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SUR QUELQUES FORMULES

DG LA

THEORIE DE LA RELATIVITE
FAR

C. CAILLKR

§ 1. La transformation de Lorentz qui, dans la theorie de la

relativite, sert ä effectuer le passage entre les coordonnees

x, y, z, t d'un evenement tel que l'aperqoit un certain observa-

teur S, et les coordonnees x', y\ z, t' du meme evenement vu

par un autre observateur S', se presente sous la forme generale

x' au x + a12 y + an z + a,4 t + «
y' a21 x + a22 y + aMz + a2it + ß
z' a3, x + a32 y + a33 z + a341 + y
t' a41 x + a42 y + a43 z + a44 t + 6

Ces formules de transformation sont en pratique rarement
employees ä cause de leur structure complexe, ä vingt para-
metres. Malgre les theories vectorielles creees par Minkowski,
Sommerfeld et d'autres ('), la plupart des auteurs continuentä
presenter la theorie et ä en developper les consequences, eil

partant du Systeme reduit
t — -*'=-7^ *' -7=-(2)

V1-? V1-?
Pour parvenir ä cette forme des equations, il faut que les

deux milieux S et S', dont chacun s'est geometre euclidienne-

') Elles se trouvent exposees d'une maniere suffisamment detaillee,
dans le traite bien connu de M. Laue, das Belativitätsprinzip, chap. IV.
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238 SUR QUELQUES FORMULES

ment et chronometre par la voie optique, soient rapportes ä des

systemes d'axes choisis de maniere tres speciale: onsaitqueles
deux triedres OXYZ et O'X'Y'Z' doivent posseder une meme

orientation, et que l'origine 0' de l'un d'eux glisse avec une
vitesse v le long de Taxe OX du premier triedre.

S'il est vrai que le Systeme reduit (2) suffise pour une
representation claire et precise de la doctrine, il est cependant
regrettable que des difficultes mathematiques le fassent preferer
au Systeme fl), lequel conserve un avantage Signale au point de

vue de la generalite et de la symetrie. Et l'on doit saluer comme

un progres toute methode qui permettrait de manier ce
Systeme (1) avec facilite, sans complication superfiue, ni theorie
construite ad hoc, comme Celle de Minkowski.

Tel est, si je ne me trompe, le benefice ä retirer ici de l'emploi
de Talgorithme bieii connu des quaternions. L'emploi en est si

aise qu'il supprime completement les methodes vectorielles
relatives h l'espace ä 4 dimensions, ou plutöt qu'il confere ä ces

methodes un caractere intuitif; les fonnules viennent se classer

sans effort dans l'esprit, h une place marquee d'avance en quel-

que sorte.
L'intervention des quaternions dans la theorie de la relativite

s'explique d'ailleurs de la maniere la plus naturelle; eile pro-
vient de ce que l'invariant des formules de transformation (1),
doit presenter la forme

c- (h - tof - (x, - x0)2 - (y, - y„Y - (zt — zoy

et celle-ci est identique ä Celle de Tinvariant caracteristique de

la Geometrie non-euclidienne de Lobatchewsky, ä savoir:

t2 - f - rf - S>

C'est encore le meme invariant qui se rencontre dans la
Geometrie des corps solides; cette coincidence des invariants
dans les trois theories explique suffisamment l'intime parente
qui les unit. Les quaternions qui interviennent d'une maniere
si efficace dans deux d'entre elles ne sauraient manquer de jouer
aussi un röle important dans la derniere, la theorie de la
relativite.
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§ 2. Pour la symetrie des notations, nous designerons les

coordonuees rectangles mesurees par l'observateur S, xt, x2, x3

au lieu de x, y, z\ de meme le temps indique par les horloges
du milieu S sera note x0 au lieu de t. J'admets pour simplifier
l'ecriture que les unites spatiale et teinporelle ont ete choisies
de maniere ä reduire ä l'unite la vitesse de la lumiere: nous

avons, autrement dit, c 1. En primant les lettres, nous ecri-
vons x'0, x\, x\, x3 pour les coordonnees relatives au second

observateur S'.

Suivant ces notations, et en posant par une simplification
sans importance, a=ß=7 S 0, lesformules(l)s'ecrivent
sous la forme

X Q QqQ Xq -p QiqI Xl -|- Öt02 X2 -p X3 y

x\ ~ Xq + dyy Xy + dy2 X2 -p fll3 x3 ^X 2 d/2Q Xq -p d'21 Xy -p CI22 "P d'23 X3

x's a30 Xq + a31 Xy + a32 x2 + a33 x3

Les coefficients de ce schema doivent etre choisis de maniere

que l'on ait
Xq'~ — Xy'2 — X2'2 — X3 - Xq2 — Xy2 — X 2 — X3 J

il faut de plus que (3) fasse partie d'un groupe continu de

transformation ä 6 parametres. II en resulte, comme on sait, que le

determinant des formules (3), doit etre egal ä -j-1, non ä — 1.

Le groupe auquel appartient (3) n'est autre que celui des mouve-
ments dans l'espace de Lobatchewsky.

§ 3. Considerons un biquaternion quelconque,

A (a0 + b0i) + (b, + dy i) iy + (62 4 a,i) i2 + (b3 + a3 i) i3

oü les a et & sont des nombres reels, i l'unite imaginaire
ordinaire, et les iy, i2, i3 les unites de Hamilton douees des pro-
prietes conuues

iy2 i2 i32 — 1

i\ ~ i-2 H — H ig

i2 — ii tg

— 1*1 ig ~ ^2 ^1

Au biquaternion A s'associent trois autres biquaternions
qu'on peut distinguer les uns des autres par des denominations
convenables.
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Le quaternion conjuguö A, s'obtient, en changeant dans A,
le signe des trois quantites i,, \, %, sans toucher ä i. De ia
sorte les parties scalaires de A et A sont identiques, tandis que
les parties vectorielles different seulement par leur signe.

Le quaternion A, oppose ä A, s'obtient au contraire en chan

geant i en —i, \ i2, i3 restant inchanges. Ainsi les parties
reelles de A et A sont les mfsmes, tandis que les imaginaires
sont egales et de signe contraire.

Le quaternion A est le contraire du quaternion A quand on

l'obtient enchangeant ä la fois le signe des 4 quantites i, it, t2, is.
Dans A et A les parties paires (') sont identiques, les parties
impaires egales et de signe inverse. Ces parties sont donnees res-
pectivement par les formules

A + A
—2— + t(a,t, + o2t2 + o313)

A - A
2

&0 t + &1 * 1 + »3 + &3 J3

II est clair que les relations entre un biquaternion A, son

conjugue, son oppose, et son contraire sont reciproques.
Rappeions ici les regies qui servent ä determiner le conjugue et le

contraire d'un produit de quaternions. Avec trois facteurs, par
exemple, ces regies prennent la forme

ABC C BÄ et ABC CB Ä

1'ordre des facteurs ne pouvant etre alterne, comme il est bien

connu.

Avec le biquaternion A, considerons-en un autre, de raeme
forme U U0 + i, Ut + i2 U2 + is U3, dont le module soit
l'unitb. II faut, autrement dit, qu'on ait

UÜ ÜU U„2 + U,2 + U22 + U32 l (4)

Or, les quantites Ufe sont complexes, du type Ufc uk + vki;
l'equation precedente (4) se subdivise done en deux autres

J) Sont paires les quantites 1, ü1( iü, it3, sont impaires », i,, u, t3.
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reelles, et de cettemaniere il existeun ensemble continu de biqua-
ternions-unites U. Cet ensemble depend de 2 X 4 — 2, ou 6,

parametres arbitraires reels, soit autant que doiventen contenir
les formules (3).

Choisissons ä volonte U dans l'ensemble en question, consi-
derons A comme un biquaternion variable quelconque, et posons
1'equation

A' U A U (5)

Cette equation fait correspondre ä tout A, un autre quaternion

A', transforme du premier par l'operateur U.U. D'apres
les regies et operations rappelees plus haut, il est clair que
de (5) on tire

Ä' UÄÜ, (6)

et par suite

A' ± A' A ± A —
U U 7

2 2

Autrement dit, la paritedu quaternion A n'est pas alteree par
l'operateur U U auquel il est soumis. Ou bien, la partiepaire
de A' provient uniquement de la partie paire de A; les parties
impaires se transforment de meme I'une dans I'autre.

De lä, resulte immediateinent que la transformation (5),
laquelle, relativement aux composantes A0, A,, A2, As du
quaternion A, est lineaire et du type (3), possede des coefficients
reels.

En second lieu, reprenons l'equation (5) et calculous les

conjuguees des deux membres; il vient A' =JJAU, par suite

A'X' UAUUXfj U(AÄ)Ü AAÜÜ

Mais U est un quaternion-unite, done enlin

A' A' AÄ

Ainsi, quel que soit le quaternion-unite U, le module reste

inaltere par la transformation (5), autrement dit, on a

(®'o + + (b\ + a'tif + (b'2 + a'2i)2 + (b'2 -f- a'3i)2
(a<> + M)2 + (bi + «I*)2 + {b2 + a2i)2 + (&3 + »3 if
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Separons le reel de l'imagiuaire, nous trouvons les deux
invariants

a02 — a,2 — a.,2 — a32 — (602 — V — &22 — &32)

a0 bq -f- (h j- a2 b3 ~h a3 b3

Mais nous savons d'autre part, d'apres la propriete de parite,
que les a' proviennent exelusivement des a, et les b' des b; les

invariants sont done au nombre de trois, ce sont

a02 — «i2 — a22 — a32

6„2 - &,2 - &22 - 632

a0 bü + a, —(- ^2 b2 + ß3 b3

Ce resultat comprend, comme cas particulier, celui que nous
cherchons.

Prenons en eilet tous les b nuls, remplaqons les a par de nou-
velies variables x, et considerons uu tetravedeur de composan-
tes x0, xt, x2, x3, ou bien sous forme quaternionnienne

X .-c0 -f i(i, xx + i2 x2 + i3 x3) (8)

Qu'on applique ä ce tetravecteur l'operateur UXU, il se

trausforme lineairement en un nouveau vecteur X'(x'0 x\ x'2 x's),
et Ton a

X' x0' + i (itXi + i3x2' + H X3) UXU (9)

Cette formule (9) remplit toutes les conditions imposees ä

(3); comme cette derniere, eile a ses coefficients reels, eile
possede l'invariant

(*»' 2 2 ry>^ 2 /v»' 2 .— M 2 M 2 n* 2 » J
O/Q 1 2 3 — »x-o *L2 ^3 9

enfin sou determinant est egal ä -4-1, et non ä — 1, puisque (9)
fait partie d'un ensemble continu de transformations differant
les unes des autres par la valeur du quaternion variable U.

En un mot, toute transformation du type (9), resolue dans ses

elements reels, equivaut ä une transformation de la forme (3)
telle que celle qu'on considere dans la theorie de la relativite.

§ 4. La reeiproque est vraie, et tout Systeme de la forme (3)

peut prendre la forme (9), pourvu qu'il soit direct et laisse inva-
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riable laquantite x„* — x,2 —xt' — xz2. Le fait paralt d'avance
extremement vraiserablable, puisqu'il entre dans (3) et (9) le meine

nombre de parametres arbitraires, six des deux cötes. Pour
demontrer plus rigoureusement cette reciproque, il faudrait evi-
demment exprimer le quaternion U en fonction explicite des coefficient

a., donnes a priori. Je ne m'attarderai pas ä resoudre ici
ce probleme dont la solution, qui n'exige que l'extraction d'une
racine carree(1), se tirerait facilement des formules que je vais
developper dans un instant ä propos des hexavedeurs. Je me
bornerai ä indiquer, sans demonstration, la construction
äquivalente aux formules en question par laquelle peut se determiner

le quaternion U.

Avec M. Variqak, considerons les x0,xt,xt, x3 comme les
coordonuees d'un point M de l'espace de Lobatchewsky rap-
porte k un triedre OX, X2 X3, de sorte que

x0 che, x, she cosot, x2 — she cosa2 x3 — she cosa3

') 11 est clair qu'on peut remplacer U par — Ü, dans la formule (9).

x;

F'S *
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Dans cette interpretation, les formules (3) sont celles d'un
changement d'axes, et les nouvelles coordonnees du meme

point, relatives au triedre 0' X', X', X'3 sont

x'0 chg', Xi shg' cosa,' x3 shß' cosa/ x3 sh g' cosa'3

Cela pose, nommons X l'axe du mouvement helicoldal qui
amene le triedre primitif en coincidence avec le second, X,, X,, Xs

les composantes du dit axe suivant le premier des deux trie-
dres ; nommons encore w la moitiö de l'amplitude du mouvement

helicoldal, de maniere que a etant Tangle de rotation, et
ß la grandeur du glissement, on ait

2)o a + ßi
Nous aurons alors

U cosio — sinw (i, A, + i2A2 + i3A3)

Par exemple, dans le cas des formules reduites (2), les deux

systemes d'axes sont dans la situation donnee par la figure 2 ;

si on designe par v la vitesse du milieu S' relativement au milieu
S, celle de la lumiere etant toujours prise comme unite, la
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grandeur du glissement ß est donnee par les relations

1 V
eh ß= shß= thß v

Vi — ®- V i — v
et l'on a pour le quaternion U la valeur

U tJ chf

En operant suivant la formule

X' U (x0 + ii, xl + 0^X2 + Hz x3) U

il est tres aise de constater qu'on retombe sur les formules (2)
d'Einstein donnees plus haut.

§ 5. La formule de transformation U. Ü des tetravecteurs,
n'est pas la seule qu'il y ait lieu de considerer. Prenons un
quaternion de forme paire, tel que le suivant

Y y<> - i (t, yi + ^ y, + h ys)

oü les y doivent subir la transformation (3) quand on passe du

point de vue de S ä celui de S'. Un vecteur du type Y sera dit
tdraveckur de seeonde espece il est clair que le conjugue de Y.

ä savoir
Y y0 + i (i, yx + % 3/2 + »s Vz)

est un tetravecteur de premiere espece. De lä resulte que si les

tetravecteurs de premiere espece subissent la transformation
U. U, ceux de seeonde espece subissent la transformation
conjuguee U U. En un mot on change un tetravecteur d'es-

pece en changeant le signe des coordonnees-espace, sans chan-

gement de la coordonnee-temps, ou l'inverse.
Soient deux tetravecteurs, Tun X de premiere espece, l'autre

Y de seeonde espece. Le produit XY subit la transformation
U U U. U, ou reduction faite, U U; on a done

X'Y' UXYÜ

Mais il est clair que la transformation U U est sans effet sur
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la partie scalaire du quaternion auquel eile est appliquee; si
done on a pose (*)

X x0 + i (i, +i2x2 + i3x3) et Y y„ + i(t, y. +i2y2 + t, y3)

et que X et Y soient d'espece differente, le produit

«O y0 + Xlyl + x2 y2 + xz y3 (10)

est invariant.
II est clair que la propriete precedente determine le mode de

variation des y, pourvu qu'on connaisse le mode de variation
des a:; la reciproque est done exaete, et par suite, si (10) est

invariant et que X soit un tetravecteur de premiere espece, Y sera
de seconde espece.

Voici une application importante du theoreme precedent. Soit

/ un scalaire, nous avons identiquement

df df df 3f c f 3 f
=— dxo + ~~ dx, + 0 dx2 + — - dx3 dx'0 + dx\3x0 3x, Sx2 ix3 3x0 3x, 1

3 f 3 f+ rl^+^-
Or dx0, dxl, dx2, dx3 est un tetravecteur de premiere espece,
done le vecteur symbolique, dont les composantes sont

3 3 3 3

3x0 ' 3x, ' 3x2 ' 3x3

est de seconde espece. Cela signifie que le quaternion

3 ./. 3 3.33^ + h^2 + H3x3

subit, par le passage de S ä S', la transformation U U, iden-

tique ä celle des tetravecteurs ordinaires(2).

') Remarquer ici le changement des notations.
2) On pourrait aussi observer que les parties paires et impaires d'un

biquaternion subissent, chacune pour son compte, la transformation
U U; or on changerait la parite en introduisant le facteur — i dans la
seconde des parties en question.
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§ 6. Nous venons d'avoir affaire ä la transformation U U;
eile est visiblement de module unite, ne change done pas le
module du quaternion

K % + %% + +HVs (11)

auquel elle est appliquee. D'autre part, etant sans effet sur la
partie scalaire de K, elle transforms en un vecteur le vecteur

H iirji + hVi + »3% (11 bis)

cela sans modification de la somme

ni1 + %2 + n32

Autrement dit, la transformation U. U est orthogonale, elle est
de plus directe ä cause de la valeur du determinant, laquelle
est evidemment egale ä + 1.

Cela pose, nous appellerons hexavecteur tout biquaternion H
depourvu de partie scalaire qui subit la transformation
orthogonale

H' UHU (12)

en meme temps qu'un tetravecteur subit la transformation (9).
Pour justifier la denomination precedente, il importe de relever
le fait que les trois composantes de H sont generalement
complexes et se prdsentent sous la forme

% e, + h,i j?2 e2 + h2i rj3 e3 + h3i (13)

Au lieu done de ddfinir l'hexavecteur par la formule (11bls), on

pourrait le faire ä l'aide du tableau

| «1 «2 «3 }

h, h% h3 j

lequel contient six quantites reelles.
La conception des hexavecteurs, tres importante dans la

theorie de la relativite, se rencontre aussi en Geometrie non-

euclidienne, oh elle se rattache ä la notion des coordonnees

lineaires.
Soient

X x0 + i (ii Xi + i2 x3 + %x3) >

Y y0 + t (i,y, + i2y3 + izy3)
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deux tetravecteurs (de premiere espece) representatifs de deux

points. Nous savons que le quaternion XY, se transforme sui-
vant la formule U U. Or, en operant la multiplication, on
trouve

H J?0 + hrji + »2% + L % »

avec
Vo x0y0 — xlyl — x, y2 — x3y3

tji x2y3 - x3y2 + i (x^ — «„y,)
*h x3y, — xxy3 + i (x2y0 — x0y2)
Vs =a"iy2 — x2y, +i(x3yB - x0y3)

Les quantites rjL, yj2 k)3 sont les coordonnees Unfaires de la
droite qui joint X ä Y; on voit par lä que les composantes reelles

ht h2hs * ' oü e' x'iVz ~ x*y- ' hl x>y" ~ x"yi' etc'

qui definissent une droite dans l'espace, jouissent de la propriete
caracteristique de l'hexavecteur contenue dans la formule (12).

La propriete des determinants x2y3 — x3y., x^0 — x3yx, et
de leurs analogues fournira souvent, de maniere expeditive, les

formules explicites de la transformation des hexavecteurs con-
tenues implicitement dans la forme U U.

C'est ainsi que si les mesures des deux observateurs S et S'

sont liees entre elles par les formules reduites d'Einstein (2),
les hexavecteurs subiront egalement une transformation de

forme reduite ; en calculant les dits determinants, nous trou-
vons de suite le resultat

e2 --Ä3c
-h,
c '

\/ •-5
V2

c2

h2
V

H ^3
c

V

a6*

\/
'

c-

1

s/1
V2

c2

§ 7. Soit desormais yj l'hexavecteur (11M'), prive de toute

partie scalaire, ou
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II est evident que

se transforme aussi suivant la formule U U. C'est done un
hexavecteur, on le nomine le dual du premier; on peut dire
aussi qu'il lui est orthogonal.

Si 7] e + hi, et rf e' + h'i sont deuxhexavecteurs,leur
produit vectoriel est aussi un hexavecteur admettant la
transformation U U ; ses composantes suivant les axes coordonnes

sont

- n?.n'2 % n\ - viv'*, %v'2 - 1 ;

en decomposant ces quantites en leurs parties respeetivement
reelle et imaginaire, nous trouvons les six quantites du tableau

E, E2 Es 1

Hj H2 Hj
relatif au dit hexavecteur. Ce sont

Ei — 6. ß s
1 ' Äj Jl s 63 ß 2 "f" /ig A 2 1

E2 ß3ß(1 — h3h\ — ßiß'3 + A,A'3

E3 ßjß'2 — K h'., — ß2e', + h2 h\
Hl ß2 A'o -1" h:> G ;• — ß3 h'2 1

H2 e3 /(', + h:. e'i — e, h'3 — \ e'3

H, ß, h',2 + A, ß'2 — e, A', — A2 e',

Les deux proprietes precedentes sont evidentes; je terminerai
ces developpements theoriques par une derniere proposition,
moins immediate, et dont les applications sont tres importantes.

Designons par rj, comme ci-devant, un hexavecteur quel-

conque, par X un tetravecteur: je dis que le produit

ir]X

lequel est un biquaternion de forme generale, subit la
transformation des tetravecteurs U Ü.

En effet, au jugement de l'observateur S', les deux facteurs
du produit devienuent respeetivement U iq Ü, UXU, et le produit

lui-meme se transforme en

U irj TJUXU, ou U^XU
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Posons
n hrh + i-iVi +%%
X x0 + Hhx, + üx2 + i3x3)

irj X £0 + i{h^ + is§2 + h £3) ;

en operant les calculs, nous trouvons pour les quantites c, qui
sont generalement complexes, les valeurs suivantes:

50 Vi + x2rj.,+x3rj3
£1 *o»?i + i(x3r)2 - x2rj3)

& %aV2 + *(«1 % -
Jh + *(«2»i - «1%) •

Mais, puisque le biquaternion £, se transforme comme un
tetravecteur, sa partie paire est un tetravecteur effectif. Rem-

plagons dans les formules ci-dessus rj e 4- hi, puis limitons-
nous aux parties reelles, nous obtenons alors immediatement le

resultat que voici.
Si

% 2 3 1

1Ä] h2 h3 j

est un hexavecteur, x0, x,, x2, x3 un tetravecteur, les quatre
quantites suivantes

X0 X!e, + x2e2 + x3e3

X, x0ei + — x3h2 x0el + [«&],
X2 xoe2 + x3h, — xxh3= x0e2 + [xh]->

X3 x0e3 + x3h2 — x2hj x0 e3 + [xh~\3

representent les composantes (ihm nouveau tet?-avecteur.

La reciproque est vraie. Car la substitution lineaire subie par
1 g I
I h j est determinee par les transformations operees sur les x
et X. Si done ces dernieres sont les composantes de deux tetravec-

teurs, laquantitei] =- e 4- hi representeforcementun hexavecteur.

II existe evidemment un enonce analogue touchant les formules

(14) plus generales que (15).

§ 8. Je desire appliquer en linissant les notions generales qui
precedent ä deux problemes classiques de la theorie de la rela-
tivite. Le premier consiste ä etablir les conditions d'invariance
des equations du mouvement de l'electron quand on passe du
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point de vue de l'observateur S ä celui de l'observateur S'; le

second probleme est celui de l'invariance des equations du

champ electro-magnetique dans les memes circonstances.
Une difference capitale existe, on le sait, au sujet de la notion

de force entre la Dynamique classique, et la Mecanique relativste.

La premiere, avec Newton et Galilee, exige que la force
soit un element invariable estime de la raeme maniere par deux
observateurs animes Pun par rapport ä l'autre d'uue translation

rectiligne uniforme. D'apres la seconde, les equations du

mouvement doivent presenter une forme identique dans les

deux milieux normaux S et S', optiquement chronometres. C'est
Papplication a la Mecanique du principe general de relativite ;

il implique Pabandon d'une force invariante pour les deux
observateurs.

En combinant le principe de relativite avec ce postulat que
Pacceleration initiale d'un electron doit obeir ä la seconde loi
de Newton, Einstein et Minkowski ont obtenu comme suit les

equations du mouvement dans la nouvelle Mecanique.
Designons par a, le temps propre, defini par Pequation

da — dx0- — dXi2 — dx-r — dxJ dx0 \ — q2

oü q represente la vitesse du mobile. On sait, et on peut verifier
ä Pinstant, que la quantite o possede une valeur independante
du Systeme de reference.

De lä resulte que

dx0 _
t

; dxt _ &
J

dx.j _
ga

l
dx,, _

<h
J

do ~ /l _ dO~ Yl-q1 ~dÖ~ \f \-q2 ~dö~ -f\
sont les composantes d'un tetravecteur, la tetravilesse.

Prenons pour equations du mouvement les suivantes

dr x0 d2x, „ d2x, d2x3 „ß ~d¥ ~ 0 "" ~d& ~ 1 "" ~dö*~ ~ 2 "" ~ 3 '

p. etaut une constante earacteristique du mobile.
Ii est clair que les premiers membres de (16) representent les

composantes d'un tetravecteur ; pour que, conformement au

principe de relativite, les Equations se presentent de la meine
maniere aux deux observateurs, il faut que les seconds membres
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M. soient aussi les composantes d'uu second tetravecteur. C'est
lui qu'on nomme la tetraforce (au sens de Minkowski).

Les composantes-espace de la tetraforce, M,, Ms, M3, sont
aussi les composantes de la force de Minkowski; de leur valeur

supposee connue on tire la composante-temps M0. En effet,
comme on a identiquement

(dx0\2 /dxA2 /dx2\2 /dx2\2
[da) [da [da [da /

et par suite

dx0 d2x„ dxt d2x, dx2 d'-'x2 dx3 d2xs
_ ^

da da2 da da2 da da2 da da2 ~

les formules (16) donneront

dx, „ dx2 dx
lYio — IVA]

ou

Mo=Mii" + M25F + M3^ •

UXq UX0 UJLq

M0 M,g, + M2?2 + M3g3

D'oü resulte que la composante M0 est egale au travail
elementare de la force par unite de temps. Et il est evident que
cette decomposition de la tetraforce enforce et travail, laquelle
est invariante dans l'ancienne mecanique, prend dans la nou-
velle un caractere strictement relatif: eile depend de l'obser-
vateur qui examine le mouvement et n'est pas la meme pour S

et pour S'.

Adaptons ces generalites au mouvement d'un electron dans

un champ electromagnetique.
Soit s la charge de l'electron, q sa vitesse, e le champ electri-

que, h le champ magnetique; la force ponderomotrice agissant
sur l'electron sera donnee, comme on sait, par la formule vec-

torielle
e + [qh]

e r ~ '
1/1 -q2

OU

q (e + [qh\)

en posant p Y 1 — q2 s('). De lä, immediatement, les qua-

II est aise de voir d'apres cela que g est la densite de l'electron
mobile, la charge restant invariable.
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tre eomposantes de la force de Minkowski, appliquee ä l'elec-
tron.

Posons, pour abreger,

Qo Q e, gqi ö2 QI2, Qz e<h (i?)
ou

£ £gi eq3 /17x
60 ~~ /l - ä2' 01 ~ /l -g2' & ~ /l-ä2 ' 03 ~ /l-g2 ' ' bis)

nous trouvons pour les composantes de la tetraforce

(18)

M0 «ißi + e202 + «303

Mi =- «10O + 7l302 - Ä203 »

M2 «2 00 + \ 03 — 7*3 01 I

M3 e30o + 7»20i - 7ii 02

Comparons le Systeme (18) au Systeme (15); M, nous le

savons, doit etre un tetravecteur, et (176*4) 011 p0, pi, p2, p8, en

donneun autre. Done, pour que le mouvement de l'electron ait le
caractere invariant qui nous est impose, il faut, suivant esl

conclusion du paragraphe precedent que le vedeur

7 «1 e, e,. 1

tj e + 7w '
\ hi h2 lis j

soit un hexavedeur.

§ 9. On est conduit ä la meme consequence quand on etudie
les conditions moyennant lesquelles le champ lui-meme possede

un caractere invariant quel que soit l'observateur, S ou S', qui
l'examine.

Les equations de Maxwell-Hetz sont les suivantes, sous forme
vectorielle.

rot 7t e + 0 g rot e — — h

div e 0 div 7t 0 ;

• 3« 3e
km e,par exemple,signme ^ ou

Employons pour le Mtracourant de convection les notations de

la formule (17); on constate ä l'instant que les equations prece-
Archives, t. XLIV. — Octobre 1917. 18
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dentes s'obtiennent en separant le reel et l'imaginaire dans les

deux que voici

div (e + hi) q0

1 3
v rotk (e + hi) — (ek+ hi) Qk (k 1.2.3)

Introduisons dans les trois deruieres les facteurs iil, iL, üs,
posons 7j e + hi (eL -j- /qi) i, + et

ft ßo + i (h £>i + h 02 + h 63)

additionnons enfin les quatre formules, apres avoir remplace les

facteurs symboliques div et rot par leurs valeurs developpees,

il vient

dXi dx2 dx, Vi

R

f 3i?i /Si)«
L dx0 l\dx3 3a3)J 1

+ [-3%

+ -ldV 1 3j?s

3X2 3xt
113

(19)

Telle est la forme quaternion des equations du champ. II y
figure deux tetravedeurs (de premiere espece); l'un est le tetra-
courant de convection R, l'autre est le vecteur symbolique

_ 3 3 3 3

dx0 ' dx! ' 3xo ' dx3

Comparons la formule (19) aux formules (14) et rappelons le

theoreme qui termine le paragraphe (7). La consequence sui-
vante se degage immediatement; pour que les equations du

champ se reproduisent sans changement quand on passe du point
de vue de I'observateur S ä celui de I'observateur S', il faut que
le quaternion yj e -f- hi soit un hexavecteur. Cette condition
est identique ä Celle tiree de la Dynamique de Telectron ; pour
verifier daus les deux theories le principe de relativite, il faut
done et il suffit que le champ electromagnetique tj subisse la
transformation caracteristique de l'hexavecteur.
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J'ajoute que les notations quaternionniennes, employees
exclusivement h toute autre, font ressortir au premier coup
d'oeil les invariances imposees par le principe de relativite.

Posons
7j — e + hi rhii + i+ ifrh

pour l'hexavecteur du champ,

X x0 + i (i,®, + i2x2 + i3x3),

pour le tetravecteur determinant la position de l'electron,

a ./.a .a a \A~ a^0 + '(lla^ + '2a^+ h^)
pour le tetravecteur symbolique de differentiation,

R öo + * (h 2i + h&2 + h fis)

pour le tetravecteur de convection; la meme notation a ete

employee ci-dessus pour la tetravitesse de l'electron mobile,
mais il vaut mieux designer celle-ci par

dX e

elTo=/=\ +tlSl+,2q2 + hq3i '

Suivant ces notations, nous avons, pour le mouvement de

l'electron dans le champ yj, la formule quaternion

<PX r. dX-1
' (20)

dans laquelle l'indicep designe la partie paire du biquaternion
eutre crochets.

De leur cöte les dquations de Maxwell-Hertz s'ecrivent sim-

plement
R it] A (21)

et l'invariance des equations (20 et (21) resulte imraediatement
du fait que tj se transforme suivant la formule U U, taudis

que X, A et R subissent la transformation U U des tetravec-
teurs, et que les quantites p., s et 5 restent sans changement.
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