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LES BASES

DE LA

PHYSIQUE MODERNE

PAR

Edouard GUILLAUME

§ 1. — LE CORPS SOLIDE, LES GEOMETRIES

ET LA MESURE DU TEMPS

Toute la Physique, et 1’on peut dire toute la Science, depuis
les temps les plus reculés, a été dominée par la notion de corps
solide. 11 y a longtemps déja que 1'on a su voir 1’importance
fondamendale du corps solide pour la formation de la notion
d’espace. Ce que la Physique moderne devaient révéler, c’est le
role du corps solide dans la détermination physique de la simul-
tanéité, ¢’est-a-dire dans la détermination physique du femps.

1° Examinons d’abord le corps solide au point de vue de la
géneration de nos concepts spaciaux. S’il n’y avait pas de
corps solides dans la nature, écrivait Henri Poincaré, il n’y
aurait point de géométrie. C’est vrai, mais il n’en faudrait
" pas conclure que ce sont les solides qui nous imposent la géo-
métrie: ils ne font que nous la suggérer; comme on 1’a dit, la
géométrie a été créée a I'occasion des corps solides. Les corps
obéissent & certaines lois générales; mais ces lois ne sont pas
rigoureusement respectées par la nature. A 1’aide d’un grand
nombre de passages d la limite, nous eréons des notions pures
dont nous tirons ensuite des constructions logiques que nous
nommons « théorie». ‘

Rappelons les principaux résultats acquis:

Une premiére abstraction nous conduit & concevoir un certain
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«continuum» auquel nous donnons le nom «d’espace». Dans
ce continuum, primitivement amorphe, on peut imaginer un
«réseau» de lignes et de surfaces. Les propriétés de ce réseau
seront les propriétés de ’espace. Ainsi, I’espace n’a par lui-
méme aucune propriété (*), ¢’est un simple support, ou, si ’on
aime mieux, 1’espace n’a pas d’autres propriétés que celles de
«cer» que I'on y suppose placé. Par propriété du réseau, ou de
I’espace, il faut entendre le rapport, la liaison qui existe entre
deux « mailles» distinctes du réseau. Pour établir ce rapport,
il est nécessaire d'amener les deux mailles au « contact »,
autrement dit, il faut «déplacer» l’'une jusqu’a ce qu’elle
vienne dans le voisinage le plus immédiat de I’autre ; ¢’est par
le contact qu’on peut les comparer I’'une & l’auntre. On voit
donc que le «déplacement» est un élément essentiel de I’établis-
sement des propriétés du réseau, c’est-a-dire de ’espace. Re-
marquons toutefois que dans ce déplacement, la notion de
vitesse ne joue aucun rdle, autrement dit, le temps n’inter-
vient pas.

Ceci posé, on admet le principe suivant dont la nature est
encore mal connue: 1° [] existe un systeme de résequx et de
déplacements tel qu'il est possible d’amener des mailles a
« coincider » avec d’autres; deux mailles qui coincident sont
dites «égales»; 2° les deux mailles étarent égales avant la coin-
cidence et restent égales lorsqu’on les sépare; 1’on dit alors que le
déplacement a lieu sans « déformation», ou encore, qu'il y a
déplacement d’une «figure invariable».

Un tel systéme de réseaux et de déplacements définit ce que
'on appelle une géométrie et ’ensemble de tous les déplacements,
un growupe. Suivant les conventions adoptées, on aura le groupe
euclidien, le groupe riemanien, etc. Nous dirons, briéevement,
que 1’espace a été « géométré » (*) euclidiennement, riemannie-
ment, etc.

1) Ceci ne doit pas étre tout & fait exact. Il semble bien qu’il y ait
une propriété inhérente au continuum: c’est le nombre de ses dimensions,
que ’on détermine par des « coupures».

%) Le néologisme «géométré» a été introduit par M. Cailler dans un
travail trés remarquable sur Les équations du Principe de relativité et
la Géométrie (Archives, 1913, t. XXXV, p. 109).
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Rappelons ce qu’on entend par groupe: un ensemble de
transformations (déplacements) forme un groupe, lorsque le
«produit» de deux quelconques d’entre elles est encore une
transformation appartenant & ’ensemble. Ainsi ’ensemble de
toutes les translations joint & I’ensemble de toutes les rotations
euclidiennes, forment un groupe.

Le nombre de groupes que nous pouvons imaginer n’est pas
infini, comme 1I’a montré Sophus Lie. Il n’y a qu’un nombre
assez restreint de géométries & trois dimensions, compatibles
avec le déplacement d'une figure invariable. On voit donc que
sans la possibilité de tels déplacements, il n’y aurait pas de
géométries. La définition de la ligne la plus simple, la ligne
droite, s’appuie sur la notion de mouvement.

Pour préciser par un exemple, supposons que 1’espace est
géomeétré euclidiennement. Les déplacements euclidiens ne
seront pas accompagnés de déformations; les droites eucli-
diennes restent des droites euclidiennes; mais les droites non-
euclidiennes ne restent pas des droites nen-euclidiennes. Si,
par contre, I’espace est géométré non-euclidiennement, il y
aura des déplacements non-euclidiens qui ne déformeront pas
les figurent non-euclidiennes, mais qui déformeront les figures
euclidiennes, ete. '

Les géométries ne sont pas complétement indépendantes; on
pourrait établir une sorte de « dictionnaire » entre toutes les
géométries imaginables, lequel permettrait de traduire, en
langage euclidien par exemple, les propriétés des géométries
non-euclidiennes, et vice-versa, ¢’est-a-dire, en définitive, qui
permettrait de passer d’un systéme de réseaux et de déplace-
ments & un autre. C’est ainsi qu’on montre d’une fagon
frappante que la qualité d’euclidien appartient au systeme
envisagé, et non pas au continuum qui sert de support aux
réseaux.

Le groupe euclidien tire son itmportance du fait que certains
corps naturels remarquables, les CORPS SOLIDES, subissent des
déplacements d pew prés pareils d ceux de ce groupe. Si 'on
voulait se servir du langage non-euclidien, ces déplacements
exigeraient 'introduction de déformations, ce qui compliquerait
la représentation. Par contre, nous pouvons imaginer un monde
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ot il y aurait des objets naturels remarquables affectant & peu
pres la forme des droites non-euclidiennes, et des corps naturels
remarquables subissant fréquemment des mouvements & peu
prés pareils aux mouvements non-euclidiens. Envisageons, par
exemple, deux figures identiques, I'une en fil de fer, I’autre en
fil de cuivre, placées dans un champs magnétique. La figure
de cuivre se déplacera euclidiennement, tandis que ce ne sera
pas le cas pour la figure de fer. En général, I’ensemble des
déplacements de celle-ci ne formera pas un groupe. On pourrait
conserver le langage euclidien et dire que la figure de fer subit
des déformations. Mais, il peut arriver que le champ magné-
tique soit tel que tous les déplacements forment un groupe.
Il est alors naturel d’adopter une géométrie non-euclidienne,
dont le langage permettra d’exprimer simplement les propriétés
générales observées, en définitive, de les mettre en évidence
avec le maximum de simplicité.

Il existe une propriété fondamentale du groupe euclidien
dont nous allons donner I’expression analytique dans un cas
simple. Tragons, dans le continuum, un systéme d’axes tri-
rectangles S, et prenons deux points, dont un a 1’origine. Leur

distance
d=ux4+y*+ 2

reste invariable quel que soit le déplacement euclidien que
I’on fait subir au systéeme. KEnvisageons un second systéme
d’axes, S’, orienté d’une fagon quelconque par rapport au
premier, tout en ayant méme origine, et soient 'y’ 2’ les

coordonnées du second point par rapport a ce nouveau systéme.
On a évidemment :

d? _— '1,2 + y‘.’ + ;2 — ;1,12 _|__ y’2 + 2'2 \

et I’on dit que cette expression analytique de la distance est
un convariant(*) du groupe euclidien, relativement aux équations
de transformation :

.‘F'=ﬁ(51'7ya z) 3 y’ =f2(.’E,y,Z) > z’:f_,,(;r,y,z)

) On dit « convariant » plutdt qu’ « invariant », car les grandeurs
d; x, y, z; ', y', 2’ sont des vartables pouvant prendre n’importe
quelles valeurs, selon le second point envisagé.
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qui permettent de passer du systéme S’ au systéme S et vice-
versa. Allant & I’infinimcent petit, on dira de la méme maniere
que |’élément de ligne ds, qui satisfait & |’expression :

ds* = dx* + dy* + dZ*

est un covariant, c’est-a-dire indépendant du choix des axes.

2. Examinons maintenant le rdle du corps solide dans la
mesure du temps.

Henri Poincaré, dans une de ces belles analyses ou il excellait,
a mis en évidence toutes les difficultés que I’on rencontre dans
la détermination du temps. En conclusion, le savant mathé-
maticien donne la régle générale que I’on doit suivre, et que 1’on
a suivie inconsciemment :

« La simultanéité de deux événements, ou Uordre de leur
succession, Uégalité de deux durées, doivent élre définies de
telle sorte que Uénoncé des lois naturelles soit aussi simple que
possible. » ‘

Or, jusqu’a Einstein, c’est la conception mécanique, fondée
sur la Géométrie et la Cinématique ordinaires, qui prévalait, de
sorte que la régle implicitement admise par tout le monde peut
se résumer ainsi:

« Le temps doit étre défini de telle facon que les équations de
la Mécanique soient aussi simples que possible. »

Mais, demandera-t-on, qu’est-ce que cela veut dire exacte-
ment ? Sur ce point, il faut I’avouer, ’étude de Poincaré, faite
il y a tantdt vingt ans, nous laisse un peu dans le vague. Au-
jourd’hui, nous savons exactement ce qu’il en est. Il aura fallu
la decouverte des théories dites de la relativité pour nous faire
comprendre parfaitement ce que nous avions fait jusqu’ici, de
mémequel’onn’acompris véritablement le postulatumd’Eueclide
que le jour ot ’on a inventé les géométries non-euclidiennes. Tel
est le sort curieux des constructions de notre esprit, qu’on ne
les saisit pleinement que lorsqu’on peut les opposer & d’autres.

La détermination du temps comporte deux opérations dis-
tinctes :

1° la détermination de la durée;

2° la détermination de la simultandité.

Chacune de ces opérations se subdivisera en deux autres,
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selon que le phénomeéne étudié sera en repos ou en mouvement
par rapport a I’observateur. On les rameéne a trois:

1° Comparaison de la durée du phénomene a celle d’un phéno-
mene-type au repos par rapport a lui. On admet alors que la
comparaison se fait sans erreur sensible si les phénomenes sont
treés voisins. Quant & la mesure, elle repose sur le postulat
suivant : '

« Les durées de deux phénomeénes & peu pres identiques sont

4 peu pres les mémes »,
¢’est-a-dire, en définitive, sur le principe de raison suffisante.

20 Détermination de la simultanéité entre deux endroits A et
B élowgnés 'un de ’autre, mais en repos relatif. Elle repose sur
ce que nous conviendrons d’appeler le « Principe de la tringle
rigide ». Deux observateurs, 1'un situé en A, ’autre en B, dé-
sirent se transmettre le temps. Comment peuvent-ils 8’y prendre
en ne faisant usage que de moyens mécaniques ? Ilsinstalleront
entre A et B une tringle parfaitement rigide, et exerceront
I’extrémité A un mouvement régulier de va-et-vient suivant
’axe. L’extrémité B effectuera, simultanément, une translation
identique. Autrement dit, la translation imprimée en A se pro-
page avec une VITESSE INFINIE (e long de la tringle jusqu’a Uex-
trémité B.

Ainsi, & la base méme de la Mécanique classique, il y a une
notion qui nous choque: la vitesse de propagation infinie. Certes
le moyen que nous venons d’indiquer n’est pas le plus simple.
Il serait plus simple, par exemple, d’imprimer une rotation a la
tringle autour de son axe, et de la laisser tourner librement;
des aiguilles solidaires de la tringle aux deux extrémités, per-
mettraient. d’établir la simultanéité. Mais, peu importe; il nous
suffit que le premier moyen donné soit compatible avec la Mé-
canique ; I’existence d’une vitesse de propagation infinie en dé-
coule des lors nécessairement.

3° Détermination de la simullandité entre deux lieux A et A’
tres voisins, mais en mouvement 1’un par rapport a I’autre. A cet
effet, considérons un continuum S. Géométrons-le euclidienne-
ment, et installons en chacun de ses points A, B, C,... des
horloges identiques. Par un systéme de tringles rigides appro-
priés, nous pourrons rendre ces horloges solidaires les unes des
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autres ; nous dirons alors que le systéme est « chronométré »,
suivant I’heureuse expression de M. Cailler. Imaginons mainte-
nant un second continuum §’, identique 4 3, ¢’est-a-dire géome-
tré et chronométré comme lui, et supposons que ces deux milieux
sont en mouvement relatif. Au moment ol I’'un des points A, B,
C,... passera dans le voisinage immédiat de A", B’, C',... nous
postulerons qu’il est possible de mettre leurs horloges & Uheure
« imstantanément », et, instantanément, les deux systémes seront
synchronisés. Quel que soit le mouvement relatif de S et §', les
temps ¢ et ¢ s’écouleront désormais identiquement. C’est ce
qu’on exprime par les égalités :

dt = dt’ b=t

autrement dit, le temps est en covariant, tout comme 1’élément
de ligne.

Ainsi, la Mécanique classique repose sur une double covariance,
ce qui signifie que la notion de temps y est essentiellement dif-
férente de la notion d’espace, et ne peut jamais se confondre
avec elle. 7

C’est 12 une conséquence fondamentale de la notion de corps
solide parfait.

Mais voici encore une autre conséquence importante :

Envisageons une figure solide ¥’ quelconque, tracée dans §'.

Des observateurs entrainés avec le systéme, donc au repos
relativement a F’, pourront déterminer a I'aide d’instruments
de mesure, c’est-a-dire de corps solides appropriés, la forme de
la figure I'; ils trouveront, par exemple, que ¢’est une sphere;
‘nous dirons qu’on a établit la configuration géométrique Fg de
F’. Considérons maintenant les observateurs liés & S ; ils verront
la figure I’ en mouvement. Comment feront-ils pour déterminer
sa configuration ? Ils rechercheront quels sont les points de S
qui « coincidaient », & un méme instant ¢, ¢’est-a-dire simultané-
ent, avec les diftérentes parties de ' ; I'ensemble de ces points
formera une figure F_ que nous appellerons la configuration
cinématique de F'.

On a nécessairement:

F,=F, ,
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autrement dit, les configurations cinématique et géométrique
sont identiques. Dans notre exemple ce sera une sphere de
méme rayon.

C’est 1a la seconde conséquence essentielle de la notion de
corps solide.

En résumé, toute notre science de I’espace se réduit & des
constatations de « coincidences », soit qu’elles aient été créées
par des déplacements qui permettent de laisser les figurer &
comparer indéfiniment au contact, soit qu’elles aient lieu par
des mouvements ayant une certaine vitesse, auquel cas la déter-
mination de la figure de comparaison exigera préalablement la
détermination du temps ; or celle-ci, nous 1’avons vu, doit faire
appel aux propriétés de I’espace. Il y a 1a un cercle de circon-
stances que les théories de la relativité devaient mettre pleine-
ment en lumiére.

§ 2. LA MECANIQUE CLASSIQUE ET LA RELATIVITE DES

MOUVEMENTS.

Les fondateurs de la Mécanique classique conservérent I’an-
tique distinction entre le vide et la matiere. Pour eux, la ol il
n’y avait aucune matiere, il n’y avait « rien ». La gravitation,
avec ses actions & distance, leur paraissait toute simple et natu-
relle ; 'attraction d’une masse sur une autre masse pouvait
s’exercer « Instantanément » & des millions de kilométres, cela
ne les choquait pas.

Le point sur lequel nous voudrions attirer I’attention dans le
présent paragraphe, est le suivant : le vide newtonien n’est pas,
ne peut pas étre un vrai vide, d’une fagon plus précise, ne peut
pas étre un continuum amorphe.

Il ne peut I’étre: d’abord parce que la Mécanique est la science
des mouvements des solides, et que ceux-ci se déplacent eucli-
diennement: le continuum newtonien est donc avant tout un
continuum euclidien. Mais il y a plus.

Pour le voir, il faut se souvenir de la facon dont on introduit
les principes de la Mécanique.
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On commence par définir des axes absolument fixes: ¢’est un
triedre trirectangle invariablement lié aux étoiles appelées fixes.
Puis, on considére I’ensemble de tous les systémes qui ont une
translation uniforme par rapport au systeme absolument fixe.
Nous donnerons le nom de galiléen a 1'un quelconque d’entre
eux. Cela posé, on énonce le premier principe qui est le principe
de U'inertie.

« Tout point matériel snpposé seul, aurait, par rapport & un
systeme galiléen, un mouvement rectiligne et uniforme (qui peut
étre nul) ».

Ainsi, le principe fondamental de la Mécanique fait appel &
I’espace absolu. Il ne serait plus vrai si, au lieu d’un systéme
galiléen, on utilisait un systéme en mouvement quelconque.
C’est ce que nous exprimerons en disant que la Mécanique clas-
sique respecte la relativité des mouvements uniformes, mais non
celle des mouvements variés. Nous dirons qu’elle satisfait au
Principe de la relativité restreinte.

Ce qui précede peut étre mis sous une autre forme. Consi-
dérons les équations fondamentales de la Mécanique, rapportées
4 un systéme galiléen S. Soit S’ un second systéme galiléen
animé d’une translation de vitesse v, que nous supposerons
parallele & 1’axe des « du premier systeme, pour simplifier. On
pourra rapporter les équations au systéeme S’ au moyen de la
transformation galiléenne:

(1) r=a— vty Yy =1y ghe= 2 4 ' =1.

En faisant la substitution, on constatera que les équations du
mouvement exprimées a 1’aide des variables &, ¥, 2, ¢’ sont
identiques, quant & la forme, aux équations primitives.

Ainsi, la relativité des mouvements uniformes en Mécanique
s’exprime, analytiquement, par la COVARIANCE des équations fon-
damentales pour toule transformation galiléenne.

Il est aisé maintenant de voir ce qui diftérencie le continuum
- newtonien du continuum euclidien. La relativité, dans la Méca-
nique classique, n’est satisfaite que pour les mouvements uni-
formes. Les déplacements euclidiens, par contre, sont toujours
relatifs: la cinématique ne connait que des mouvements de
systémes par rapport & d’autres systémes ; les mouvements uni-
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formes n’v jouent aucun role privilégié. En un mot, I’existence
du continuum euclidien n’est pas liée & un systéme d’axes absolu,
ce qui n’est pas le cas pour le continuum newtonien. Ce dernier
a donc une propriété que le premier ne posséde pas, et qui 1’en
distingue essentiellement.

D’ou vient cette propriété ? Quelle est sa nature exacte? C’est
ce qu’on ne peut pas dire, et ¢’est 1 justement le point faible
de 1a Mécanique classique.

Pour bien nous en rendre compte, faisons 1’hypothese sui-
vante, parfaitement compatible avee les principes de la Méca-
nique. Supposons que 1I’Univers entier se réduise au continuum
newtonien s’étendant & I'infini dans tous les sens et contenant
seulement deux masses fluides tres éloignées 'une de 'autre,
afin que les forces de gravitation entre elles soient négligeables.
Si ces deux masses sont animées d’une rotation relative autour
d'un axe commun, il pourra arriver que I’'une d’elles soit sphé-
rique pendant que I’autre est ellipsoidale. Cela tient, affirmerait
Newton, & ce que la premiére est « au repos absolu », tandis que
I’autre tourne « vraiment ».

Il est clair que cette réponse n’explique rien du tout. Mais,
dira-t-on, ce qu’il faut considérer, ce n’est paslarotation d’une
masse relativement a U'aufre, c’est la rotation de chaque masse
par rapport aw continuum; c’est I’action du continuum sur la
masse tournante qui produit I’effet dynamique observé; des
lors, on peut considérer la masse tournante comme au repos
et supposer que c¢’est le continuum qui est en rotation autour
de la masse. Le principe du mouvement relatif parait ainsi
sauvegardeé, méme pour les rotations.

Malheureusement, cet expédient ne conduit & rien. Com-
ment, en effet, nous en tirerons-nous lorsqu’au lieu de deux
masses, nous en considérerons un grand nombre effectuant
des rotations quelconques ? Nous serons dans le plus grand
embarras.

Le systeme de référence absolu est, bien entendu, & la base
de tous les principes auxquels on peut ramener la Mécanique,
alors méme que, souvent, il n’en n’est fait aucune mention.
Parmi ces principes, nous en rappellerons un qui, sans étre tout
4 fait général, permet de résumer simplement la plupart des
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phénoménes mécaniques importants, et revét une forme remar-
quable que nous retrouverons plus tard.

Envisageons un systéme holonome & liaisons indépendantes
du temps, soumis & l’action de forces dérivant d’une fonction
de force; soit » le nombre de degrés de liberté du systéme; sa
configuration & un instant déterminé sera donnée par les valeurs
que prennent, & cet instant, » parametres q,, ¢,y.-., ¢, ¢’ €St-2-
dire » coordonnées généralisées par rapport au systéme absolu-
ment fixe. La configuration & chaque instant peut étre représen-
tée par un point unique de ’espace & # dimensions ; I’ensemble
de tous ces points formera une certaine frajectoire dans I’hyper-
espace. Considérons-en deux points (P,) et (P,). Le principe
général dont nous parlons peut alors s’énoncer ainsi : ‘

Le mouvement du systéeme dans I’espace absolu s’obtient en
déterminant I’hypertrajectoire qui rend minimum l'intégrale

cliz)

ds

(P1)
ou ds est I’élément de ligne satisfaisant A la forme quadratique

ds® = Z a;dq; dg; ;

les az; sont des fonetions des ¢. Autrement dit, I’hypertrajectoire
est une géodésique.

- §3. LEs PHENOMENES LUMINEUX ET LEURS THEORIES.

Nous avons vu au paragraphe précédent que la Mécanique
newtonienne fait appel de deux fagons différentes a la notion
de corps solides : | _

1° géométriquement, parce que les mouvements observés
Jusqu’ici des solides naturels sont bien représentés par des
déplacements euclidiens ;

2° cinématiquement, parce que les vitesses de ces mouvements
sont mesurées en fondant la simultanéité sur le principe de la
tringle rigide.

Or, il y a des phénomeénes qui, de bonne heure, sont apparus
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rebelles & la Mécanique, et parmi ces phénomenes, il en est un
qui devait attirer tout spécialement 1’attention: c’est la
lumiere. "

Galilée, déja, avait eu I'idée que la lumiére ne pouvait étre
transmise instantanément 3 travers 1'espace, autrement dit,
que la lumiere devait avoir une certaine vilesse de propagation.

Dés lors, deux hypothéses particulierement simples se présen-
tent & I’esprit : '

1° L’ hypothése de I’émission, proposée par Newton. Dans
cette théorie, la lumiére est formée de particules projetées par
la source; la vitesse de la lumiére pour un observateur s’obtient
simplement en composant suivant la régle du parallélogramme,
la vitesse de la lumiere relativement a la source avec la vitesse
de la source par rapport a I’observateur (Hyp. I).

2° L’hypothese des ondulations d’un milieu spécial, impon-
dérable, I’éther, remplissant I'Univers entier et n’opposant pas
ou peu de résistance aux mouvements des corps. Dans cette
théorie, on postule tout naturellement que I’éther est immobile
dans 1’espace vide de matiere, et que la vitesse de la lumiére y
est constante dans toutes les directions et indépendante de la
vitesse de la source. Il peut alorsse présenter trois cas, suivant
-que I’éther est toujours immobile (Hyp. 1L,), ou qu’il est par-
tiellement entrainé (Hyp. IL), ou bien qu’il est complétement
entrainé (Hyp. IL,) par les corps en mouvement. |

Ceci posé, rappelons brievement ce que nous savons des
phénoménes lumineux :

1. ETOILES DOUBLES SPECTROSCOPIQUES. Les composantes des
binaires spectroscopiques ont des vitesses telles qu’une influence
sur la vitesse de la lumiére dans le vide devrait se constater
si I’hypotheése I était valable. Cette expérience rejette done
la théorie de I’émission. Elle est compatible avec les hypo-
théses II. Il convient toutefois de remarquer que les observa-
tions sont difficiles & faire et que les résultats obtenus ne sont
pas toujours parfaitement concordants.

2. ABerraTION. La vitesse de la lumiére d’une étoile et celle
de la Terre se composent suivant I’hypothese I. Toutes les hypo-
théses 11 sont facilement applicables & ce phénoméne, ainsi par
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exemple, I’hypothése II;, en supposant une sorte de réfraction
qui se produirait a la surface de séparation de I’éther en repos
dans les espaces interstellaires et de I’éther entrainé par le
mouvement de la Terre.

3. EXPERIENCES A LA SURFACE DE LA TErre. EXPERIENCE DE
MicreLsoN Er MorLeyY. A la surface de la Terre, en utilisant
une source terrestre, la lumiére est toujours complétement en-
~ trainée; ce sont donc les hypothéses I ou II, qui sont seules
applicables. Il en résulte qu’aucune expérience faite a la surface
de la Terre ne permet de mettre en évidence la mouvement de
celle-ci par rapport & 1’éther interstellaire.

‘4. EXPERIENCE DE FizZEAU. ABERRATION AVEC UNE LUNETTE
REMPLIE D’EAU. PRISME D’Araco. Ces trois expériences, d’une
importance fondamentale, montrent que lorsqu’un milien maté-
riel transparent est en mouvement relativement & un observa-
teur, les ondes lumineuses qui s’y trouvent sont partiellement
entrainées par la matiere. Autrement dit, ¢’est I’hypothése II,
qui est applicable.

5. LA VITESSE DE LA LUMIERE ET LA THERMODYNAMIQUE. NOuS
avons montré ici-méme que ’hypothese I, ¢’est-a-dire 1I’émission
pure et simple, est en contradiction avec le Principe de Carnot (*).

Voici maintenant les théories proposées : '

A. Trkorie pE Fressen. C’est une théorie élastique fondée
sur ’hypothése II,. Soit ¢ la vitesse de la lumiére dans le vide,
n I'indice de réfraction d’un milieu animé d’une vitesse v par
rapport a un observateur; la vitesse de la lumiére pour I’obser-

vateur sera :
¢ 1
=+ {1 — — "
"= ( %2) v

Le coefficient de v mesure P’entratnement de 1'éther et est
appelé le coefficient de Fresnel. Il en résulte que dans I’air
'entrainement est quasi nul malgré la grande vitesse dela Terre. -
Cette théorie est donc en contradiction avec les expériences 3.

') Archives, novembre 1913, et C. R., décembre 1913.

ArcHIVES, t. XLIII. — Janvier 1917. 2
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B. Trtorie pE HErTz. C’est la théorie électromagnétique de
Mazxwell perfectionnée et basée sur 'hypothése II, de I’entrai-
nement total. Elle semble donc inadmisible puisqu’elle parait
en contradiction avec les expériences 4.

C,. La THEORIE DE LORENTZ AVANT L’EXPERIENCE DE MICHEL-
soN ET MorLEY. Lorentz a repris la théorie électromagnétique,
mais en la basant sur I’hypothese II,, ¢’est-a-dire en supposant
I’éther toujours wmmobile. 11 introduit les électrons qui sont en
mouvement dans ’éther. Dans le vide, oit il n’y a pas d’élec-
trons, les ondes lumineuses ne sont jamais entrainées; dans les
milieux réfringents, ol1 les ondes lumineuses sont produites a la
fois par les vibrations de I’éther et par celles des électrons mis
en branle par l’agitation de 1’éther, les ondulations résultantes
sont partiellement entrainées, et la théorie conduit bien au coef-
ficient de Fresnel. |

On voit immédiatement le point faible de cette théqrie, qui,
du reste, est le méme que dans celle de Fresnel : elle est incom-
patible avec les expériences 3. Cependant, cette théorie était déja
si belle, elle formait déja une synthése si imposante, englobant
ala fois I'Optique et I’ Electricité, qu’il était impossible de I’aban-
donner avant d’avoir fait un sérieux effort pour y faire entrer
les phénoménes 3. D’autre part, & 1’époque dont nous parlons,
les expériences terrestres les plus délicates faites en vue de mettre
en évidence le mouvement de la Terre & travers I’éther, ne

, , v
pouvaient porter que sur des termes de l'ordre de v étant la

vitesse de la Terre dans 1’éther, mais non sur des termes de
I’ordre du carré de ce rapport, rapport qu’on nomme abusive-
ment « aberration ». Cette circonstance toute particuliére devait
suggérer & Lorentz un moyen nouveau pour expliquer les résul-
tats négatifs de ces expériences, moyen qui allait étre le point
de départ des bouleversements futurs de nos notions de temps
et d’espace. _

Lorentz remarqua que la détermination de la simultanéité
entre deux observateurs A et B 4 I'aide de signaux lumineux,
n’était pas altérée lorsque les deux observateurs avaient une
translation commune de faible vitesse v par rapport a I’éther,
telle qu’on puisse négliger le carré de I’aberration.
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Supposons d’abord A et B au repos dans 1’éther. Pour régler
leurs montres, ils conviennent que A enverra un signal &8 B quand.
sa montre marquera une certaine heure ¢, ; soit ¢, U'indication

de la montre de B au moment ot B apercoit le signal; on a
ty =1, - 7, © étant le temps qu’emploie la lumiére pour aller

de A & B. Puis, B, & son tour, envoie un signal 34 A au moment
A, . ’ . . ’ _ ’ w ¥ » .
ol sa montre marque ¢;; soit #, = ¢, -+ ¢ I'indication de la

montre de A lorsqu’il recoit le signal. En additionnant, on trouve

1

, ’ ’ A.B
Q{(‘tB — ) + (£, — ) =7 == .

¢

T est ainsi déterminé et on peut régler les montres. Si, main-
tenant, les observateurs ont une translation commune dans
’éther, et §’ils emploient la méthode précédente, leurs montres
seront mal réglées, puisque A, par exemple, ira au devant de la
lumieére qui vient de B, tandis que B fuira la lumiére qui vient
de A. La lumiére ira de A & B en un temps C_AE%’ tandis qu’elle

+

: A
mettra un temps 5% pour aller de B 4 A. En échangeant les

signaux comme ci-dessus, on aura:

é{(tn“ tA)+(tL-t;)}=‘%{1+ (:)24-}

Mais, si 'expérience ne permet pas d’observer les termes en

v\? ; o :
( 5) tout se passera comme st les observateurs étatent au repos

Nz

absolu dans Uéther. Néanmoins, comme les montres seront mal
réglées, Lorentz dit qu’elles ne marqueront que le temps local,

par opposition au temps vral que des expériences plus déli-
cates pourraient déceler.

C,. LA Tuforie pE LORENTZ APRES L.’EXPERIENCE DE MICHEL-
soN ET MORLEY. Ces expériences plus délicates ne devaient pas
tarder & venir. Ce furent les célébres recherches de Michelson
et Morley (1887). Ces physiciens firent interférer des rayons qui
avaient parcouru des trajets différents, parallélement et perpen-
diculairement au mouvement de la Terre, aprés s’étre réfléchis
sur des miroirs; chacun des trajets approchant d’un métre, et
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les franges d’interférence permettant d’apprécier les différences
d’une fraction de millieme de millimeétre, il n’était plus possible
de négliger le carré de ’aberration. Les résultats furent com-
plétement négatifs. Une fois de plus, 1’éther se dérobait ; une fois
de plus, on constatait I'impossibilité de mettre en évidence le
mouvement de notre planete par rapport & ce fluide.

Il fallait donc compléter la théorie. Cela fut fait simultané-
ment par Lorentz et Fitz-Gerald. Ces deux physiciens admirent
que tous les corps entrainés dans une translation subissent une
contraction dans le sens de cette translation, tandis que leurs
dimensions perpendiculaires demeurent invariables. Cefte con-
traction est la méme pour tous les corps entrainés, et ne dépend que
de la vitesse commune; elle est d’ailleurs trées faible, environ un
deux cent millionieme pour une vitesse comme celle de la Terre.
Comme elle est la méme pour tous les corps, nos instruments
de mesure ne peuvent la déceler, puisque nos métres se raccour-
cissent dans la méme proportion. Si on était parvenu  la mettre
en évidence, c’est que nous avions mesuré les longueurs non plus
avec des metres, mais par le temps que la lumitre met i les par-
COUrir. '

La conséquence fondamentale qui paraissait s’imposer dés
lors, c’est que la Nature semblait respecter scrupuleusement.
le Principe de la relativité des mouvements uniformes de la
matiére par rapport & la matiere, ce que nous avons appelé le
Principe de la relativité restreinte. Or, I’hypothése de la con-
traction ne suffisait pas encore ; elle laissait la place & d’autres
expériences plus délicates, qui seraient de nature i mettre en
évidence le mouvement absolu de la Terre. Comme il apparaissait
hautement probable qu’une pareille constation devait étre
impossible, Lorentz chercha & modifier sa théorie pour la
mettre d’'accord avec le principe de la relativité restreinte,
¢’est-a-dire avec le postulat de I’impossibilité compléte de la.
détermination du mouvement de la matiére par rapport i
’éther. C’est ce qu'il réussit & faire dans son célebre travail
intitulé Electromagnetic phenomena in o system moving with
any velocity smaller than that of light (1904).

Nous avons vu au § 1 pourquoi les équations de la Mécanique
satisfont au Principe de la relativité restreinte. Ces équations
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ne changent pas de forme lorsqu’a 1’aide d’une substitution liné-
aire que nous avons appelée galiléenne, on les rapporte & des
axes en mouvement uniforme par rapport aux axes primitifs.
Lorentz chercha s’il était possible, en généralisant les notions
de temps local et de contraction, de trouver une substitution
linéaire qui rendit covariantes les équations fondamentales du
champ électromagnétique. Ses efforts furent couronnés du plus
beau succes. Il découvrit, en effet (cf. § 2), que la substitution :

M-y , N
(2) r = =) y = ly; P = lz; t = "——2 y .

P~ / v

\/1 G -2

5

ou [ est une fonction quelconque de (?5/
ment ‘3 la question. Poincaré reprit de son coté les caleuls de
Lorentz, arriva aux mémes conclusions, mais avec quelque
chose de plus, d’une importance fondamentale : il fit remarquer
que I’ensemble de toutes les translations données par les équa-
tions ci-dessus, jointes & toutes les rotations, devait former
‘un groupe de déplacements, et il montra que cela était bien le
cas si I’on posait

) .
) , répondait compléte-

l=1.

Lorentz avait été conduit par des considérations purement
physiques & faire la méme hypothése. | ,

Deés lors, la théorie de Lorentz prenait une ampleur inattendue.
Nul doute qu’on ait découvert une propriété profonde du monde
physique. Pour la premiére fois, la Mécanique newtonienne
passait au second plan. |

C’est & ce moment-1a, en 1905, qu’Einstein intervint, sans
avoir eu connaissance des derniers travaux de Lorentz et de
Poincaré, dont nous venons de parler. ;

(4 suivre).
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