un mouvement tel quesi ['une
d’entre elles glisse le long d’elle-méme d’une longueur «, toutes
lesautres en font autant. Kt de méme que par une fleche, on peut
toujours mener une couronne et une seule, qui soit concentrique
a une couronne donnée, de méme par un point de E; passe
toujours une unique droite qui est paralléle a gauche a4 une
dreite donnée.

2° Considérons toutes les couronnes, au nombre de «?, dont la
forme est donnée a priori, tandis que leur situation a la surface
de la sphere est arbitraire. Deux semblables couronnes, & moins
de coincider, ne font jamais partie d’'un méme couronoide. Il est
“évident qu’il existe un ensemblede o' antirotations,d’amplitude
quelconque, laissant invariante chacune de ces couronnes: ce
sont celles dont le centre est placé, relativement & la fleche mo-
bile, comme l'est le centre de notre couronne par rapport a la
fleche qui la décrit.

Dans la Stéréométrie riemanienne, ces couronnes, congruentes
entre elles, correspondent aux paralleles de Clifford a droite.
Les propriétés relatives & cette seconde espece du parallélisme
sont identiques de tout point a celles dont jouit le parallélisme
a gauche.

3° Nous savons que toute rotation est permutable avec toute
antirotation. Par suite, dans E;, si on exécute successivement
deux translations, I'une & droite, 'autre a2 gauche, de maniére
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qu’un certain point A se transporte tantot en A’, sous 'influence
de la premiére, tantot en A” sous I'influence de la seconde, les
points A” et A’ viendront occuper tous deux la méme position
finale A”, aprés qu'on les aura soumis aux deux translations
respectives. Kt la figure AA’A"A" a ses cotés opposés égaux et
paralleles, 'une des paires & gauche, 'autre a droite. Cette diffé-
rence de qualité dans le parallélisme, et le fait que la figure est
gauche au lieu d’étre plane sont les seuls traits qui-en différen-
cient les propriétés de celle du parallélogramme cuclidien.

On voit avec quelle facilité la Géométrie de fleches sphériques
rend compte du parallélisme de Clifford, cette notion qui reste
sans emploi dans la Planimétrie mais joue, en revanche, un role
si caractéristique dans la Stéréométrie riemannienne.

§ 9. — RerarTion TRIGONOMETRIQUE.

Le rapport entre la Trigonométrie de I'espace E;, et la regle
de la composition des rotations est des plus immédiats: je me

borne sur ce sujet par lequel je termine a4 quelques bréves indi-
cations. :

On a, tant pour les points d’une droite dans E], que pour les
fleches formant une couronne sur la sphére, la représentation
paramétrique suivante; elle est & peu prés évidente

H=1%"coss 4+ 7" sin s . (15)

En ce qui concerne la couronne par exemple, les quaternions
7 et 1" représentent deux des fleches qui y sont contenues, dis-
tantes d’'un quadrant, de sorte que (v'1") = 0. La quantité s me-
sure la distance qui sépare la fleche »'de la fleche initiale »'.

Si on prend une nouvelle couronne qui rencontre la précé-
dente suivant la méme fleche +/, la représentation paramétrique

correspondante sera
H = cos s 4+ n"sin ¢, (16)
et I'on a de méme (v'1") = 0.

Le cosinus de la distance S qui sépare les fleches H, H' de
chaque couronne est égal au produit scalaire (HH') des quan-
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tités (15) et (16); et ce dernier, en vertu de ('1") =(»"v") =0,
est égal &
cos S = cos 5 cos 8 + (v"71") sin 8 sin §' .

Pour deux droites de E; le produit (1"+") dépend uniquement
de I'angle de ces droites. De méme, dans le cas de deux cou-
ronnes concourantes, le produit en question dépend de ces cou-
ronnes seulement, non des fleches qui y sont contenues: on peut
donc l'appeler aussi le cosinus de I'angle de ces couronnes et
écrire en désignant par A cet angle

cos S = cos s cos s’ 4 sin s sin s” cos A . (17)

Et ainsi; quand une fleche décrit dans deux couronnes qui se
rencontrent sous Uangle A, des segments d’amplitude s et s', la
distance S qui sépare les positions finales est donnée par la for-
mule trigonométrique (17).

Reste & trouver comment s’obtient géométriquement 1’angle
de deux couronnes concourantes. Soient, & cet effet; O, et O, les
centres des couronnes; réduisons la lamelle »" & 'arc du grand
cercle 0O,0,, et faisons la tourner successivement des angles
25 = 180°, 28" = 180°, autour des points O, et O,.

On voit immédiatement que S = m, tandis que la formule
(17) donne cos S = cos A.

Ainsi langle de deux couronnes qui se rencontrent est égal a
celui des axes de ces couronnes.

Ce résultat fondamental précise le sens du théoreme (17), dont
les conséquences sont fort nombreuses ; elles embrassent notam-
ment la théorie de la perpendicularité cntre couronnes et cou-
ronoides,

Mais ’examen détaillé de ces nouveaux problemes nous ferait
enfler démesurément cet article, sans nous donner autre chose
que la preuve réitérée du parallélisme nécessaire qui relie la
Géométric riemannienne ala Cinématique des figures sphériques
mobiles sur leur propre sphére.
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