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SUR

L'INTERPRETATION GKOMETRIQUE

DES

EQUATIONS DE LA RELATIVITE

PAR

L. DE LA RIVE

On sait que les équations de transformation pour passer d’un
systéme d’axes S en repos a un systeme d’axes S’ ayant par
rapport au premier un mouvement uniforme, appliquées &
Paberration des étoiles, donnent une solution qui comprend &
la fois la valeur de 1’angle d’aberration et le principe de Doppler.
Cette double vérification expérimentale constitue un argument
important en faveur de la théorie de la relativité et, dans tous
les cas, en fait une formule empirique d’un usage pratique pour
les questions d’optique dans les corps en mouvement.

Il semble difficile de soumettre la théorie de la relativité & un
contrdle géométrique puisqu’elle donne lieu & une cinématique
extragéométrique et que les durées ont une double signification
suivant qu’elles sont estimées dans un des systémes ou dans
I’autre. J'ai réussi néanmoins, dans le cas de 1’aberration des
étoiles, & assimiler la solution donnée par les formules & une
construction géométrique trés simple qui se substitue au paral-
léllogramme des vitesses construit sur la vitesse de propagation ¢
de la lumiere et la vitesse v de ’observateur, tel que le com-
porte la théorie ordinaire cinématique de ’aberration. Le résul-
tat présente un certain intérét en faisant ressortir le principe
géométrique de cette composition de vitesses.
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282 SUR L'INTERPRETATION GEOMETRIQUE.

Soient O et O’ les origines des systéemes S et 8 et OX I'axe
des z suivant lequel O’ se déplace avec la vitesse v; soit EO la
direction du rayon lumineux émis par ’étoile E et atteignant
’observateur en O, et E'Q’ celle du rayon lumineux dévié par
I’aberration et atteignant 1’observateur en O’.

- Prenons sur le prolongement de EO une longueur OK égale
a ct, et, par le point K menons une normale & OK qui coupe
’axe des z en M, puis par le point M abaissons une perpendi-
culaire sur le prolongement de E'O’, MK’; enfin par le point O’
élevons une normale & I’axe OX, qui coupe OE en D. On démon-
trera que la longueur K'O" est égale 4 KD.

Les équations des transformations sont :

- 1

(1) x=p + o], t=ﬁ[t'+—], ﬁ=\7 2 .
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el e
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Les états vibratoires d’un point pris sur 1’axe des x sont:
p

2) sin © [t — = ‘P] ,  sino’ [tr _ czssv] .

o et o’ sont les angles comptés entre le rayon lumineux dans le
sens de la propagation et I’axe positif des = avec lequel coincide

la vitesse v ; dans la figure, les angles ¢ et ¢’ sont donc ceux
que font les prolongements OK et O'K’ avec OX.
~ Dans la premiere des expressions (2) nous remplagons x et ¢
par leurs valeurs tirées des (1) et nous obtenons :
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sin wf [t"[l —%cosqo] ——%[cosz — % ]

qui se met sous la forme
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Cette expression doit étre assimilée & la seconde des (2),
puisqu’elle donne aussi I’état vibratoire du point exprimé en
' et x'; cette assimilation donne les deux égalités

w'=wﬂ[1—%cosq)]

o8 v
' v c
cos@'==
R ]
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_qui établissent, comme on 1’a dit plus haut, le rapport des fré-
quences d’aprés le principe de Doppler et l’au-gle d’aberra-
tion ¢’ par rapport & o.

Nous avons pris le point commun aux deux rayons sur l’axe
des x, ce qui est permis, puisque le résultat est indépendant du
point choisi et nous pouvons de plus donner une valeur arbi-
traire & . Nous la déterminons par la relation

ct
cos @

et nous prenons pour ¢ I’instant ou le rayon EO arrive en K,
d’ou résulte qu’il atteint O & ’instant zéro; d’autre part, puis-
que le front de ’onde supposée plane est KM, le rayon atteint
le point M commun aux deux ondes planes KM et K'M & I'ins-
tant ¢. A cet instant ’origine mobile O’ est & une distance de O
égale & vt; de plus, considérons les suppléments des angles
v et »’ que nous désignons par ¢, et ¢, ; on a, d’aprés ce qui
précede :
gt
COBY,, = e
14 = cos @
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relation qui peut s’écrire:

i [ oct ] L vt
(3) cos @, [cos = -+ vt| == et ——
Revenant a la figure, on a :
OK=ct  OD=—2
cOS @,
oM = < 00" — vt  O'K =0Mcosg .
coS @;

La relation (3) donne donc:
0'’K’ = OK 4 OD = KD

comme on ’a dit plus haut.

Cette égalité donne lieu & la construction suivante :

Prendre une longueur proportionnelle a ¢ sur la direction pro-
longée de EO et par le point K mener la normale KM qui déter-
mine le point M sur-Uaxe OX ; prendre la longueur OO" propor-
tionnelle a v et par le point O" mener O'D qui détermine le point
D sur MO’ comme diametre décrire une demi-circonférence et
du point O comme centre avec un rayon O'K’ égal ¢ KD, déter-
miner le point K’ ; on obtient le rayon 'O en jorgnant O'K'.

Dans la figure, les longueurs KD et K'O” ne sont nullement
égales mais le rapport de v a ¢ devrait étre celui de 10—*a 1,
ce qui rendrait les deux rayons paralléles graphiquement.

On remarquera que O'K’ est égal & cf’ puisque la vitesse de
propagation est constante; il en résulte que 1’on a:

- v
¢ “t[1+ccosq9,] '

Mais d’autre part il faut pour obtenir la vraie valeur de ¢,
multiplier par § celle que ’on obtient dans le systéme S. En
eftet, si I’on donne & « la valeur

ct
cos ¥

v
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x = —

L’équation

donne
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