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SUR QUELQUES FORMULES

DE LA

THEORIE DE LA RELATIVITE

PAR

C. CAILLER

§ 1. La transformation de Lorentz qui, dans la théorie de la
relativité, sert & effectuer le passage entre les coordonnées
z, Y, 2, t d’un événement tel que ’aperc¢oit un certain observa-
‘teur 8, et les coordonnées ', ¥, 2’, ¢ du méme événement vu
par un autre observateur ', se présente sous la forme générale

=03+ QY+ a2+ at+ &
YV =082+ apy -+ aygz+aut+p

2 =0T+ QY+ A2+ Azl + Y
' =anx+ apyt+age+aut+90.

(1)

Ces formules de transtormation sont en pratique rarement
employées & cause de leur structure complexe, & vingt para-
metres. Malgré les théories vectorielles créées par Minkowski,
Sommerfeld et d’autres (*), la plupart des auteurs continuent a
présenter la théorie et & en développer les conséquences, en
partant du systeme réduit

x — ot c?

m':—..-——-———_g,y':y,z’:g, t’=—-——2.(2)
\/1—"—, \/1—‘1.,
c” 2

Pour parvenir & cette forme des équations, il faut que les
deux milieux S et §’, dont chacun s’est géométré euclidienne-

') Elles se trouvent exposées d’une maniére suffisamment détaillée,
dans le traité bien connu de M. Laue, das Relativitdtsprinzip, chap.IV.

Arcmves, t. XLIV. — Octobre 1917. 17
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ment et chronométré par la voie optique, soient rapportés a des
systemes d’axes choisis de maniére trés spéciale : on sait que les
deux triedres OXYZ et O’X'Y'Z’ doivent posséder une méme
orientation, et que l'origine Q" de I'un d’eux glisse avec une
vitesse v le long de I’axe OX du premier triédre.

S’il est vrai que le systeme réduit (2) suffise pour une repré-
sentation claire et précise de la doctrine, il est cependant
regrettable que des difficultés mathématiques le fassent préférer
au systeme (1), lequel conserve un avantage signalé au point de
vue de la généralité et de la symétrie. Et1’on doit saluer comme
un progres toute méthode qui permettrait de manier ce sys-
teme (1) avec facilité, sans complication superflue, ni théorie
construite ad hoc, comme celle de Minkowski.

Tel est, si je ne me trompe, le bénéfice a retirerici de I’emploi
de 1’algorithme bien connu des quaternions. L’emploi en est si
aisé qu’il supprime complétement les méthodes vectorielles
relatives & 1’espace & 4 dimensions, ou plutdt qu’il confére a ces
méthodes un caractere intuitif ; les formules viennent se classer
sans effort dans I’esprit, & une place marquée d’avance en quel-
que sorte.

L’intervention des quaternions dans la théorie de la relativité
s’explique d’ailleurs de la manieére la plus naturelle ; elle pro-
vient de ce que I'invariant des formules de transformation (1),
doit présenter la forme '

¢ (t — 1) — (@) — %o)* — (1 — Yo)* — (&1 — 20)°

et celle-ci estidentique & celle de I'invariant caractéristique de
la Géométrie non-euclidienne de Lobatchewsky, & savoir:

iy .

C’est encore le méme invariant qui se rencontre dans la
(éométrie des corps solides ; cette coincidence des invariants
dans les trois théories explique suffisamment 1’intime parenté
qui les unit. Les quaternions qui interviennent d’une maniére
si efficace dans deux d’entre elles ne sauraient manquer de jouer
aussi un role important dans la derniére, la théorie de la rela-
tivite.
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§ 2. Pour la symétrie des notations, nous désignerons les
coordonnées rectangles mesurées par ’observateur S, z,, ,, ,
au lieu de z, y, z; de méme le temps indiqué par les horloges
du milieu S sera noté x, au lieu de ¢. J’admets pour simplifier
’écriture que les unités spatiale et temporelle ont été choisies
de maniere A réduire a ’unité la vitesse de la lumiére : nous
avons, autrement dit, ¢ = 1. En primant les lettres, nous écri-
vons «',, &,, «,, ', pour les coordonnées relatives au second
observateur S'.

Suivant ces notations, et en posant par une simplification
sans importance,o. = 3 =+v = § = 0, les formules (1) s’écrivent
sous la forme

X'y = oo To + g1 T1 + Aoz Ty + A3 X5
'y =&+ Ay X + Ap To + A3 5
X'y = Qs Ty -+ gy Ty + Qoo Ty + A2y X5
X'y = Qg Lo + A3y Ty + A3 Tz + Qg3 25

(3)

Les coefficients de ce schéma doivent étre choisis de manieére
que 1’on ait

—x® — 2y’ —

il faut de plus que (3) fasse partie d’un groupe continu de trans-
formation & 6 paramétres. Il en résulte, comme on sait, que le
déterminant des formules (3), doit étre égal & +1, non & —1.
Legroupe auquel appartient (3) n’est autre que celui des mouve-
ments dans [’espace de Lobatchewsky.

§ 3. Considérons un biquaternion quelconque,
A = (@ + byt) + (by + @y 0) 4y + (b + @ni) is + (bs + @z) 1, ,

ol les a et b sont des nombres réels, ¢ I'unité imaginaire ordi-
naire, et les ¢,, i,, ¢; les unités de Hamilton douées des pro-
priétés connues

=12 =4 = —1
i = laly = — I3y
Ty =138 = — ;13
g =1t = — g%

Au biquaternion A s’associent trois autres biquaternions
qu’on peut distinguer les uns des autres par des dénominations
convenables. "
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Le quaternion comjugué A, s’obtient, en changeant dans A,
le signe des trois quantités ,, i,, i,, sans toucher & ¢. De la
sorte les parties scalaires de A et A sont identiques, tandis que
les parties vectorielles difterent seulement par leur signe.

Le quaternion A, opposé & A, s’obtient au contraire en chan:
geant i en —i, 4,, 4, 3, restant inchangés. Ainsi les parties
réelles de A et A sont les mémes, tandis que les imaginaires
sont égales et de signe contraire.

Le quaternion ;A est le confraire du quaternion A quand on
I’obtient en changeant a la fois le signe des 4 quantités ,,,7,,%.
Dans A et A les parties paires (') sont identiques, les parties
impaires égales et de signe inverse. Ces parties sont données res-
pectivement par les formules

A+ A L ) :

2 = = a0+ @(al'l] +a2%2+a3z3) H
A—A _ , . .
—2_ =byt+ by, + baty + b3ty

Il est clair que les relations entre un biquaternion A, son
comjugué, Son opposé, et son contraire sont réciproques. Rap-
pelons ici les regles qui servent & déterminer le conjugué et le
contraire d'un produit de quaternions. Avec trois facteurs, par
exemple, ces régles prennent la forme

ABC=CBA, et ABC =

(@)
el
el
11

?

I’ordre des facteurs ne pouvant étre alterné, comme il est bien
connu.

Avec le biquaternion A, considérons-en un autre, de méme
forme U =U, + ¢, U, + ¢, U, + ¢ U,, dont le module soit
I'unité. Il faut, autrement dit, qu’on ait

UU=0U0U=U24+0U240,4+Uz2=1. (4)

Or, les quantités U, sont complexes, dutype U, =u, +v,1;
I’équation précédente (4) se subdivise donc en deux autres

1) Sont paires les quantités 1, 4, i2,, #,, sont impaires 1, 4,, %, ;.
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réelles, et de cette maniére il existe un ensemble continu de biqua-
ternions-unités U. Cet ensemble dépend de 2 >< 4 — 2, ou 6,
parametres arbitraires réels, soit autant que doivent en contenir
les formules (3).

Choisissons & volonté U dans I’ensemble en question, consi-
dérons A comme un biquaternion variable quelconque, et posons
I’équation ‘

A'=TUAT. (5)

Cette équation fait correspondre a tout A, un autre quater-
nion A’, transformé du premier par 1’opérateur U . [:T D’apres
les régles et opérations rappelées plus haut, il est clair que
de (5) on tire - L
A'=TUAU, (6)
et par suite '

— — IT

A"+ A A+ A_

Autrement dit, la parité du quaternion A n’est pas altérée par
Uopérateur U . U auquel il est soumis. Ou bien, la partie paire
de A’ provient uniquement de la partie paire de A ; les parties
umpaires se transforment de méme Uune dans Uautre.

De 1a résulte immédiatement que la transformation (5),
laquelle, relativement aux composantes A,, A,, A,, A; du qua-
ternion A, est linéaire et du type (3), possede des coefficients
réels.

En second lieu, reprenons l'équation (5) et calculons les
conjuguées des deux membres; il vient A" = UAU, par suite

A'A’=UAUUAU = U(AR)T = AAUU .
Mais U est un quaternion-unité, donc enfin
A’A' = AA .

Ainsi, quel que soit le quaternion-unité U, le module reste
inaltéré par la transformation (5), autrement dit, on a

(@' + b'ot)® + (U1 + a'1i)? + (b + a'20)* + (b5 + a'yi)?
= (@, + boi)? + (b + a,1)?® + (b2 + asi)® + (bs + az1)? .
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Séparons le réel de I’imaginaire, nous trouvons les deux inva-

riants
@y’ — a.® — ay® — ag® — (bo® — b — b,? — bs?) ,
aoby + a; b, + a, by + az b; .

Mais nous savons d’autre part, d’apreés la propriété de parité,
que les a’ proviennent exclusivement des a, et les b’ des b; les
invariants sont donc au nombre de trois, ce sont

a¢® — as® — as® — a5’ 3
be* — b,* — by* — by )
Ay by + a, b, + a, by + a3 b; .

Ce résultat comprend, comme cas particulier, celui que nous
cherchons.

Prenons en effet tous les b nuls, remplagons les a par de nou-
velles variables x, et considérons un tétravecteur de composan-
tes x, , z,, x,, &, , ou bien sous forme quaternionnienne

X =+ 0(i, 2 + 1222 + 1323) . (8)

N

Qu’on applique & ce tétravecteur 1’opérateur UX@ il se
transforme linéairement en un nouveau vecteur X'(z', &', ', '),

et I'on a _
X'=z +i(hx + 0z +ix)=UXU. (9

Cette formule (9) remplit toutes les conditions imposées &
(3); comme cette derniere, elle a ses coefficients réels, elle
possede 1'invariant

x'? — xrlz _ xr22 _ x’3’ — x02 — 2% — . — z5? ,
enfin son déterminant est égal & -~ 1, et non & — 1, puisque (9)
fait partie d’un ensemble continu de transformations différant
les unes des autres par la valeur du quaternion variable U.

En un mot, toute transformation du type (9), résolue dans ses
éléments réels, équivaut & une transformation de la forme (3)
telle que celle qu’on considére dans la théorie de la relativité.

§ 4. La réciproque est vraie, et tout systéme de la forme (3)
peut prendre la forme (9), pourvu qu'’il soit direct et laisse inva-
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riable la quantité x,* — z,* —2,? — x,% Le fait paraft d’avance
extrémement vraisemblable, puisqu'il entre dans (3) et (9) le mé-
me nombre de paramétres arbitraires, six des deux cotés. Pour
démontrer plus rigoureusement cette réciproque, il faudrait évi-
demment exprimerle quaternion U en fonction explicite des coeffi-
cient @, donnés a priori. Je ne m’attarderai pas a résoudre ici
ce probleme dont la solution, qui n’exige que 1’extraction d’une
racine carrée("), se tirerait facilement des formules que je vais
développer dans un instant & propos des hexavecteurs. Je me
bornerai & indiquer, sans démonstration, la construction équi-
valente aux formules en question par laquelle peut se détermi-
ner le quaternion U.

X)

&

By 1

Avec M. Varigak, considérons les z,, z, , z,, #, comme les
coordonnées d’un point M de 1’espace de Lobatchewsky rap-
porté & un triedre OX, X, X,, de sorte que

%y = chg, x, = shg cosa, , 2, = shp cosa, , ¥ = sho cosag .

") 11 est clair qu’on peut remplacer U par — U, dans la formule 9).
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Dans cette interprétation, les formules (3) sont celles d’un
changement d’axes, et les nouvelles coordonnées du méme
point, relatives au triedre O’ X', X', X, sont

2'o=-chg', #' = shp' cosa,’ , x," = shp cosa,’ , x," = sh @' cosa', .

Cela posé, nommons A I’axe du mouvement hélicoidal qui
ameéne le triedre primitif en coincidence avec le second, A, , A, , 2,
les composantes du dit axe suivant le premier des deux trie-
dres ; nommons encore w la moitié de I'amplitude du mouve-

ment hélicoidal, de maniere que o étant 1’angle de rotation, et
@ la grandeur du glissement, on ait

2w =a+ ft .
Nous aurons alors

U = cosw — sinw (?:1 Aq_ + ig)-g + i3;~3) .

Par exemple, dans le cas des formules réduites (2), les deux

XJ x3,
ol B :
7 X1,
A, I.e’
Fig 2

systemes d’axes sont dans la situation donnée par la figure 2 ;
si on désigne par v la vitesse du milieu S’ relativement au milieu
S, celle de la lumiere étant toujours prise comme unité, la
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grandeur du glissement 3 est donnée par les relations

ch =

, shf=

thg=nv,
Vi—e? Vi—o? ' d

et I’on a pour le quaternion U la valeur
U=§=mg~mmg.

En opérant suivant la formule
X'=U(x,+it,2, +itoxs +1532,) U,

il est trés aisé de constater qu’on retombe sur les formules (2)
d’Einstein données plus haut.

§ 5. La formule de transformation U. EJ' des tétravecteurs,
n’est pas la seule qu’il y ait lieu de considérer. Prenons un
quaternion de forme paire, tel que le suivant

Y=y — (6,9 + tt:+ G5 43) ,

ou les ¥ doivent subir la transformation (3) quand on passe du
point de vue de S & celui de §'. Un vecteur du type Y sera dit
tétravecteur de seconde espeéce il est clair que le conjugué de Y,

a savoir _ .
Y=y 410y +5%y:+ ys),

est un tétravecteur de premieére espéce. De 1a résulte que si les
tétravecteurs de premiére espéce subissent la transformation
U. U, ceux de seconde espéce subissent la transformation
conjﬁguée[_] . U. En un mot on change un tétravecteur d’es-
péce en changeant le signe des coordonnées-espace, sans chan-
gement de la coordonnée-temps, ou l’inverse.

Soient deux tétravecteurs,’un X de premiére espece, I’autre
Y de seconde espece. Le produit XY subit la transformation
U. TII_I . U, ou réduction faite, U. U ; on a donc

X'Y’ = UXYU .

Mais il est clair que la transformation U . U est sans effet sur
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la partie scalaire du quaternion auquel elle est appliquée; si
done on a posé ()

X =5+ (6@ +ioos + 135) , et Y =y, + (4 +ays + 13ys) ,
et que X et Y soient d’espece différente, le produit

ZoYo+ X1y + T2 Yo+ X Ys , . (10)
est invariant.

Il est clair que la propriété précédente détermine le mode de
variation des y, pourvu qu’on connaisse le mode de variation
desz; la réciproque est donc exacte, et par suite, sz (10) est
mvariant et que X soit un tétravecteur de premiére espéce, Y sera
de seconde espéce.

Voici une application importante du théoreme précédent. Soit
J/ un scalaire, nous avons identiquement
of 3f of of

of of ' '

af s . OF o,

Or dz,, dz,, dx,, dz, est un tétravecteur de premiere espéce,
donc le vecteur symbolique, dont les composantes sont
3 2 2 3
e,
est de seconde espeéce. Cela signifie que le quaternion

a (. 9 : 3+, 2
'§—x—0 'lrt]‘?—a:.l+?28m2 @33—583 .

subit, par le passage de S a4 S, la transformation U . II, iden-
tique a celle des tétravecteurs ordinaires(*®).

') Remarquer ici le changement des notations.

%) On pourrait aussi observer que les parties paires et impaires d’un
biquaternion subissent, chacune pour son compte, la transformation
U . U; or on changerait la parité en introduisant le facteur — ¢ dans la
seconde des parties en question.
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§ 6. Nous venons d’avoir affaire & la transformation U. U;
elle est visiblement de module unité, ne change donc pas le
module du quaternion

K=mn+ t,m + G2my +037; (11)

auquel elle est appliquée. D’autre part, étant sans effet sur la
partie scalaire de K, elle transforme en un vecteur le vecteur

H=1d4n 4+ 69 + 4375 , (11 bis)
cela sans modification de la somme
n?+ 772 + n;°

Autrement dit, la transfmmatlon U. U est orthogonale, elle est
de plus directe & cause de la valeur du déterminant, laquelle
est évidemment égale & - 1.

Cela posé, nous appellerons hexavecteur tout biquaternion H
dépourvu de partie scalaire qui subit la transformation ortho-

gonale B
H' = UHU , (12)

en méme temps qu’un tétravecteur subit la transformation (9).
Pour justifier la dénomination précédente, il importe de relever
le fait que les trois composantes de H sont généralement com-
plexes et se présentent sous la forme

nm=e +ht, p=¢+hit, n=e+hyt. (13)

Au lieu donc de définir I’hexavecteur par la formule (11 %), on
pourrait le faire & ’aide du tableau

fe1 €2 83]

7oy By g |

lequel contient six quantités réelles.

La conception des hexavecteurs, tres importante dans la
théorie de la relativité, se rencontre aussi en Géométrie non-
euclidienne, ou elle se rattache A la notion des coordonnées
linéaires.

Soient
X = &y + i(i,xl -+ ‘igxg -+ 7:3503) ’
Y=yo+ t(hy + 292 + %)
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deux tétravecteurs (de premiére espéce) représentatifs de deux
points. Nous savons que le quaternion XY, se transforme sui-

vant la formule U . U. Or, en opérant la multiplication, on
trouve
H=n 445 +tem+ 81 ,

avec

No=XoYo — X1Yr — Xg¥Y2 — X3Y3s ,

M = TaYy — Xz + © (X, Y0 — Xo¥y)

Mo = T3y — T1Ys + 1 (TaYo — ToY2) ,

Ny = T1Ys — Loty + 1 (X3Yp — ZoYs) ,

Les quantités v,, v,, 1, sont les coordonnées linéaires de la
droitequi joint X & Y ; on voit par 12 que les composantes réelles
{ € € e )

hy hgi;si y OU € = XyWYg — X3Ys » My = XYy — LY , ete.

qui définissent une droite dans I’espace, jouissent de la propriété
caractéristique de 1’hexavecteur contenue dans la formule (12).

La propriété des déterminants x,y, — X, ¥%., X, Y, — Lo ¥, €t
de leurs analogues fournira souvent, de maniére expéditive, les
formules explicites de la transformation des hexavecteurs con-
tenues implicitement dansla forme U . TU.

C’est ainsi que si les mesures des deux observateurs S et S
sont liées entre elles par les formules réduites d’Einstein (2),
les hexavecteurs subiront également une transformation de
forme réduite ; en calculant les dits déterminants, nous trou-
vons de suite le résultat

€ —-h e -h

2 C3 3+cz
o T e v
1— \/1——
Vi-% A
v v
hes + - h,— -¢e
2T €3 = 2 €y

2 ’ 2 °
. \/1—"3.;
c” c”

§ 7. Soit désormais 7 1’hexavecteur (11%), privé de toute
partie scalaire, ou |

_ . [e e e
pe=ek b= {hlhghs} ‘
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Il est évident que
= . . ""'hl "_hz ‘_hg
m———h+ezn—{ 51 €y 83}’
se transforme aussi suivant la formule U . U. C’est donc un
hexavecteur, on le nomme le dual du premier; on peut dire
aussi qu’il Iui est orthogonal.

Sin = e hi, et =e -+ k't sont deux hexavecteurs, leur
produit vectoriel est aussi un hexavecteur admettant la trans-
formation U . U ; ses composantes suivant les axes coordonnés
sont '

Naef's — MM » W1 =Nz , MmNz — M1 ;

en décomposant ces quantités en leurs parties respectivement
réelle et imaginaire, nous trouvons les six quantités du tableau

E, E, Eg}
-Hl Hz H3

relatif au dit hexavecteur. Ce sont
E, =e¢,¢'y — hh'y — €€’ + hsh's ,
E, =ee, — hsh'y —ee's + A3,
E; =e¢€y — by — ey + 1y,
H) = e;l'y + hy€'s — e3h's — hy€s
H; = e,y + hye'y — e B’y —hye'y
H;, =¢h'y + hye'y — &', — hoes .

Les deux propriétés précédentes sont évidentes ; je terminerai
ces développements théoriques par une derniére proposition,
moins immédiate, et dont les applications sont trés importantes.

Désignons par v, comme ci-devant, un hexavecteur quel-
conque, par X un tétravecteur: je dis que le produit

inX ,

lequel est un biquaternion de forme générale, subit la trans-
formation des tétravecteurs U . U.

En effet, au jugement de I’observateur S, les deux facteurs
du produit deviennent respectivement U sy U, UXTU, et le pro-
duit lui-méme se transforme en B

U iy UUXU, ou UinXU .
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Posons
N=1047 + % +isns N
X =ua,+ t(t,2; + 12, + ta23) ,
MX =5+ (6 + 0+, &) s

en opérant les calculs, nous trouvons pour les quantités &, qui
sont généralement complexes, les valeurs suivantes :

So=2xym + XMy + 237
Si=axom + i(X3my — 2373) (14)
S =xyn + 1(2,m5 — T57)

13

Zots + t(X22y — T17) -

o
&

Mais, puisque le biquaternion &, se transforme comme un
tétravecteur, sa partie paire est un tétravecteur effectif. Rem-
plagons dans les formules ci-dessus 1 = e - hi, puis limitons-
nous aux parties réelles, nous obtenons alors immédiatement le
résultat que voici.

Si

(e e e;)
By oo by |

est un hexavecteur, X,, X,, X,, X, un tétravecteur, les quatre
quantités suivantes

Xo=x18 + w200 + 2585

X =xpe, + oohy — 2 hy = e, + [xh],
Xo =m0, + 23k — 21h3 = 56, + [2h]2 ,
Xy =o€ + 21hy — 22hy = &, €3 + [xh];

(15)

représentent les composantes d’un nouveau tétravecteur.

Laréciproque est vraie. Car la substitution linéaire subie par
: Z } est déterminée par les transformations opérees sur les x
et X. St donc ces derniéres sont les composantes de deux tétravec-
tewrs, la quantitén = e - hi représente forcément un hexavecteur.
Il existe évidemmentun énoncé analogue touchant les formules
(14) plus générales que (13).

§ 8. Je désire appliquer en finissant les notions générales qui
précedent & deux problémes classiques de la théorie de la rela-
tivité. Le premier consiste & établir les conditions d’invariance
des équations du mouvement de 1’électron quand on passe du
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point de vue de I’observateur S a celui de 1’observateur S'; le
second probleme est celui de l’invariance des équations du
champ électro-magnétique dans les mémes circonstances.

Une différence capitale existe, on le sait, au sujet de la notion
de force entre la Dynamique classique, et la Mécanique relati-
viste. La premiere, avec Newton et Galilée, exige que la force
soit un élément invariable estimé de la méme maniére par deux
observateurs animés I’un par rapport a I’autre d’uune transla-
tion rectiligne uniforme. D’aprés la seconde, les équations du
mouvement doivent présenter une forme identique dans les
deux milieux normaux S et S, optiquement chronométrés. C’est
’application & la Mécanique du principe général de relativité ;
il implique I’abandon d’une force invariante pour les deux obser-
vateurs.

En combinant le principe de relativité avec ce postulat que
I’accélération initiale d’un électron doit obéir & la seconde loi
de Newton, Einstein et Minkowski ont obtenu comme suit les
équations du mouvement dans la nouvelle Mécanique.

Désignons par s, le temps propre, défini par I’équation

dO’ = deog = dx12 = dxg:: == dx32 = dxo V’l == qg b]
ol ¢ représente la vitesse du mobile. On sait, et on peut vérifier
a I'instant, que la quantité s posséde une valeur indépendante
du systeme de référence.

De 14 résulte que

deg 1 de, O dxo _ iz B
6 Y1-g do 1/1—q3 I/l—q' do 1/1—

sont les composantes d’un tétravecteur, la tétravilesse.
Prenons pour équations du mouvement les suivantes

2 2 3 2
a’x, M d’x, M dxo:M;!,‘udaig:
do*®

M‘Wz o-;lu%i‘: Ifludo,g (16)

u. étant une constante caractéristique du mobile.

Il est clair que les premiers membres de (16) représentent les
composantes d’un tétravecteur ; pour que, conformément au
principe de relativité, les équations se présentent de la méme
maniére aux deux observateurs, il faut que les seconds membres
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M, soient aussi les composantes d’un second tétravecteur. C’est
lui qu’on nomme la tétraforce (au sens de Minkowski).

Les composantes-espace de la tétraforce, M,, M,, M,, sont
aussi les composantes de la force de Minkowski ; de leur valeur
supposée connue on tire la composante-temps M,. En effet,
comme on a identiquement

(%) - (B) - (32) - (32 -
da) %) do (da o
et par suite

diydidy 05,40 degdw, dide
do do* do do® de do® do do®

les formules (16) donneront

g gy
M°_M’d_a:‘,+M2dxo+M‘”’dxo ’
ou

My =M, q: + Msq: + Mag; .

D’ou résulte que la composante M, est égale au travail élé-
mentaire de la force par unité de temps. Et il est évident que
cette décomposition de la tétraforce en force et travail, laquelle
est invariante dans ’ancienne mécanique, prend dans la nou-
velle un caractere strictement relatif : elle dépend de 1’obser-
vateur qui examine le mouvement et n’est pas la méme pour S
et pour S'.

Adaptons ces généralités an mouvement d’un électron dans
un champ électromagnétique.

Soit ¢ la charge de I’électron, ¢ sa vitesse, e le champ électri-
que, & le champ magnétique ; la force pondéromotrice agissant
sur I’électron sera donnée, comme on sait, par la formule vec-

torielle
e+ [gh]

. & -
V1i—-¢

o (e+ [qh]) ,

ou

en posant p ¥ 1 ¢® = (). De 13, immédiatement, les qua-

') 11 est aisé de voir d’aprés cela que o est la densité de P’électron
mobile, la charge restant invariable.
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tre composantes de la force de Minkowski, appliquée & 1’élec-
tron.

Posons, pour abréger,

Q=20 ,0 =0% Q=09 , =049, (17)
ou

&€ €4, €Qqs

90:_— Y -

10, = 102 = 7 -_—’93=4—i—;(17)
1—-q2 1/]_-—q2 ‘l/-]_.__q? 1/1__g2 bis

nous trouvons pour les composantes de la tétraforce

M, = e;01 + €00+ €0;
M; = e;0, + h30s — hsps
M, = €00 + h19s — 301
M; = e;00 + ho01 — Iy0s -

(18)

Comparons le systéme (18) au systeme (15); M, nous le
savons, doit étre un tétravecteur, et (17%%) ou p,, py, psy ps, €0
donne un autre. Done, pour que le mouvement de I’électron ait le
caractére invariant qui nous est imposé, il faut, suivant esl
conclusion du paragraphe précédent que le vecteur

_ . e e e
m=e =g gk

soit un hexavecteur.

§ 9. On est conduit & la méme conséquence quand on étudie
les conditions moyennant lesquelles le champ lui-méme posséde
un caractére invariant quel que soit 1’observateur, S ou 8, qui
’examine.

Les équations de Maxwell-Hetz sont les suivantes, sous forme
vectorielle.

roth=e¢+ oq, rote=—h,

dive=p , divh =0 ;

Jde
é’;; .

Employons pour le tétracourant de convection les notations de
la formule (17) ; on constate & I’instant que les équations précé-

ARrcHIVES, t. XLIV. — Octobre 1917. 18

L . .. Qe
icie,par exemple, signifie 5, ou
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dentes s’obtiennent en séparant le réel et I'imaginaire dans les
deux que voici

div (e + hi) = @, ,

d
~— (ex+ Put) = Ok . (k= 1.2.8)

1 -
7 votx (e + hi) — 5o

Introduisons dans les trois derniéres les facteurs i, , ,, i,
posons 1 = e - hi = (e, + hyi) 4, ... et
R= 0, + "':(_'-':1Q1 + 7:2Q2 + i393) ’

additionnons enfin les quatre formules, apres avoir remplacé les
facteurs symboliques div et rof par leurs valeurs développées,
il vient

9
771 “]‘ TL + '»']s
i 3771 qu, 8773 ..
+ | 3z, +4 (9:(:3 qu) =
R = =g (19)

+ M2 4 (O _ 9}_}1 i
SJ'O 8:1:1 8:1:3 ‘

[_ 9% (%m _ 2m\],

+ 33:0 (3.7;9 Sml) s

Telle est la forme quaternion des équations du champ. Il y
figure deux tétravecteurs (de premiére espéce) ; 1'un est le tétra-
courant de convection R, I’autre est le vecteur symbolique

5 3 2
dw,’ Fa, * 3

\ W

@

X3

Comparons la formule (19) aux formules (14) et rappelons le
théoréme qui termine le paragraphe (7). La conséquence sui-
vante se dégage immédiatement ; pour que les équations du
chamyp se reproduisent sans changement quand on passe du, point
de vue de Uobservateur S a celui de Uobservateur S', il faut que
le quaternion v = e - hi soit un lexavecteur. Cette condition
est identique a celle tirée de la Dynamique de 1’électron ; pour
vérifier dans les deux théories le principe de relativité, il faut
donc et il suffit que le champ électromagnétique v subisse la
transformation caractéristique de I’hexavecteur.
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J'ajoute que les notations quaternionniennes, employées
exclusivement & toute autre, font ressortir au premier coup
d’ceil les invariances imposées par le principe de relativité.

Posons
n==e ‘I" ht = Thil + T?Qig + T}gis

pour I’hexavecteﬁr du champ,
X=ux,+4 (02 + 532 + $37,),
pour le tétravecteur déterminant la position de 1’électron,
T (T
dx, 13z, 24 dxy
pour le tétravecteur symbolique de différentiation,
R=0+ 1000 + %0 + 450s)

pour le tétravecteur de convection; la méme notation a été
employée ci-dessus pour la tétravitesse de 1’électron mobile,
mais il vaut mieux désigner celle-ci par

aX €

ax _ ; x =
€ dc_]/l—qz{l—i_zlqr!- 12§l2+?’3(13J .

Suivant ces notations, nous avons, pour le mouvement de
Pélectron dans le champ v, la formule quaternion-

a*X ax
Sy L) 20
B PE 8[""'7616],, (20)

dans laquelle I'indice p désigne la partie paire du biquaternion
entre crochets.

De leur coté les équations de Maxwell-Hertz s’écrivent sim-
plement

R=ind, (21)

et 'invariance des-équations (20 et (21) résulte immédiatement
du fait que 7 se transforme suivant la formulg U . U, tandis
que X, A et R subissent la transformation U .U des tétravec-
teurs, et que les quantités p, ¢ et 5 restent sans changement.
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