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LES BASES

DE LA

PHYSIQUE MODERN E

PAR

Edouard GUILLAUME

(Suite 1)

§ 4. — LA PREMIERE THEORIE DE LA RELATIVITE :
LA THEORIE DE LA RELATIVITE RESTREINTE

L’intervention d’Einstein fut neuve.

Pour lui, il s’agissait bien moins d’une question de Physique
que de nos notions mémes de temps et d’espace. Si les équa-
tions de Maxwell-Lorentz avaient présenté jusqu’ici une disy-
métrie que nous avions cherché en vain a faire disparattre, il ne
fallait pas s’en prendre & la théorie, qui était en tout point ex-
cellente, mais au fait que nous voulions la faire entrer dans le
cadre habituel de temps et d’espace, cadre suranne, introduit
par la théorie mécanique, fondée sur le corps solide, synthése
trop simpliste et provisoire du monde, qu’on devait abandonner.
De ce point de vue, les notions de temps et d’espace se présen-
teraient comme purement empiriques, et devraient étre rema-
niées lorsque des faits expérimentaux nouveaux nous y oblige-
raient, de fagon & les adapter progressivement 2 la subtilité de
plus en plus grande de 1’expérience humaine. A I’espace et au
temps, — au temps surtout, — de la Mécanique rationnelle, il

convenait désormais de substituer I’espace et le temps fondés

sur la synthése électromagnétique, en faveur de laquelle I’expé-

") Voir Archives, t. XLIII, p. 5.

Arcurves, t. XLIII. — Février 1917. 7
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rience s’était nettement prononcée, Y a-t-il, en effet, un temps
et un espace a priori ? Ceux auxquels nous sommes habitués
satisfont, nous ’avons vu, & une double covariance, ou le temps
apparait comme essentiellement différent de 1’espace. Ne pour-
rait-on définir autrement ces notions? Kt si une telle défini-
tion était trouvée, y aurait-il & priori une raison pour préférer
I’'une plutdt que 1’autre?

Einstein chercha donc comment on pourrait remplacer la
cinématique euclido-newtonienne par une cinématique qui con-
viendrait a 1'Electromagnétisme.

Examinant attentivement la théorie de Lorentz, il remarqua
que la vitesse de la lumiére y jouait un role particulier : elle
eétait constante quelle que soit la vitesse du systéeme, en d'au-
tres termes, elle se présentait comme une constante absolue.
Que ’on comprenne bien ce que cela signifie ; cela ne veut pas
seulement dire qu’elle demeure constante pour les observateurs
entrainés avec le systéme, ce qui serait, par exemple, le cas
dans la théorie de I’émission; cela veut dire qu’elle reste la
méme et pour les observateurs entrainés et pour ceux qui regar-
dent le systeme passer devant eux. Autrement dit, cette vitesse
ne correspond nullement & notre image habituelle de cette
notion. On peut donc s’attendre & ce que le temps soit aussi
profondément modifié.

Einstein posa deux principes, dont il admit la validité uni-
verselle :

1° Le principe de la relativité restreinte, ¢’est-a-dire la cova-
riance des équations de fous les phénomeénes physiques par rap-
port & certaines transformations linéaires & déterminer, per-
mettant de passer d’un systéme S & un systeme S’ en mouve-
ment uniforme par rapport au premier.

2° Le Principe de la constance ABsoLUE de la vitesse de la lu-
maeére.

Einstein fit remarquer qu’admettre le premier principe,
c¢’était rejeter du méme coup l’existence de 1’éther. Mais que
’on ne se méprenne passur le sens de cette affirmation : Eins-
tein ne veut pas dire qu’il n’y a « rien» dans les espaces interstel-
laires, bien au contraire, — nous le verrons plus loin. Mais il
veut dire qu’il n’y a rien qui se puisse comparer a un milieu
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matériel, par rapport auquel on pourrait constater et repérer
les mouvements. C’est pourquoi, il convient d’abandonner le
‘mot «éther», qui évoque toujours l'idée d’un semblable milieu,
et d’introduire une autre expression: nous dirons le « vide
einsténien », le mot « vide » signifiant « absence de matiére ».
Quand au mot « matiére », nous en préciserons le sens plus
tard. Pour l’instant, nous résumerons le contenu du premier
principe admis, en disant simplement : le vide einsténien ne peut
pas étre pris comme systeme de référence.

Puis, fort du principe de la constance de la vitesse de la lumie-
re, Kinstein fit observer que rien ne s’oppose plus & la détermi-
nation rigoureuse de la simultanéité physique, par des échanges
de signaux optiques, comme le faisait Lorentz pour déterminer
le temps local (§ 3), puisque la vitesse de la lumiére ne dépen-
dait jamais du mouvement des observateurs.

Les deux principes une fois admis, Einstein n’eut pas de
peine & trouver ’expression analytique d’un covariant simple
résumant toute la nouvelle cinématique. Considérons deux sys-
temes S et S en translation uniforme de vitesse v le long de
leurs axes x et 2’ supposés coincidents. Imaginons qu’a ’instant
t = o, les deux origines O et O’ soient au méme point, et, qu’a
cet instant, on allume et éteigne instantanément une source
lumineuse en ce point. Au temps ¢ > o, le lieu des points d’ou la
lumiére est percue dans le systeme S est une sphére, puisque
la vitesse ¢ de la lumiére est une constante; son équation est :

(1) 2+ P 45— 2 =0,

En vertu du principe de relativité, nous devons pouvoir faire
un raisonnement identique pour le systeme S', puisque rien ne
le distingue du premier, que S et S’ sont I'un et I’autre égale-
ment «justifiés » (gleichberechtigt), comme dit Einstein.

On doit donc avoir une équation semblable & (1):

(2) 4y 427 - = o,
ol ¢ a la méme valeur, en vertu de la constance absolue de la

vitesse de la lumiére, mais ou le temps ¢’ doit étre différent du -
temps ¢ ; en effet, on aurait sans cela :

¢2+y2+ Z2=.1?'2+y’2 + Zfz
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ce qui est manifestement impossible, puisque les origines O et
O’ ne restent pas coincidentes, mais s’éloignent indéfiniment.
I’une de 1’autre.

Les équations de transformation qui permettront de passer .
du systeme S au systéme S’, ou vice versa, devront donc étre
telles qu’elles transforment 1’expression (1) en 1’expression (2),
ou vice versa, autrement dit, I’expression

3 z® + 2—|—z'2-—c2t2=a:'2+ LN L
Y Y

doit 8tre un covariant pour les substitutions linéaires cherchées.
En exprimant ce fait, on tombe sur la transformation du groupe
de Lorentz :

’ r — vt .

r=—— Yy =y; =zt = — oo
(&) ; — y=y 1 v
i g -

Ainsi done, les prémisses dont était parti Kinstein résu-
maient bien le contenu de la théorie de Lorentz. Celle-ci se
trouvait ramenée a une cinématique, qu’il n’y avait plus qu’a
développer, ce qui fut fait brillamment par Einstein d’abord,
puis par Minkowski et ses éleves. '

Cette cinématique repose sur unm sewl covariant et non plus
sur deux, comme la cinématique euclido-newtonienne, autre-
ment dit, le temps se trouve intimement amalgamé & Uespace.
Aucune vitesse ne peut dépasser la vitesse de la lumiére ¢, qui
est une vitesse limite, correspondant a la vitesse de propagation
infinie de la cinématique ordinaire. Si, du reste, on fait ¢ = oo
dansle covariant ci-dessus, celui-ci se décompose en deux autres,
I’'un pour I’espace, I'autre pour le temps; de sorte qu’on peut
dire que le cinématique habituelle est un cas limite de la ciné-
matique einsténienne. On obtient encore ce cas limite en don-
nant & v une valeur infiniment petite.

En résumé, le mouvement des corps par rapport & un systéme
S ne se fait plus survant le groupe euclidien a trois dimensions,
sauf dans le cas limite oi les déplacements sont infiniment lents.
Dans le cas général, il a liew sutvant le groupe Lorentz-Einstein,
qui est un groupe & QUATRE dimensions.

Ainsi, tant qu’il s’agit de mouvements lents, nous pourrons
conserver le déplacement euclidien, en particulier, géométrer
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euclidiennement notre systeme S. De méme, les observateurs
liés & S" pourront géométrer euclidiennement le leur. La ques-
tion fondamentale qui se pose maintenant est la suivante : quelle
sera la configuration cinématique (§ 1) de S’ pour S et celle de
S pour 8’? Les équations de transformation permettent de ré-
pondre facilement & cette question. On trouve que (Cf. § 1) :

Fc:FFQ-

Seulement, cette disymétrie est réciproque; ¢’est la relativité
qui I'exige. En d’autres termes, S et S’ se verront ’'un I’autre
« déformés » de la méme maniére. Ainsi, par exemple, des
sphéres apparaissent comme des ellipsoides de révolution apla-
tis dans le sens du mouvement. Le degré d’aplatissement dé-
pendra uniquement de la vitesse relative v des deux systémes.

Une remarque encore. Nous avons employé le mot « déformé »;
les adeptes de la relativité feraient & ce propos les réflexions
suivantes: une figure n’a de forme que relativement 2 une autre,
prise comme terme de comparaison. Si vous employez le mot
de « déformé», cela tient A ce que vous vous servez du langage
euclidien dans chaque systéme et que, lorsque vous passez d’un
systéme 2 I’autre, vous conservez inconsciemment ce langage.
Mais il serait tout & fait oiseux de croire que la sphére est la
«vrale » forme de la figure que vous avez liée & S', tandis que
Iellipsoide que vous apercevez n’en-serait que la forme « appa-
rente ». La distinction entre réalité et apparence est vaine, et
il convient de la bannir de la Science, qui est toute relative,
c’est-a-dire ne peut établir que des comparaisons.

En ce qui concerne le temps, les conséquences de la transfor-
mation de Lorentz sont encore plus curieuses. Mettons-nous sur
S’ et supposons qu’une horloge soit liée & S. La derniere des
équations (4) donne alors pour un intervalle de temps A¢ de

S, jugé depuis §' :
dt

— 'v?
c?

autrement dit : une horloge en mouvement uniforme va

) v?

' =
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plus lentement qu’une horloge de construction identique, mais
au repos par rapport a ’observateur. Cette conséquence a une
application physique immédiate. Remplacons I’horloge par une
_source lumineuse; toutes les fréquences devront étre diminuées
dans le rapport ci-dessus : la source nous apparaitra plus rouge
qu’'une source identique, au repos relativement & nous. C’est
bien ce qui semble avoir été constaté par J. Stark sur les raies
spectrales émises par les rayons canaux.

Du fait que le temps est intimément lié & I’espace dans cette
théorie, Minkowski tira une représentation remarquable dans
I’espace & 4 dimensions. Tout point posséde 4 coordonnées z, ¥.
2, t, et forme un « événement élémentaire ». Lorsqu’on suit le
point dans son mouvement, il décrit une trajectoire, sa « ligne
d’univers ». L’élément de ligne ds est alors le covariant :

ds? = ¢ di? — dx? — dy® — d3z* .

Lorsque le point décrit cet élément, 1’horloge qu’on y sup-
pose liée varie de

1 q2
dr = — \/c"’ A — de® — dy* — dz* = di \/ —
c L

ol1 g est la vitesse du point & I'instant considéré ; dr est appelé
le « tempé propre » de 1’élément de ligne. La transformation
de Lorentz se trouve ainsi transportée dans l’infiniment petit,
et il sera possible d’étendre la théorie, par intégration, & des
mouvements variés quelconques, en considérant ceux-ci comme
formés d’une infinité de mouvements uniformes infiniment
courts. On peut remarquer que dr n’est pas une différen-
tielle exacte, de sorte que I'intégrale /dtr dépendra du che-
min parcouru. Nous reviendrons plus loin sur ce point cu-
rieux.

Disons enfin que de nombreux théoriciens ont travaillé &
reconstruire le monde sur la nouvelle cinématique : Born a
refait le corps solide, ce qu’il appelle le « corps relativement
solide ». Laue démontra que tout corps solide doit avoir une
infinité de degrés de liberté. Herglotz fit une théorie de I’« élas-
ticité relative », d’apres laquelle des forces élastiques doivent
toujours exister lorsque le corps n’est pas relativement solide,




LES. BASES DE LA PHYSIQUE MODERNE 95

au sens de Born. On peut dire que le corps relativement solide
" joue, dans cette nouvelle élasticité, le méme role que le corps
solide ordinaire dans I’élasticité classique.

Parmi les conséquences les plus remarquables de la théorie,
il faut citer larelation qu’elle a mise en évidence entre la matiére
et I’énergie. La masse apparait comme une certaine quantité
d’énergie concentrée, et, au rebours, I’énergie partage avec la
masse la propriété d’avoir de I'inertie.

Lorsqu’on se souvient que la théorie de la relativité donne
aisément tous les faits expérimentaux observés en Optique,
qu’elle résume en particulier I’expérience de Michelson et
Morley, ’expérience de Fizeau sur I’entrainement partiel des
ondes lumineuses par la matiére en mouvement, ’aberration,
le phénomeéne de Doppler, qu’elle conduit aux résultats de la
cinématique classique pour les mouvements lents, on ne peut
s’empécher d’éprouver une sincere et légitime admiration en
face de cette théorie qui fait surgir tous ces phénomeénes d’un
méme moule, et I’on se dit que, sans aucun doute, on se trouve
en présence de la plus forte synthése qui ait jamais été
faite. |

Cependant, si imposante que soit cette synthese, on ne peut
méconnaitre qu’elle répugne a4 beaucoup de bons esprits. On
lui reproche de ne nous donner aucune image des phénomeénes,
bien plus, d’exclure d’emblée toute possibilité de créer des
images. S’il devait en é&tre ainsi, nous devrions renoncer
completement & comprendre le monde extérieur, ce que 1’on
ne peut admettre. Les relativistes ont beau dire et répéter que
tout n’est qu’aftaire d’habitude, que, lorsque nous y serons
accoutumés, nous batirons sur la cinématique nouvelle comme
nous avons bati sur ’ancienne, laquelle, a priori, ne peut étre
considérée comme préférable a la premiere, ’on n’est pas con-
vaineu et I'on conserve l’arriere-pensée qu’il n’en peut étre
ainsi.

Nous nous sommes efforcés d’exposer aussi clairement que
possible le point de vue relativiste. Nous allons essayer mainte-
nant de soutenir l’autre point de vue, qu’on nous permettra
d’appeler «aprioriste ».

Les aprioristes accordent parfaitement que tout est relatif
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dans le monde physique, mais, pour eux, la question ne dépend
pas que de cela, elle dépend avant tout de notre cerveau et de
sa constitution. Si notre symbolisme doit étre adapté aux phé-
nomenes, il doit encore bien plus étre adapté & notre en-
tendement & qui ce symbolisme s’adresse, et qui doit « com-
prendre ».

Comprendre, ¢’est analyser, et analyser, ¢’est décomposer en
éléments. Cette opération comporte en soi que les éléments soient
suffisamment simples, sinon, I’analyse ne saurait étre considé-
rée comme achevée. Mais qu’est-ce que cette «simplicitén» ?
Nous rencontrons ici une circonstance que nous avons déve-
loppée ailleurs, & propos de la Théorie des Probabilités(®).
Si I’on considere une loi, celle-ci aura d’autant moins le ca-
ractére de loi que son expression analytique exigera un plus
grand nombre de symboles. Ce nombre de symboles, néces-
saire & 1’expression d’une relation, joue un role fondamental
dans notre connaissance. Si I’on considére une suite d’évene-
ments, ceux-ci nous paraitront d’autant mowns l1és les uns avec
les autres, d’autant plus indépendants, qu’il entrera un plus
grand nombre de symboles dans ’expression de la suite. C’est
ainsi que prend naissance la notion de « hasard », qui corres-
pond au cas limite ot ce nombre est infini. Autrement dit,
lorsque ce nombre augmente, notre esprit perd peu a peu le fil,

et ne voit plus les relations, qui, cependant, subsistent toujours
aussi rigoureuses. Henri Poincaré a tres justement attiré 1’at-

tention sur I'importance de la simplicité de 1’expression, & pro-
pos des géométries non-euclidiennes. Il a soutenu que la géomé-
trie d’Euclide aurait toujours le pas sur les autres, parce qu’elle
était la plus simple de toutes ; « et elle n’est pas telle, ajoute-
t-il, seulement par suite de nos habitudes d’esprit, ou de je ne
sais quelle intuition directe que nous aurions de I’espace eucli-
dien ; elle est la plus simple en soi, ainsi qu'un polyndéme du
premier degré est plus simple qu'un polyndme du second de-
gré». Un exemple fera peut-étre encore mieux comprendre la
chose : considérons un triangle euclidien et un triangle non-

') Archives, 1914, t. XXXVIII, p. 373 et 1915, t. XXXIX, pp. 205 et
302 ; L’ Enseignement Mathématique, 1916, p. 293.
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euclidien ; la somme des 3 angles du premier est foujours égale
a deux droits ; celle des 3 angles du second peut avoir une infi-
nité de valeurs différentes. Le triangle euclidien constitue done
un élement d’analyse supérieur au triangle non-euclidien ; nous
n’aurons véritablement compris une figure non-euclidienne que
lorsque nous I’aurons décomposée en une infinité de figures eu-
clidiennes simples ; l’infini ici ne nous géne pas, car il ne
comporte que la répétition d’un petit nombre d’opérations
identiques.
Cela dit, revenons & la théorie de la relativité.

- En ce qui concerne 'espace, la difficulté n’existe pour ainsi
dire pas, puisque, nous I’avons vu, nous pouvons parfaitement
nous servir du langage euclidien.

Il n’en est pas de méme, malheureusement, en ce qui touche
le temps, et c’est 1a qu’est le point faible de la théorie. Le temps
einsténien est compliqué; il est & déterminations multiples, et
¢’est un gros inconvénient pour un élément aussi fondamental.
Il ne correspond nullement & ’intuition trés simple et trés nette
que nous avons de cette notion primitive, la seule. peut-étre qui
nous donne véritablement 1’idée de l’absolu. Il est fondé sur
I’impossibilité d’une vitesse de propagation infinie. S’il est na-
turel d’admettre cette impossibilité pour le monde physique, on
ne peut quand méme pas 'imposer & notre esprit ! Celui-ci aime
a faire ces voyages dans les espaces interstellaires, ou il va
avec une vitesse infinie d’une étoile a une autre. Et c’est
justement en jetant ces coups d’ceil rapides, c’est en consi-
dérant simultanément le plus grand nombre de parties possible,
qu’il a la « sensation», si 1’on ose dire, de saisir le monde
extérieur.

Nous sentons le temps s’écouler inexorablement, toujours
dans le méme sens, sans espoir de retour. Comment, dans ce
cas, oser parler de la relativité du temps et de la simulta-
néité ? :

Et d’abord, pourquoi le temps se présente-t-il & nous avec
ce caractere absolu, tandis qu’il peut ne pas I’avoir pour les
phénomeénes physiques ?

C’est ce que nous allons examiner maintenant.
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§5. LE TEMPS ABSOLU ET LE TEMPS RELATIF.
SIGNIFICATION PHYSIQUE DE LA THEORIE DE LA RELATIVITE.

Pour la clarté de ’exposition, nous allons introduire la ter- .
minologie suivante.

Considérons un phénomeéne. Nous dirons que, pour ce phéno-
méne, le temps est rdversible lorsque nous pourrons changer
son signe sans que le phénomene devienne absurde. Il sera dit
wréversible dans le cas contraire. Supposons que nous ayons
cinématographié des phénomenes. Il y aura des films que nous
pourrons « tourner» indifféremment dans un sens ou dans
I’autre, et qui conserveront une signification. Par contre, il y
aura des films qui n’auront pas de signification ou seront absur-
des lorsqu’on les «tournera» a l’envers. Nous dirons que le
temps est réversible pour les premiers et irréversibles pour les
seconds.

Imaginons, par exemple, que I’Univers entier se réduise & un
mobile qui totrne en cercle. Pour ce mobile le temps ne s’écou-
lerait pas ; le mavra per d’Héraclite n’existerait pas; le temps
recommencerait & chaque période. Changer le signe du temps
pour lui, équivaudrait simplement & changer le signe de sa
vitesse angulaire et & le faire tourner en sens inverse. Si 1’on
s’amusait, par des pignons appropriés, & faire tourner les
aiguilles d’une horloge a ’envers, on ne pourrait pas dire en
toute rigueur que, pour elle, le temps est réversible. Pour-
quoi ? Parce qu’elle s’«use», c¢’est-a-dire, est un systéme en
transformation continuelle, et que cette usure a lieu pareille-
ment, que les aiguilles tournent dans un sens ou dans Pautre. -
Pour cette horloge aussi, le temps est irréversible, ¢’est-a-dire
a un sens absolu. :

Or, si nous examinons la théorie de la relativité, nous verrons
immédiatement que, pour elle, le temps est réversible. Elle con-
serve un sens si I’on y change ¢ en —{, comme la Mécanique
classique. Tous les paradoxes que 1’on s’est plu & créer avec
cette théorie reposent sur la confusion constante entre le
temps réversible et le temps irréversible. Einstein a cru pouvoir
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démontrer qu'une vitesse de propagation plus grande que celle
de la lumiére, était incompatible avec sa théorie, par le fait que
si une telle vitesse existait, on pourrait « télégraphier dans le
passé» : le signal serait arrivé avant d’étre parti; I’effet préce-
derait la cause. « Et, ajoute-t-il, quoique ce résultat ne soit pas
inadmissible logiquement, il contredit trop toutes nos connais-
sances expérimentales pour que nous ne considérions comme
démontrée I'impossibilité d’une vitesse de propagation supé-
rieure & la vitesse de la lumiére ». Or, ici, Einstein compare
un temps réversible avec un temps irréversible : celui de toutes
nos connaissances expérimentales. Le raisonnement d’Einstein
pourrait étre fait identiquement pour le mobile envisagé plus
haut. En changeant le signe de son temps, on change simple-
ment le sens de sa rotation, et ’on peut bien dire, puisqu’il
parcourt le cercle en sens inverse, qu’il est arrivé avant d’étre
parti. Cela tient & ce que la décomposition entre «cause» et
«effet » n’a pas de sens absolu pour toute loi dont Pexpression
analytique est bien déterminée. L antécédent y est lié au consé-
quent aussi rigoureusement que le conséquent a 1’antécédent.
Dans une telle loi, le présent détermine le passé avec autant
d’exactitude que D’avenir. En d’autres termes, la distinction
entre passe, présent et avenir, basée sur la notion absolue que
nous avons du temps, est inapplicable aux phénomeénes consi-
dérés comme exactement réversibles, ou, tout au moins, si
nous voulons les appliquer, nous ne devons pas leur conférer
un sens absolu. Aussi la démonstration de I'impossibilité de
propagation plus rapide que la lumiére laisse-t-elle scep-
tique.

Rappelons que Walther Ritz avait déja attiré’attention sur la
réversibilité des équations de Maxwell-Lorentz, qu’il trouvait
étrange, attendu que I’émission de la lumiére nous apparait
comme essentiellement irréversible. C’est la raison pour laquelle
Ritz voulait remplacer ces équations par certaines intégrales:
les potentiels refardés. A quoi Einstein fit justement observer
qu’il ne s’agissait aprés tout que de moyens de calcul, et qu’on
pouvait aussi bien calculer avec les potentiels avancés qu’avec
les potentiels retardés ; la liaison est bilatérale et rigoureuse,
tout comme nous pouvons calculer indifiéremment une éclipse



100 LES BASES DE LA PHYRIQUE MODERNE

qui a eu lieu il y a mille ans ou une éclipse qui aura lieu dans
mille ans.
Si, maintenant, nous essayons de dégager la signification
physique de la théorie de la relativité, nous devrons d’abord
porter notre attention sur le temps einsténien. Ce temps est
donné par des «horloges». Qu’est-ce donc qu’une « horloge» ?
Il suffit de jeter un coup d’ceil sur les applications de la théorie
pour s’en rendre compte immédiatement. Une «horloge», ¢’est
une source lumineuse, plus généralement, une source d’énergie
rayonnante. Comparer des horloges, c’est comparer des « cou-
leurs ». Lorsque Einstein nous dit qu’une horloge en mouve-
ment va moins vite qu’une horloge identique au repos relative-
ment & nous, il veut dire simplement qu’une source d’énergie
rayonnante nous envoie de I’énergie d’une fréquence moindre
qu’une source identique au repos par rapport & nous. Il faut
se rendre compte de ce que cela signifie. Voici une source lumi-
neuse devant moi; on la met en mouvement, de gauche & droite
pour fixer les idées ; elle m’apparait plus rouge. Bien. Mais on
peut la laisser immobile ; il suffira que je me meuve de droite &
gauche pour faire la méme constatation. Autrement dit, le mou-
vement n’agit pas sur la source méme, ou sur ma rétine; il agit
sur la transmission; ¢’est sur ce qui se passe entre les électrons
de la source d’une part, et les électrons de ma rétine d’autre
part, qui est troublé par le mouvement relatif ; ¢’est la relation
entre les deux systémes qui subit une déformation, et ce qu’il
faut rechercher, c’est la fagon dont les systémes « ’impression-
nent » mutuellement par suite de leur mouvement réciproque. Si
donc, nous voulions donner une définition de la théorie dela rela-
‘tivité, nous diriens qu’elle est I'ensemble des lois qui réglent les
échanges énergdtiques rayonnants entre systemes en translation
relative uniforme. Dans une telle théorie, les durées au sens
absolu ne jouent aucun réle. Tout se réduit & des comparaisons
de fréquences. _
C’est en voulant donner aux durées einsténiennes un sens
absolu qu’on est arrivé aux conclusions les plus fantaisistes.
Profitant du fait que ’intégrale qui donne le « temps propre »
d’un systéme dépend, comme nous 1’avons dit, du chemin par-
couru, de sa «ligne d’univers », on en a conclu qu’il serait pos-
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sible, en faisant un voyage de quelques années avec une vitesse
un peu inférieure a celle de la lumiére dans les espaces interstel-
laires, de revenir sur la Terre alors qu’elle aurait vieilli de plu-
sieurs siécles ! On expliquait ce résultat, en contradiction mani-
feste avec le principe méme de relativité, en disant que le retour
du systéme & son point de départ ne pouvait se faire sans accélé-
ration ; que celle-ci ayant un caractére absolu, cela suffisait &
rendre compte de la disymétrie. En donnant une telle explica-
tion, on oubliait tout & fait que la cinématique einsténienne
partage completement avec la cinématique ordinaire, en géné-
ral avec toutes les cinématiques, la propriété de ne connaitre que
des mouvements relatifs, qu’il s’agisse de mouvements uniformes
ou de mouvements accélérés, puisque ceux-ci sont supposés com-
posés d’une infinité de mouvements uniformes infiniment courts :
iln’y a jamais dans les conséquences que ce que 1’on a mis dans
les prémisses. Cinématiquement, le Soleil tourne autour de la
Terre aussi bien que la Terre autour du Soleil. Conférer &
I’accélération un caractére absolu, ¢’est introduire un élément
nouveau, qu’on chercherait en vain dans la transformation de
Lorentz, & savoir un systéme d’axes absolu. Les bizarreries
dans les durées ne proviennent done pas de la théorie de la re-
lativité, mais du caractére absolu que ’on donne aux aceéléra-
tions par I'introduction d’un systéme absolu. Il est bon de re-
marquer & ce propos que la représentation a 1’aide de « lignes
d’univers » peut trés facilement induire en erreur. Si je me
place sur le Soleil, sa trajectoire sera nulle tandis que celle de
la Terre ne le sera pas ; si je me mets sur la Terre, ce sera le
contraire qui aura lieu. Je puis done avoir & volonté une ligne
d’univers qui soit une droite ou une courbe pour le Soleil aussi
bien que pour la Terre. Il n’est possible de tirer une conclusion
absolue que si ’on élimine 1’une des deux alternatives en fai-
sant appel & un élément étranger, par exemple en attribuant
au Soleil 'immobilité absolue.

Nous éviterons ces difficultés en procédant de la fagon sui-

vante :
Pour compter les durées, nous supposerons chaque systéme

S@ pourvu de sources-horloges lumineuses identiques, ainsi que
d’un trés grand nombre de compteurs. Nous diviserons ceux-ci
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en deux catégories ; les compteurs de la premiere catégorie C
enregistreront le nombre de périodes eftectuées par les sources
liées au systéme ; ceux de la seconde catégorie C’ enregistre-
ront les nombres de périodes des lumieres regues, envoyées par
les autres systemes en mouvements. En choisissant convenable-
ment l’origine du temps, il est clair que les indications des comp-
teurs Cseront toutes identiques, pour tous les systemes, quels
que soient leurs mouvements relatifs, et I’époque ou 1’on fait les
lectures. Par contre les indications des compteurs C’ dépendront
du mouvement relatif entre S et S® ; elles seront du reste les
mémes par couple de systémes, 1'un voyant le temps du second
retarder dans la méme mesure ol le second voit retarder le
temps du premier . o

Nous pouvons parfaitement dire que les compteurs C mar-
quent le temps universel et que les seconds C' indiquent le
temps apparent.

En précisant de la sorte, il n’y a plus d’erreur & craindre, et
I’on ne risque pas de tomber dans les paradoxes. En particu-
liers, on ne pourra plus soutenir qu’un homme en mouvement
vit plus vieux qu’un homme au repos, comme on I’a dit quel-
quefois !

Ainsi présentée, la théorie de la relativité perd son coté mys-
térieux, et semble toute naturelle. En particulier, on voit qu’elle
est parfaitement compatible avec la notion de temps universel,
a tel point qu’on se demande si, par un simple changement de
variables, on ne pourrait pas introduire une variable unique t,
pour le temps, qui serait le temps absolu, & la place des varia-

bles ¢ et " des temps einsténiens des couples de systémes S et S’.
" La chose parait d’autant plus plausible qu’il y a deux grandeurs |
qui ont perdu leur signification habituelle dans cette théorie :
la vitesse de la lumiére ¢ et le temps. Ne pourrait-on en rem-
placant le principe de la constance absolue de la propagation
de 1’énergie rayonnante, par un autre, redonner au temps sa
signification ordinaire ?

Que cela doit étre faisable, c’est ce qui semble ressortir des
considérations présentées au paragraphe suivant.
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§ 6. SUR LA POSSIBILITE DE RAMENER LA THEORIE DE LA

RELATIVITE RESTREINTE AU TEMPS UNIVERSEL.

Envisageons d’aboerd une propagation quelconque, par exem-
ple celle d’ondes planes & la surface de I’eau, et considérons le
mouvement suivant un axe z, tel que

(1) N i
9ar VT i

¢ étant 1’élongation au temps ¢ et au point d’abcisse x, et V la
vitesse de propagation. L’intégrale générale de cette équation
est : _
(2) s=f(Nt + x4+ [(Vt — ).

Les équations (1) et (2) peuvent étre considérées comme un
cas particulier des équations suivantes :

(1) 2€ == 82%
x 3 u?
() S=fw+ax)+[(u—a2
ol I'on aurait posé
(3) w=Vi.

En d’autres termes, le phénomene de propagation lui-méme
ne dépend pas explicitement et du temps et de la vitesse, mais
de la combinaison temps-vitesse. L’équation (1) n’exprime pas
autre chose qu'une liaison spatiale, une correspondance ponc-
tuelle entre 1’élongation &, le chemin parcouru « et ’abcisse =
du point envisagé. Peuimporte la facon dont on définit le temps ;
celui-ci pourra varier comme on voudra, pourvu que la «vi-
tesse » correspondante V satisfasse & la relation (3). Il est des
lors possible de décomposer « d’une infinité de maniéres en un
produit de deux facteurs ; & chaque décomposition correspon-
dra une image particuliére du phénoméne. Supposons que nous
ayons cinématographié les ondes. Nous pourrons tourner le film
comme bon nous semble, — rapidement, lentement, réguliére-
ment ou irréguliérement, — le phénoméne de propagation, ¢’est-
a-dire la dépendance entre &, » et =z n’en sera pas altérée. Une
machine peut étre mue A une vitesse quelconque: la position
relative des organes n’en subit aucune modification.
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Que voulons-nous donc dire lorsque nous disons que V est
constant ? Nous exprimons par la une nouvelle correspondance
spatiale : celle qui existe entre les positions des ondes et les
positions angulaires de la Terre par rapport a un systéme de
référence lié aux étoiles fixes.

En résumé, la notion de temps en soi ne joue aucun role en
Physique ; tout ce que nous constatons ce sont des coincidences
spatiales. :

C’est en ce sens qu’on peut parler de la relativité du
temps, comme Poincaré parlait de la relativité de ’espace. On
peut supposer que le temps se dilate ou se contracte d’une fagon
arbitraire, peu importe, pourvu que cela ait lieu exactement
dans la méme mesure pour tous les phénomenes, autrement dit
que les relations spatiales soient respectées. Si I'Univers entier
s’endormait pendant un siécle, rien ne permettrait de dire
qu’un tel événement s’est produit.

Les remarques qui précedent laissent bien peu d’espoir i la
réalisation de I'idéal de Minkowski, de fondre le temps et I’es-
pace en une entité unique, I’«univers», o1 le temps serait en
quelque sorte la quatrieme dimension de 1’espace. En fait, il
suffit de jeter un coup d’ceil sur les diagrammes pour se con-
vaincre qu’ils ne représentent pas des rapports espace-temps,
mais des relations espace-espace ; les quatre axes, en effet,
intéressent les coordonnées x, y, 2, u et non z, ¥, 2, ¢: la qua-
trieme dimension n’est pas le temps, mais le «chemin opti-
que » .

Considérons en Mécanique un point M, & partir de deux sys-
temes diftérents S et S'. Lorsque nous voulons déterminer la
vitesse de M par rapport & chaque systéme, nous prenons les
dérivées des coordonnées z, y, z2; , ¥y, 2 relativement au
temps, variable indépendante unique par définition. Qu’est-ce
que cela veut dire exactement? Soit ¢ un angle, w la vitesse
angulaire de la Terre, constante par définition. La variable ¢
se trouve introduite par la relation :

0 =wt.
1l en résulte que former:
dt’ dt’ dt’ dt ’ dt ’ dt’
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revient a former :
de dy dz da’ dy' dz’
dg ' do ' dg’ do ’ de ’ dg

Or, que fait-on dans la théorie de la relativité ? On prend
les dérivées non plus par rapport & une variable unique, mais
par rapport 2 deux variables indépendantes, & savoir les che-
mins optiques et « ; on forme :

de dy dz  dx' dy d7

du ’ du ' du ' dw ’ dw 7 du'
autrement dit, on change d’horloge en changeant de systéme.
Et quelle est cette horloge ? Il est facile de le voir: cest la
lumiére. On pose qu’en des temps égaux mesurés dans un méme
systeme la lumiere parcourt des longueurs égales; on remplace
le déplacement angulaire p de la Terre par les déplacements
optiques % et «’. Et si, au lieu de deux systémées, nous en consi-
dérions un grand nombre S, S', §",..., nous devrions introduire
un méme nombre de chemins optiques «, «’, %”,... jouant cha-
cun le role de temps pour le systéme correspondant. C’est cette .
diversité de formes pour une notion aussi primitive, qui jette
un si grand trouble dans notre esprit.

En cela, notre esprit ne fait qu’obéir & un principe qui est en
quelque sorte la généralisation du principe de solidification,
employé en Hydrostatique pour déterminer les conditions d’é-
quilibre de fluides au contact. Nous avons, en effet, la convic-
tion que I'on doit pouvoir imaginer qu’on « solidifie » & un ins-
tant quelconque I'ensemble formé par les systéemes S, S, §”,...
sans rien altérer des positions relatives des points qui les com-
posent, de fagon qu’il soit loisible & un observateur d’en exa-
miner & 'aise ’agencement 2 l'instant envisagé, tel un méca-
nicien qui veut suivre les déplacements relatifs des piéces d’une
machine en I’arrétant a son gré. Si done, ’on venait dire a
cet observateur que deux événements considérés depuis S sont
« simultanés », mais qu’ils ne le sont plus lorsqu’on les consi-
dére depuis §', il vous répondrait qu’il ne saisit pas, ou que
vous prenez plaisir & changer le sens des mots. En nous repor-
tant & ce que nous avons développé au § 1, nous comprendrons
mieux encore pourquoi la notion de simultanéité est si intimé-

ARCHIVES, t. XLIII, — Février 1517. C



106 LES BASES DE LA PHYSIQUE MODERNE

ment liée & la notion de solide. mais, par contre, nous aurons vu
clairement que pour lui conférer un caractére absolu, il w'est pas
nécessaire que les systémes physiques eux-meémes soient composés
de solides ; il faut et il suffit que le principe de solidification soit
applicable. Lorsque ce sera le cas, la configuration cinématique
sera toujours identique & la configuration géomsétrique, et des
apparences comme la « contraction » de Lorentz ne pourront
se produire. ,

Essayons done, pour nous résumer, de formuler une régle.
Nous dirons, en nous souvenant des remarques de Poincaré :

« Le temps doit &tre une variable indépendante unique, afin
de satisfaire & I’intuition que nous avons du temps et de la simul-
tanéité ; cette variable doit étre introduite dans les équations
de la Physique, de facon que les relations et leurs conséquences
apparaissent aussi simples et aussi intuitives que possible. »

En d’autres mots, le temps et la simultanéité correspondront
a des intuitions invariables lorsque nous passerons d’une théo-
rie & une autre, — ce qui favorisera une bonne économie de la
pensée ; par contre, les relations qui contiennent le temps, et
qui, elles, varieront avec la théorie, ne feront que nous indiquer
les moyens physiques (phénoménes), d’une part compatibles
avec la théorie envisagée, et d’autre part permettant la déter-
mination et la mesure physique du temps.

A ce point de vue, la Mécanique classique est excellente et
complete. C’est & tort qu’au début de la découverte de la théo-
rie de la relativité, on ait cru qu’il y avait quelque insuffisance
dans la détermination du temps par la Mécanique. Ce que la
théorie de la relativité devait révéler, c’est I’incompatibilité
entre le phénoméne de propagation lumineuse et la Mécanique
de Newton, vu que celle-ci admet sans restriction la possibilité
de vitesses aussi grandes que 1’on veut.

Essayons maintenant de voir comment on pourrait introduire
le temps universel dans la théorie de la relativité. Cela, bien
“entendu, peut se faire d’une infinité de maniére. Cependant,
parmi toutes les solutions possibles, il n’y en a qu’un tres
petit nombre, peut-étre qu'une, qui puisse satisfaire a la fois
et & la Nature et & notre intuition. Cette solution reste a trouver.
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Nous nous bornerons & esquisser trés briévement le probleme,
dans le seul but de montrer qu’il n’est pas impossible.

Pour établir la transformation de Lorentz, il est pluscommode,
au lieu du covariant d’Einstein, (§ 4), d’employer le covariant
de propagation, que nous écrirons:

(%) P I S Fp  Fo g’ n F S

E{_’_i_a—y-’ 832_814,'-’_&1,"4_91” 372

ou ¢ est indiftéremment un vecteur électrique oa maonénque
Nous ne poserons pas avec Einstein :

(d) = ¢t u =ct,

mais nous chercherons la substitution linéaire qui transforme

le premier membre en le second, ou vice versa. Pour ne pas

nous écarter de la théorie ordinaire, nous écrirons :
q;'(az’,y',z',u’) =‘P(ﬁ(m_ au)syasu""u_'vm)

ou 3, u, v sont des constantes & déterminer, et o une constante
dont nous établirons la signification plus tard. On a:

dg B dp’ o' dp' ' _ p ¢ dp’
- ww twan P w
p 2’ ox' dp" ' atp 3(0
W w T T T Py T

a2 92 ) ,
En calculant les dérivéessecondes s ‘i? —a—ug_,-’ al’aide de ces for-

mules et en remarquant que les dérivées par rapport aux va-
riables y, z et ¢, 2" sont égales, on trouve en remplag¢ant dans

le covariant et en identifiant :
1 B ov=op
_ — = Vv = a "
Vl—g_" ? ll’t

de sorte que la transformation cherchée est :

6) W= —au:y=y;s=3;0=4@u-—oax.

Elle conduit immédiatement & la transformation de Loventz
(§ 4) lorsqu’on décompose u et »’ conformément aux relations
(5). Résolue par vapport & x, ¥, 2, u, elle donne :

6) s=B@+a),y=y;z=75;u=p@W +ar’
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Les constantes o et B ont un sens absolu, c’est-a-dire sont les
mémes que 1’on consideére S depuis S ou S’ depuis S.

En faisant abstraction des axes y, ' 2, 2, on voit que nous
avons 4 variables x, " u, u’ qui sont liées par les deux relations :

(7) =04+ au), u=p>uw + 22,

donc en tout deux variables indépendantes. Tracons dans un
plan hyperbolique un systeme d’axes (x, %). Comme on sait, la
transformation ci-dessus permet de rapporter un point M (z, u)
de ce plan & des axes (2, #') ayant méme origine mais tournés
d’un certain angle par rapport aux premiers. Nous exprimerons
les coordonnées u et ' a 1’aide de deux parametres, dont 1'un,
t, sera par définition le temps universel, et 1’autre, r, sera de
nature purement spatiale. Nous poserons, afin de nous écarter
le moins possible de la théorie ordinaire :

(8) u=179r-4¢ct;uw =—r+4ct,

oll ¢ et ¢ représentent la vitesse de la lumiére chacune dans
leur systeme respectif, et nous supposerons ici simplement que
¢ et ¢’ ne dépendent pas du temps {. Nous abandonnons donc le
principe de la constance absolue de la vitesse de la lumiere,
que nous remplacons par le principe implicitement contenu
dans I’ensemble (7) et (8).

Les équations (7) deviennent ainsi :
(") x=p@ —ar+acdtl),r+oet=F(—7r+ct+ax).

Dérivons la seconde par rapport a ¢, on a, en posant :

r

JO, . tant
q«" = 5 = constante,
() C e=B( + ag) .

Si le point " est immobile dans le systeme S’, on a simple-
ment :
' (4

(9,) q’r:O,ﬁ:—

¢’

(10) rd+ B =apfa’ our(ct c¢)=aca
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cette derniére équation détermine la valeur de 7 correspondant
au point 2. A I'origine de ', » est nul. Pour ce point, consi-
déré depuis S, on a en vertu de (7):

i

]
= — avec v =
ct c

d’ou pour (%) : ¢ = VeE—v?.

Cherchons 1'expression du théoréme d@’addition des vifesses ;
pour cela dérivons par rapport au temps la premiére des équa-
tions (7") et divisons-la par (9) ; faisons de méme pour les com-
posantes suivant les autres axes. On trouve :

0, + ad
0z = ¢ m

a,’
(11) Gy=¢ ——r
' T B taas)
.
o Ble’+ o)

Si le point " est immobile dans S’, on a simplement .

G: =V, gy = 0, (: =0V,

autrement dit, le systeme S’ se meut comme un tout rigide pour
le systéme S, avec la vilesse v.

Cherchons s’il y a «contraction» apparente et réciproque
pour les deux systémes, comme dans la théorie de Lorentz-
Einstein. Aux 2 points 2," et x,” fixes dans S’, correspondent, en
vertu de (10), les valeurs particuliéres de » :

v, v
gLy * 7 7% ¢4

Py e g’

La distance x," — x,” jugée depuis S aura pour longueur : -
_L‘ L F ey, — 9 —(.i_ ____._3,2_. r — 1)
Ty — L = o (95'1 Ly (ry 72))— c,(i et (;')) (2 2)
¢’est-a-dire : : .
.’]’,’1 = {L‘2 = 371' b (1_72' 3
car le produit des deux facteurs contenant les vitesses, se réduit
a I'unité. Ainsi, la contraction apparente et réciproque a disparu.:

la longueur cinématique devient identique @ la longueur géome-
trique. '
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Mais il y a plus. Eliminons » entre les deux équations (7') ;
puis supposons x’ au repos dans S', ¢’est-a-dire tenons compte
de (97). On trouve le résultat suivant, aussi simple que remar-
quable :

=22 +vit, ol v

I

c .
En considérant le systeme S depuis S, on trouverait :

x =x —vt,
en posant :

Ainsi done, lorsqu’on suppose que dans chacun des systémes
les points sont au repos relatif, les systémes se meuvent comme
des touts rigides ordinaires, non déformés. Le changement de
notation pour la vitesse relative signifie que nous avons a faire
a un groupe différant du groupe euclido-newtonien habituel.
Ce qui reste invariant, c’est le rapport o entre le che-
min parcouru et le chemin optique concomitant considérés.
dans un méme systéme. La vitesse de la lumiére joue le
role d’une sorte de vitesse étalon, & laquelle il faut rapporter
toutes les autres. Cela tient & ce que, avec nos horloges univer-
selles, nous mesurons les longueurs, non plus avec des metres,
mais par le temps que la lumiére met & les parcourir dans leur
systeme respectif. Bien entendu, selon que I’on se placera sur
S ou &', ¢’est ¢ ouc’ qu’il faudra prendre égal 4 300 000 km/sec,
et calculer ¢’ ou ¢ avec la formule.

La premiére des équations (11) conduit d’une facon simple
au résultat de 1’experimentum crucis de Fizeau sur 1’entraine-
ment partiel des ondes. On a, en effet, en développant le déno-
minateur et en négligeant les termes de ’ordre de ¢*:

- _i- r ’ O"Qar'-__c ’ __qm_'z
0. = c,l( P 'i"f’“")(i - —Eq.r + ac(1 o7 )

et en posant:

¢ LY
qx - n ’ . P
ol # est I'indice de réfraction du liquide supposé lié & §', on

trouve la formule :
; ¢ 1
=24t

n?

identique & celle que nous avons donnée au §3.
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La premiére des équations (11) contient un autre résultat
intéressant. Supposons que le point =’ se meuve dans S’ avec la
vitesse de la lumiere, ¢'. On a alors pour la vitesse du point par
rapport & S:

le point se meut donc aussi avee la vitesse de la lumiere. C’est
le résultat connu. |

Pour trouver les expressions analytiques des lois de ’aberra-
tion et du phénomene de Doppler, nous considéreronsavec Einstein
des ondes planes dont la propagation dans le systeme S se fait
suivant un vecteur proportionnel &

N 25‘? N ‘l\
sin (’T_c)(“ + 7 —{lm+my+nzf)

et dans le systeme S’ suivant un vecteur proportionnel

Q
sin (;—T,) (c't — { 'z + m'y + n'z’})
Les équations de transformation (6) ou (6") et (8) exigent qu’entre
les quantités T, [, m, n et T', I, m, %/, il y ait les relations :

f 1 ﬁ
j! Tp o T (1 - al)
\ ro— Il — o
1 —al
(12) )

"

g i (1—al)

n = L

: Bl —al)

La premiére de ces équations a la signification suivante.
Désignons par ¢ 1’angle que fait le rayon lumineux (normale
aux ondes) avec la direction du mouvement dans le systeme S
(axes x et «'). L’expression :

L'léaCOQcp
T vl — a?



112 LES BASES DE LA PHYSIQUE MODERNE

est la fréquence apparente v' dans §', de sorte que I’on a la rela-
tion :
1 —acos @ 1

a o 2 0T -
(13) v v VT = 2VeCv = §
qui exprime le principe de Doppler, sous sa forme générale.

L’aberration résulte de la seconde des formules (12), qu’on
peut écrire :
oS @ — a

(l"*) COos @l = m

On pourrait, de la méme fagon, transformer les équations de
Maxwell-Lorentz. Nous n’insisterons pas.

La relation (13) contient en particulier la célébre relation
entre deux intervalles de temps einsténiens A ¢, At. Si, en
effet, un observateur lié & S’ regarde passer devant lui une
«horloge », c’est-a-dire une source lumineuse, on doit poser
o = g , o1, en vertu de (14) :

cos @ = a

et (13) devient :

V=vyl—o

’

autrement dit, la source lui parait plus rouge qu’une source
identique au repos par rapport a lui. De la derniére relation on
tire la relation d’Einstein §4 :

41,

CVI=—&

at.

En résumé, nous retrouvons les résultats de la théorie de la
relativité sous sa forme primitive, c’est-d-dire fondée sur le
principe de la constance absolue de la vitesse de la lumiére. Ce
principe n’est donc pas essentiel, comme on le croyait jusqu’ici.

Nous arrétons 13 ces considérations. Elles suffisent pour mon-
trer la possibilité du probléme. Nous développerons ailleurs la
relativité fondée sur le temps universel. Nous allons poursuivre
notre rapide revue, et dire en quelques mots comment Einstein
a généralisé la notion de relativité pour attaquer les phéno-
meénes de gravitation. (4 suivre.)
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