Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 44 (1917)

Rubrik: Mésure des capacités

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

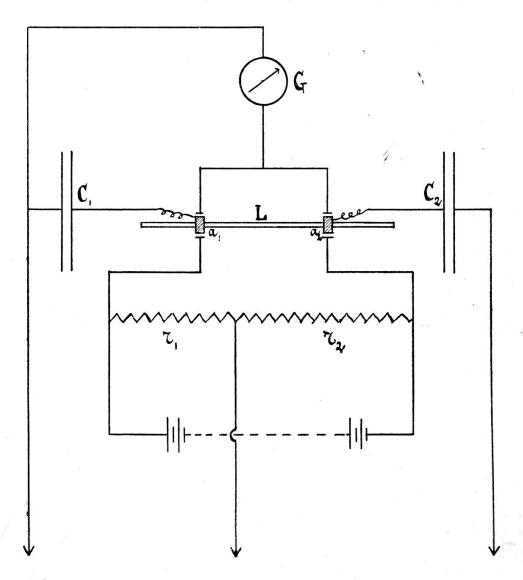
Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.11.2025


ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

constater que ce qui existe est adapté à son but qui est la recherche scientifique aussi bien que la solution des problèmes occasionnels de la vie d'une usine d'un genre spécial.

On trouvera la description détaillée accompagnée des photographies dans un des prochains numéros des « B. B. C. Mitteilungen », Rascher & Cie à Zurich.

A. JAQUEROD (Neuchâtel) parle de la mesure des capacités et présente un appareil qui permet une détermination rapide et exacte, si l'on possède un étalon bien connu.

Si l'on décharge un condensateur de capacité C chargé au potentiel V, n fois par seconde à travers un galvanomètre, on produit une déviation permanente, correspondant à un courant i = nCV. Cette méthode bien connue exige un commutateur tournant, ou une clé vibrante à décharge, dont la période soit petite comparée

à celle du galvanomètre. Souvent, au lieu de mesurer le courant i on l'annule au moyen d'un courant de sens inverse et de même intensité fourni par un potentiomètre. La méthode devient ainsi une méthode de zéro; et si la pile du potentiomètre sert en même temps à la charge du condensateur, on est indépendant des variations de sa force électro motrice. Mais il est alors nécessaire que la clé vibrante ou le commutateur tournant ait une période rigoureusement constante, ce qui n'est pas facile.

L'auteur remplace le courant de compensation par un courant de décharge d'un condensateur de comparaison, actionné de la même façon. Le schéma ci-joint se comprend presque de soi-même. Une clé vibrante L est munie de 2 contacts a_1 et a_2 qui chargent et déchargent alternativement les deux condensateurs C_1 et C_2 . La charge se fait au moyen d'une batterie jointe à deux résistances variables, r_1 et r_2 dont le point de jonction est au sol. Les potentiels de charge sont ainsi de signe contraire et l'on a $\frac{V_1}{V_2} = \frac{r_1}{r_2}$. Les décharges sont conduites au sol à travers le galvanomètre G. On agit sur les résistances jusqu'à ce que le galvanomètre reste au zéro. On a alors C_1 r_1 = C_2 r_2 qui donne le rapport des capacités par un rapport de résistance.

La méthode est très sensible et permet de mesurer de faibles capacités, telles que celles auxquelles on a affaire en radio activité par ex., à 0.04 cm. près. Si l'une des capacités présente des résidus, la mesure est évidemment faussée. On peut facilement se rendre compte de leur existence en modifiant la période de vibration de la clé au moyen d'une surcharge.

, E. MÜHLESTEIN (Bienne). — Traces des rayons a sur plaques sensibles.

La recherche d'une méthode pratique pour enregistrer les particules α nous a amenés à nous occuper de leur action individuelle sur la plaque photographique. Les expériences de Kinoshita (Proc. Roy. Soc. (A) 83, p. 432, 1910) avaient déjà rendu celle-ci très vraisemblable. Après l'heureuse trouvaille de Reinganum (Verh. d. D. Phys. Ges. 13, p. 848, 1911) Michl a étudié de plus près les séries de points noirs qu'on obtient par le développement d'une plaque sensible sur laquelle on a dirigé des rayons α à incidence presque rasante (Ber. d. Wiener Akad. 121 (2a), p. 1431, 1912).

Nous reproduisons les microphotographies de quelques radiographies obtenues au laboratoire de physique de l'Université de Neuchâtel (oct.-déc. 1916): La fig. 1 montre le croisement de rayons émanant de 2 centres voisins (poussières polonisées, adhérentes à la plaque). La fig. 2 est due à l'action d'une source