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GEOMETRIE DES CORPS SOLIDES

ET

GEOMETRIE IMAGINAIRE

PAR

C. CAILLER

(Suite et finl)

XIII. — THEORIE ANALYTIQUE DES VRILLES

Parmi les différents objets dont s’occupe la Géométrie imagi-
naire, corps solide, vrilloide, et vrille, ¢’est ce dernier qui est
le moins simple. Il n’est donc pas superflu, aprés en avoir fait
plus haut la théorie synthétique, d’en retrouver les propriétés
essentielles par la voie analytique. Le fait que les coordonnées
pliickériennes des vrilles sont imaginaires ne joue qu’'un role
secondaire dans la théorie, et celle-ci se trouve en réalité iden-
tique avec la Géométrie réglée de 1’espace riemannien.

Mais outre que cette derniére est relativement peu connue,
le passage du réel au complexe en modifie quand méme quel-
ques-uns des caractéres; par exemple, les séries linéaires dé
vrilles n’ont pas nécessairement les mémes dimensions que les
séries linéaires de droites, complexes, congruences ou quadri-
ques. Pour ces différents motifs, je crois devoir consacrer la fin
de ce mémoire & une étude rapide des éléments de la (Géométrie
réglée imaginaire, soit de la Géométrie des vrilles.

Nous disposons, pour la représentation analytique d’une
vrille, de deux procédés principaux. L’un est basé sur la défini-

1) Voir Archives, t. XLII, p. 89 et 177.

Arcmives, t. XLII. — Octobre 1916. ' 19
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tion paramétrique, ’autre sur ’emploi des coordonnées plické-
riennes ; ils ont chacun leurs avantages et leurs inconvénients
particuliers et doivent servir tous les deux suivant les circons-
tances.

Dans la représentation paramétrique

X, =ux,c088+ y sins , (k=0,1,2,3) (23)

les corps servant de bases (x) et () sont orthogonaux, on a donc
toujours (xy) = 0 (*): s et 90°-s expriment les distances du
corps descripteur X 4 chacune des deux bases. :
Employons cette représentation, en vue d’établir la loi de
Pintervalle entre deux corps, dont I'un X fait partie de la
vrille (23), et dont ’autre Y appartient & une seconde vrille

d’équation |
Z, =z, cost+ u,sint . (k=0,1,2,3) (24)

Par multiplication de deux formules (23) et (24), nous obte-

nons

(XZ) = (rz) cos s cost + (y2) sins cost + (ru) coss sint
+ (yu) sin s sin t.

Supposons en outre que Forigine des s et des ¢, sur
chaque vrille, se trouve a ’extrémité d’une des deux normales
communes que nous savons exister. Dans ce cas. les corps
x et y sont respectivement orthogonaux sur « et 2, et ’on a les
4 relations

(#y) =0, (y9)=0, (eu)=0, (e2u)=0. (2B)
De cette maniere la loi de la distance se simplifie, devenant
(XZ) = (xz) coss cost + (yu) sin s sin¢ . (25")

En général, 1a condition pour qu’un corps X (s), emprunté &
la premiere vrille, soit la projection sur cette vrille d’un corps
7 (t) emprunté a la seconde, s’exprime sous la forme

A . . N
L (2, cost + u sin ¢) (— x sins + y coss) = 0.

1) La notation (ry) signifiera toujours le produit intérieur

Lo Yo + X1 Y + T2 Yo + Ty ys.
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Pour que la vrille qui joint les deux corps soit une normale
commune, il faut donc que 1’équation précédente soit vérifiée,
ainsi que 1’équation symétrique

E (— 2 sint + u _cost)(x coss + y sins) =0 .

En tenant compte des relations (25), les deux conditions
s’écrivent sous forme réduite
(xz)cost sins — (yu)coss sint = 0,

. . (26)
(xz)cos s s_mt — (yu)sins cost = 0.

Mais les expressions (xz) et (yu) ne sont pas toutes les deux

nulles, sans quoi les vrilles considérées seraient .conjuguées ;
c¢’est un cas a négliger. Nous avons done, en vertu de (26),

cos?t sin’s — cos”s sin®¢ = sin(s + t) sin(s —¢t) = 0 ,

ce qui donne, ou bien s = ¢, ou bien s = — .
Qu’on porte ces valeurs dans (26), il vient

cos s sins [(xz) = (yu)] =0 ,

d’ot s =t = 0, ou encore, s = -+t = 90°, Done, il n’existe
aucune vrille normale aux deux vrilles données, en dehors de la
paire remarquée deés 1’abord.

La conclusion est inexacte, lorsque (xz) = == (yu). Ces deux
hypotheses se réduisent & une seule par le changement de signe
del’un des 4 corpsz, ¥, 2, % ; prenons donc seulement (xz) = (yu).

Dans ce cas les formules (26) se raménent simplement a

sin(s —t) =0, soit s=1;

on est évidemment ici en présence d’un parallélisme de Clif-
ford. Il existe en effet une infinité de vrilles normales aux deux
vrilles données ; leurs extrémités sur chacune de celles-ci
décrivent dans I’une et I’autre des segments égaux. De plus, la
distance de ces extrémités est donnée par la formule (25),
laquelle devient dans les circonstances actuelles

(XZ) = (x2) (cos®*s + sin®s) = (x3z) ;

et ainsi la grandeur des normales communes est invariable dans
le cas du parallélisme.
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Les conditions du parallélisme de Clifford sont contenues
dans les formules (25) qu’il faut compléter par les suivantes

(r2) = (yu) . (22) = (uu) =1 . (27)

Si-on suppose x, ¥, et z donnés, ce systeme est du second degré
par rapport & u; on en conclut immeédiatement que par un
corps quelconque passent dewx uvrilles paralleles a une vrille
donnée.

Il n’est pas sans intérét de faire voir que les conditions du
parallélisme, telles que nous venons de les déduire de la repré-
sentation paramétrique, sont conformes de tout point & celles
tirées de la théorie synthétique.

Qu’on exprime cette derniere en fonction des coordonnées
pliickériennes sous leur seconde forme(*), on en déduit que deux
vrilles V (L,... R) et V' (L/,... R') sont paralleles, si I’on a, soit

L=L", M=M, N =N, (28)
soit encore
P=rpP, =0 , R =R'. (29)

Nous allons voir que ces conditions sont en effet une consé-
quence du systéme formé par les équations (25) et (27) ci-dessus.
En désignant par a, §, vy, 0 les quantités précédemment notées
x, Y, 2, u (*), j’écrirai le dit systeme sous la forme

(¢f) =0, (By)=0, (ab)=0, (¥0)=0;

30
(a}’)=(ﬁ5)=a, ; ( )

auquel il faut ajouter, puisque o, 3, 7, 3 sont unimodulaires,

le suivant ‘
(22) = (BB) = (yy) = (00) = 1. (31)

Des diverses identités ci-dessus découle une conséquence
algébrique a retenir: c’est
%o%; +ﬁoﬁi+yo?/1+aoaz
- a(1£y0+a0yi+60ﬁi+ﬂ06£) =0. (1= 1:2:8)

') Voir plus haut, p. 187.
%) Les lettres .z, y, 2z, w vont recevoir une nouvelle acception.
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En eftet, les relations (30) et (31) expriment que les substi-
tutions
X=¢o£+ﬁoy+?oz+aous

= o + By + vz + Ou ,
Z = asx + oy + po2 + Oou .
U = ar + By + 32 + Ou ,
transforment ’un dans ’autre les deux polynémes
X2+ Y24+ Z24 U et 2+ oyt + 22 4w+ 2a(xe + yu) .

o

(33)

Cela étant, résolvons le systéme (33) par rapport aux petites
lettres; nous avons
60X + Y + aZ + 0, U= o + az = £,
BX +BY +RZ 4+ AU = y+au=1,
Yo X + Y + wZ + U =ax + 3=¢,
00X+ 6,Y 4+ 0Z 4+ U =ay+ u=r1.
Or, identiquement

4o+ &+ — 208 — 2ag
= (1 —a®)(® + v + 2° + v’ + 2axz + 2ayu) ;

qu’on exprime les deux membres en fonction de X, Y, Z, U, il
viendra '

(%X + ;Y + 2,Z + 2, U2+ ... =1 —a})(X2+ Y2+ Z% 4+ U?).

De 14, en identifiant les termes en XY, X7, XU dans les deux
membres, les trois équations (32) ci-dessus.

Revenons & la question du parallélisme, et composons les
coordonnées pliickériennes de deux vrilles, & I'aide des 4 lignes
o, 8, 7, 9, suivant les définitions (9'). Elles donnent

l = Qcﬁ: - ﬁoal ; p= 9-"2[33 == agﬁ? ;
m = o,ffs — Pots , q = a3f — a1fs (84)
n = iy — Poxs . r = afls — %f

et de méme, pour V',

U= ?’0‘51 = ‘50?1 5 19’ = }’253 = ?’352 s

'

m' = pody — Opps , q = pi0; — yiaa s . (35)

’

n = py0; — 50}’3 . r' = 7162 — 20y .
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Je dis que ces valeurs donnent lieu & I’identité
=T)g—¢)— (m—m)p—9p)=0, (36)
ou
(lg — mp) — (Vg — m'p) — (Ig' — mp') + (g’ — m'p’) =0 . (37)

Pour le faire voir il suffit de transporter dans (37) les défini-
tions (34) et (35). Le calcul de chaque terme se fait sur le méme
modéle, le second par exemple donnera

Vg — m'p = azp0(B0) — Bays(ad) — aado(By) + Pado(ay) .
En réunissant les 4 résultats semblables et en tenant compte
des conditions du parallélisme (30) et (31), il vient
023 + Boffs + Yoys + 0,0, — a2y + aoys + 5063 -+ 5%/30) ’

ouzéro, d’apres le lemme démontré & 'instant.

En opérant de la méme maniere avee les trois déterminants
analogues & (36), nous voyons donc que les coordonnées pliickeé-
riennes de deux vrilles paralleles vérifient les conditions

1 -7 m—m' n—n
7 s P =&,
p—p qa—q r—7
ou encore
I —ep=10 —¢gp,
m — eq = m' — gq (38) -

n —er=n —é&r.
Comme d’autre part on doit avoir
Ye4py=Y@+py=1, e Yip=Yip=o0.

I’élévation au carré des formules précédentes donne * = 1,
: = == 1. Kt ainsi se trouvent confirmées les conditions du
parallélisme écrites plus haut sous les formes (28) et (29).

Un mot encore sur ce sujet. Soit & mener par un corps (x)
une vrille V (I,... ) qui soit paralléle & une vrille donnée
V(e ')

Ayant choisi une des valeurs possibles pour ¢ dans les équa-
tions (38), nous écrirons que la vrille V contient (x), par le
moyen des trois relations |

pr, = MLy — MIy , gr, = lry — nxy rr, = mr, — lr, .
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Le systeme des 6 équations ainsi écrites, du premier degré,
donnera les inconnues [,... 7, d’une maniére entiérement déter-
minée; ces inconnues définissent bien une vrille, car les six
valeurs déduites des 6 équations précédentes véritient évidem-
ment les conditions

P+mi+n+p'+¢+ri=1, et Ip +mq +nr=0

Suivant la valeur adoptée pour e, il existera ainsi deux vrilles
paralleles qui se déterminent séparément. La solution analyti-
que du probléme possede ainsi tous les caractéres de la solution
geométrique donnée ci-dessus.

Nous savons que lasituation relative de deux vrilles V (I,... 7)
et V' (I,... ") dépend des deux distances conjuguées. Comment
ces invariants se déterminent-ils en fonction des coordonnées
pliickériennes ? '

Pour le voir, reprenons les représentations paramétriques
ci-dessus ainsi que les relations d’orthogonalité (25). Il y a deux
normales communes, celle qui réunit les corps x et z, et celle qui
réunit les corps y et w. Nous donnons respectivement a ces
quatre corps les indices 1, 1, 2 et 2, de maniére que les dis-
tances xz et yu soient aussi figurées par 11" et 22°. On a, par
exemple ("),

cos 11" = fi;, = &Io2e + 18 + Lo2a + X523 .

Nous savons que les coordonnées pliickériennes sont toutes
des déterminants, /[ par exemple, vaut xz, ¥, — x, ¥,. De 1
résulte tout de suite, d’apres la théorie des formes adjointes, la
relation |

W+ mm' + an' + pp’ + 9" + ' = fifaer — Frofin

_ _ (39)
= cos 11’ cos 22" ,

b

car fi,, = fip, = 0.
Dans la derniere identité permutons la vrille V' contre sa
conjuguee; il vient

Ip" + mqg’ + mr’ + pl' + gm’ + rn’ = sin 11’ sin 22" . (40)

1) Lalettre f représente la forme fondamentale x,? + x,% + a% + x5% f12
I’émanant de cette forme.
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Les deux quantités (39) et (40) sont les invariants conjugués
des deux vrilles; on peut, si l’on veut, les considérer comme
les deux déterminations particulieres d’un invariant complexe

(L4 ep)(V + &p’) + (m + eq)(m’ + £¢') + (n + er)(n’ + 1) 1)
= cos (11’ — £22') ,

dans lequel le symbole ¢ peut étre remplacé & volonté par == 1.
Et ainsi, en employant les coordonnées pliickériennes sous leur
seconde forme, ’invariant complexe (41) se décompose dans les
deux invariants suivants

LL' + MM’ 4+ NN’ = cos (11’ — 22') , (42)
PP’ + QQ' + RR’ = cos (11’ + 22') ; (43) -

ce sont justement ceux qui définissent la situation relative des
axes des deux vrilles, considérés tantdt dans 1’espace absolu,
tantot dans le corps descripteur lui-méme.

Il est clair que I'invariant (40) s’annule quand les vrilles ont
un corps commun et seulement dans ce cas; que, pour la méme
raison, le premier invariant (39) est nul si 'une des vrilles
possede un corps commun avec la conjuguée de I’autre, autre-
ment dit, si les deux vrilles sont perpendiculaires. Enfin I’inva-
riant complexe (41), réunion des précédents, est nul dans le
seul cas ol les vrilles se rencontrent & angle droit, ou sont
normales entre elles. .

Les résultats précédents, importants en eux-mémes, nous
permettent de retrouver par une troisieme voie, trés élémen-
taire, les conditions du parallélisme de Clifford.

Prenons, avec les vrilles V (I,...7) et V' ({',... #"), la normale
commune @ (A, ... p); nous devons avoir

(A4 eo)l +ep) + (u+enim +eq) + v+ eo)(n+er) =0,
A+ o)l +ep)+ (u+ep)(m' + e¢') + (v + g0)(n + &) =0

L)

quelle que soit la détermination particuliere de s = =+ 1.

Si done, pour aucune des valeurs de ¢, nous n’avons les pro-
portions ‘
I +ep m +e n + &

’ [ ’ ' ’ ] (44)
U 4+ ep m' + &q n + er
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le probléme est déterminé. En prenant tantét ¢ = 1, tantdt
¢ = — 1, on tirera de I’équation précédente les valeurs propor-
tionnelles des quantités

At o, J7RE S A v = o .

On achévera de déterminer les 6 quantités, soit les facteurs
de proportionnalité qu’elles contiennent, & 1’aide de la double
condition

AEo) + g+ @E0i=1.

En définitive nous sommes ainsi ramenés & la paire des nor-
males communes que nous connaissions déja Ces normales se
transforment I’'une dans I’autre par ’échange de L, M, N contre
P, Q, R ; elles sont done conjuguées.

Si la solution du probléme est indéterminée, les vrilles Vet V’
sont paralleles entre elles. Pour cela, il faut que, pour une cer-
taine valeur de ¢, les proportions (44) soient réalisées. Il est clair
qu’on peut encore caractériser ce cas en disant que 'un des
invariants (42), ou (43), & savoir cos (11" == 22), est égal a
I’unité positive ou négative.

La solution précédente est évidemment la traduction algé-
brique pure et simple de Ja solution géométrique déinontrée
ci-dessus. |

XIV. — LE8 POLYSERIES LINEAIRES DE VRILLES

En résumé la substitution du complexe au réel n’aflecte que
fort peu les théories que nous avons étudiées jusqu’a présent;
sauf des nuances de détail, elles reparaissent identiques sous
une forme nouvelle, plus générale. Et notre unique tdche a
consisté & mettre en évidence ce parallélisme grice auquel les
lois ordinaires de la Géométrie se trouvent exprimer les rap-
ports spatiaux, non seulement entre les points, les droites et les
plans, mais encore des rapports identiques entre les solides, les
les vrilles et les vrilloides.

Mais au moment o, dépassant les premiers éléments, on
entre dans le.domaine des polyséries linéaires, les choses se
compliquent. Non pas que le parallélisme s’évanouisse ; il s’obs-
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curcit seulement. La raison en est qu’on a d’abord trouvé
dans les faits de la Géométrie ponctuelle des images adéquates
pour la représentation des phénomeénes de la Géométrie des
corps solides. Au lieu que maintenant les roles se retournent,
et c’est au contraire les polyséries de corps solides qui doivent
servir de figure aux polyséries de points imaginaires non étu-
diées antérieurement.

Prenons, par exemple, un corps solide. Sa position est définie
a I’aide de 4 coordonnées complexes xz, dont I’ensemble équi-
vaut a 8 données réelles z,’, x,”, car

2 = + iz" . (k=0,1, 2,38

k

Au lieu de se borner & des polyséries linéaires telles que
Yax =0, (45)

a4 variables et coefficients complexes, quine font que reproduire
des vrilloides ou combinaisons de vrilloides, on peut aussi
définir des polyséries linéaires, obtenues par une espece de
dédoublement.

Chacune de ces nouvelles polyséries aura pour équation

"or "

b3l (@r +ax)=0, (46)

sl

et cette fois les coefficients et les variables sont réels.

Il est clair que les nouvelles polyséries sont plus générales
que les anciennes, car toute équation dutype (45) en représente
deux du type (46). En outre, la géométrie des polyséries de
premiere espéce est de caractére linéaire parce que la relation
entre les coordonnées x,, ou

X+ x4 2?4 1t =1 (47)

ne joue aucun role dans cette Géométrie, en' raison de son
défaut d’homogénéité.

Au contraire la Géométrie des polyséries de seconde espéce
sera de caractére quadratique, parce que, des deux équations
qui existent entre les coordonnées réelles x,’, «,”, & savoir

) 12 L 19 - o M2 "ne 113 !!2'_
P+ttt -y — " — e, —,"* =1, (48)

et

r

T, 'TOH + xll"rl” + 582'.’1’2" + $3’;.‘L'3" = 0 , (49) )
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la seconde est quadratique tout en étant homogéne. On com-
prend d’ailleurs que cette équation ne joue aucun role dans le
domaine réel; elle y est toujours satisfaite identiquement puisque
oy =0 _

Les faits sont absolument les mémes quand on passe aux
vrilles, sauf que les diverses polyséries qu’elles engendrent
manifestent constamment un caractére quadratique. En effet
les coordonnées pliickériennes d’une vrille V (I,... ») doivent
verifier une relation homogéne du second degré, qui est

Ip + mq + nr=0.

On comprend donc tout de suite qu’on puisse imiter les faits de
la Géométrie réglée en substituant des vrilles aux droites. Don-
nons d’abord quelques détails, peut-étre superflus, sur la mar-
che & suivre et sur les résultats de cette comparaison.

Le systeme de repére (P,, T) étant choisi d’avance, pre-
nons, pour faire symétrie au complexe de droites, la relation
linéaire

al +bm +cn + dp + eq + fr =0 (50)
a coefficients et & variables complexes.

Les vrilles qui satisfont les relations précédentes sont au
nombre de o°, c¢’est-4-dire deux fois plus nombreuses que les -
droites d’un complexe. L’hexasérie engendrée de la sorte est
une espece de complexe imaginaire, elle a toutes les propriétés
du complexe ordinaire.

Par exemple, déterminons deux constantes A et B par les
conditions (?)

A+ Bi=a'+ b0+ + 4+ e+ f°,
AB = ad + be + of ,

et tirons les valeurs 1, ., v, w, %, p qui vérifient le systéme

AL + Bowo =a , Aw + BA=4d, ]
Au+ By =0 , Ay + Bu=ce, (51)
Av 4+ Bo =¢, Ao +Brv=f. J

Les six paramétres (X,... s) sont les coordonnées d’une certaine

) Sion avait A = = B, on se trouverait dans un cas exceptionne
que je ne discute pas ici.
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vrille ®, car, comme on voit facilement, elles satisfont les iden-
tités caractéristiques

Atk +v+el+r+e=1, Aw + py +vg = 0.

En substituant les valeurs (51) dans ’équation de 1’hexaseérie,
celle-ci devient

A(Al + pum + vn + 0p + xq9 + vr)
+ BAp + ug + vr + @l + ym + on) = 0,

soit encore, d’aprés les significations connues des invariants
conjugues ‘
A cos 11’ cos22' + Bsin1l’sin22 = 0 . (52)

Les quantités 11" et 22’ représentent de nouveau les distances
conjuguées quiséparent I’une de I’autre, la vrille mobile V(/,...r)
engendrant notre complexe, et la vrille fixe ®(),...p) quiest 'axe
de la premiere. Il faut d’ailleurs remarquer que le systeme(51)
se reproduit quand on alterne A et B, 4 condition qu’on alterne
en meéme temps, A et », u et v, v et p; de la sorte, au méme
complexe de vrilles correspondent deux autres vrilles, conju-
guées I’'une de I’autre, qui peuvent jouer indiftéremment le role
d’axes du complexe. Une fois tracé I’'un des axes, et connus les
parametres A et B, I’équation (52) définit la propriété géomeé-
trique des vrilles du complexe, et donne le moyen de les cons-
truire toutes.

Dans le complexe linéaire de droites, toutes les droites du
complexe qui passent en un point font partie du méme plan, et
toutes les droites du complexe qui appartiennent & un plan pas-
sent par un méme point. Il faut done que, de la méme maniére,
dans le complexe de vrilles, toutes les vrilles issues d’'un corps fixe
appartiennent a un méme vrilloide, et que, réciproquement, toutes
les wvrilles comtenues dams wun vrilloide se rencontrent sur un
corps fixe.

Inutile de traiter les deux cas; il se correspondent par dualité.
Car il est évident que si une vrille engendre une certaine poly-
série, la vrille conjuguée engendre une autre polysérie, de la
méme dimension que la premiére, qui est la polysérie conjuguée.
Prenons donc I’hypothese oi1 nos vrilles faisant partie du com-
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plexe, doivent concourir sur un corps fixe; on peut prendre ce
dernier comme corps initial du systéme de repere.
On a dans ce cas, pour les coordonnées du corps fixe,

Lo =1, 1y = &y = 23 = 0
et par suite, & cause des conditions de rencontre (12),
p=20, q =20, r=20.
L’équation du complexe se réduit donc & la suivante
al + bm + ¢en = 0

¢’est celle d’une recticongruence, engendrée par I’axe de notre
vrille mobile quand cet axe se déplace dans I’espace en rencon-
trant toujours a4 angle droit le vecteur a, b, c.

Et nous savons que si on bouge un corps, tel que P;, de ma-
niére a lui faire décrire toutes les vrilles dont les axes forment
une recticongruence, le lieu de ses différentes positions est un
vrilloide. -

Il est clair qu'en continuant dans la méme voie, on trou-
verait les analogues de la congruence linéaire, de 1’hyperbo-
loide réglé, etc. Je n’insiste pas sur de pareilles généralisations ;
elles sont peu intéressantes en raison méme de leur évidence.

XV. — L’HEPTASERIE LINEAIRE DE VRILLES

L’hexasérie que nous venons d’étudier sous le nom de com-
plexe de vrilles n’est évidemment pas la plus générale parmi
toutes les polyséries linéaires.

Il existe en effet o® vrilles dans I’espace, par suite la poly-
série la plus générale doit contenir =7 vrilles, ou étre de sep-
tieme dimension. L’espace réglé ne nous donne pas d’analogue
immeédiat pour cette heptasérie linéaire fondamentale. Pour
I’obtenir, il faut dissocier les coordonnées complexes [,... # (%),
en leurs parties réelles et imaginaires, ainsi

l=10+a, r=t 4,

?

') On pourrait, bien entendu, employer au méme but les coordonnées
pliickériennes sous leur seconde forme (L... R).
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puis écrire entre les 12 quantités (I'... ') une équation linéaire
a coefficients réels, telle que
afll + a!!l" + blm' + b"mH + cfnl + c"n" } (53)
+ d’})’ "]" dllpﬂ + equ + ellqlﬁ + flr' + f"rﬂ — 0 .

Par le méme partage du réel et de I'imaginaire, les condi-
tions

P4+m*4+n+p4+¢+r=1, et Ip + mqg + nr=0,
donnent les trois combinaisons homogenes
lli" + mIWlH + n"n" + p'pﬁ + qlqlﬁ + TITH j— 0 ,
Z'jﬂ' i lﬂprl L qur _ mnqn 4 n'r — n'r" =0 . (54)
le" _l_ Z"p! + mlq" _l_ ,nllqu + nlrﬂ + n"T’ — 0 5

et la combinaison non homogene

AT R
N (/- Ry /L BN Pnz _ qrrz — "2 =1 .

Il s’agit tout d’abord de définir la propriété géométrique que
traduit I’équation (53) de I’heptasérie linéaire.

A cet eftet rappelons que deux vrilles quelconques V (I,... r)
et ® (),... p) possedent comme invariant la quantité

(I + ep)(4 + g0) + (m + eq)(u + e) + (n + er)v + g0) ,

laquelle est complexe dans un double sens. En effet, chacune
des coordonnées pliickériennes I,...  ou A,... p, est complexe
comme contenant I’imaginaire ¢; en outre, l'indéterminée ¢ qui
figure dans I’invariant peut y étre remplacée par une quelcon-
que des valeurs == 1.

Désignons par A, et B, les distances conjuguées des deux
vrilles, autrefois représentées par les notations 11° et 22', et
mettons en évidence les parties réelles et imaginaires de ces
quantités, sous la forme

A=A+ A", B = B’ + iB" ;

de la sorte A" et A", par exemple, mesurent respectivement le
glissement et la rotation par le moyen desquels les corps1et1’,
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qui se trouvent aux extrémités d’une des vrilles normalés, vien-
nent s’appliquer ’un sur ’autre.
Dans les deux invariants distincts (39) et (40), ou

cosA cosB =14 + mu + v 4 po gy +r0 = Y 1A,
SinA‘sinB = lw | my + no + pA |- qu +n.v= E lo |
séparons le réel d’avec I'imaginaire, il vient

cos A’ cos B" ch A" ch B” — gin A’ sin B’ sh A" sh B" |

e Z (Irlf _ l"ﬂ") ,
cos A’ sin B’ ch A” sh B” - sin A’ cos B’ sh A” ¢ch B”

- Z zrzn l")& ,
sin A’ sin B’ ¢ch A" ¢ch B"” — cos A’ cos B’ sh A" sh B”

= Z (Z’(D' _ I”(ﬂ") s
sin A’ cos B’ ch A" sh B" 4 cos A" sin B' sh A” ¢ch B”

— L (l'(‘)" 4 "o r) ]

Désignons par a, b, ¢, D les quatre combinaisons qui figurent
aux premiers membres des équations précédentes, par «, 2, v, 0,
quatre coefficients réels quelconques; si la vrille ®(x.. ., p) est
donnée de position, et que la vrille V ({,...r) soit mobile dans
’espace, il est clair qu’en imposant 4 cette derniére une condi-
tion de la forme

aa 4+ Bb + pyc + 60 =0, (56)

le lieu engendré par la vrille V est toujours une heptasérie
fondamentale du type (53).

En outre, tous les éléments de 1’heptasérie (56) peuvent etre
déterminés géométriquement. Ce dernier point résulte du fait
que 1’équation (56) définit une des quantités A’, A", B', B”
en fonction des trois autres. D’ailleurs nous savons construire
toutes les vrilles dont les distances conjuguées & une vrille
donnée sont connues. |

Reste & savoir si I’équation géométrique (56) donne la défini-
tion générale de foutes les heptaséries linéaires, ou bien, si dans
'ensemble de ces derniéres, elle ne représente qu’un simple
cas particulier.
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(C’est la premiere hypothése qui est la bonne. Pour établir ce
point, il faut partir de la formule générale (53), ol les coefficients
a,...f" sont les données, et amener cette équation & la forme
(56), en déterminant les constantes o, 3. 7, & ainsi que les coor-
données de la vrille fixe & (. ..p) qui doit servir d’axe & ’hep-
tasérie.

Dans ce but, écrivons les équations d’identification. On les
veit se partager en trois doubles paires respectivement symeé-
triques par rapport aux couples de variables [ et p, met q, netr.
Voici la premiere paire :

ad" — A"+ yo' -} " =da ‘
o 9:/:" . ﬁﬂl s ymll e (SCL)’ — ”ﬂ ; /
| - (57)
' — fo" + yA A =d \
— " — o’ — pA" 404 = d" .

Ce sont ces formules et leurs analogues qui doivent fournir
les inconnues (\'...p") et «, B, 1, ¢. Sion leur adjoint les rela- |
tions, semblables & (54) et (54"), qui doivent exister entre les
coordonnées de la vrille @ ()"...p"), le nombre des équations
écrites est égal & celui des inconnues, 16 des deux cotés. Le
probléeme est déterminé.

Pour résoudre effectivement le systeme (57), remarquons les
combinaisons

(x4 BN+ A") + (7 — B0)(&' + o) = & — ia"

(58)
(2 + Bi)(@ 4+ @"i) + (¥ — 8)A + A%) = & — id"
et leurs congéneres.
Soit, pour abréger
a =a —ia" d=da —id", A=A+ A",
o =0+ ", A=a 46 , D=y —06 ,...;

posons encore 7° = 1, ou 1, = == 1; alors les trois systemes
analogues a (58) se résument dans cet autre systéme
(4 -+ (A -+ nw) = a + dn , ]
(A + s+ my) =0+ en , ] (59)
(A -+ Ip)v 4-n0) =c—+ [y .
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~ Nous savons que les inconnues X,...p doivent vérifier les
conditions

Y@+ o)=1, Yio=0,
ou encore

YA P =1;

en comparant cette relation avec le systeéme (59), on voit que
les indéterminées A = a- i, [l =+-¢ ont & vérifier I’équation

(4 4 IIn)* = (a + dn)* + (b + en)® + (¢ + fp)* ,

pour les deux valeurs o = == 1.

La formule précédente contient la solution du probleme. En
décomposant, pour chaque valeur de 7, les deux membres en
leurs parties réelles et imaginaires, on trouvera les inconnues
A, II puis a, B, 1, ¢ au moyen de deux extractions de racines
carreées.

Des quatre valeurs distinctes qu’on trouve ainsi pour A et II,
deux ne se différencient que par un changement de signe, lequel
est insignifiant. L’autre choix pour le signe des deux radicaux
correspond & la transposition des quantités A et IT; d’apres le
systeme (59), la dite transposition s’accompagne de celle des
quantités A, u., v, contre leurs conjuguées p, g, 7.

- Et ainsi, toute heptasérie lindaire de vrilles admet comme
définition géométrique la relation (56). Cette représeniation est
possible de deux maniéres, Uaxe de I'heptasérie pouvant tou-
Jours étre échangé contre son comjugué. '

De 14, comme conséquence immédiate, 1’équation réduite de
I’heptasérie linéaire. _

Prenons comme corps initial du systéme de repére un des
corps contenus dans la vrille @ (A,...p), et plagons I'axe OX,
du triedre T suivant 1’axe de cette méme vrille. Ces prescrip-
tions nous donnent, pour les deux valeurs du signe -+,

Aim:l, Mix”—'ﬁ, ’V.iQEO,
ou encore

A’ZI, A,,'=M,=M"z...w’=&)"=...9’=gu=0_-

ArcHIVES, t. XLII. — Octobre 1916. 20
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Ainsi les valeurs a, b, ¢, D, se réduisent respectivement a I', 1",
v, p’, et 'équation de I'heptasérie devient elle-méme

a!l' + a"l" + dlpf + dﬂ-plr _— O ,

ou encore, si on préfere exprimer cette équation en fonetion des
coordonnées pliickériennes sous leur seconde forme (‘)

"L’ + a'L" — b"P’ — b'P" =0 . (60)

J’écrirai encore cette équation comme suit

(aL)" = (bP)" , . (61)

en posant a = a’ -+ a’t, b = b ", et en désignant par (xy)”
la partie imaginaire d’un produit de deux facteurs complexes.

Pour terminer cette rapide esquisse des propriétés de I’hep-
tasérie linéaire, je vaisen étudier d’un peu plus pres la structure,
en partant de la formule réduite (60) ou (61).

Cherchons le lieu des vrilles qui font partie de 1’heptasérie et
contiennent en méme temps un corps donné quelconque; dési-
goons par C le corps, et par x, ses quatre coordonnées com-
plexes.

Nous avons vu au paragraphe X, formules (18), comment
s’exprime le fait que C est 1’un des corps de la vrille V (L....R).
En transportant dans I’équation de 'heptasérie (60) les valeurs
des quantités P’ et P”, déduites de la premiere des formules (18),
il est clair que le résultat sera de la forme

a1 —l_ "L + ﬁ'l\f[’ + ﬁ"M" _*_ yiNr + }/”N" = () , (62)

et ceci est 'équation d’un complexe linéaire de droites ().
Done, toutes les vrilles de I heptasérie linéaire qui passent par
un corps C domné a volonté, admettent pour axes les droites d'un
certain complexe linéaire I'. Le complexe élant construit, il suf-
Jira de wriller le corps C autour de ses différentes arétes pour

') On a done L=I+{p, P=I—p, etc., et, comme toujours, L=L'+4iL".
) La méme propriété aurait lieu si on cherchait le lieu de I’axe des
vrilles, non plus dans I’espace, mais dans le corps imitial P,.
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obtenir Uensemble des >* vrilles de U heptasérie qui rencontrent C.

La propriété qui correspond & la précédente par dualité
s’énonce: toutes les vrilles de U heptasérie qui sont contenues dans
un vrilloide donné admettent pour axes les arétes d'un certain
complexe linéaire I". Qu’on vrille le pole du vrilloide autour de
toutes les arétes du nouveau complexe, puis qu’on retourne bout
pour bout chacune des vrilles ainsi engendrées, le systéme final
-sera contenu en entier tant dans I’heptasérie que dans le vril-
loide.

Reprenons le corps C et le complexe I' qui lui est associé par
I'intermédiaire de 1’heptasérie fondamentale. Si C varie, I' varie
de son coté, et comme C occupe oo° positions, on trouve aussi
oo’ complexes I'. Or I’espace ne renferme que o<® complexes au
total; il faut donc. que le méme complexe se reproduise au
moins oo! fois. :

En réalité, chacun des complexes linéaires associés & 1’hepta-
série se reproduit & oo* exemplaires; c’est dire que 1’ensemble
de tous ces complexes n’en renferme que oo* au lieu de o<®,

Pour mettre ceci en évidence, remarquons que les constantes
e, a’...4" qui caractérisent I' dépendent du corps C, ¢’est-a-
dire des coordonnéesx, , par I'intermédiaire de la premiére équa-

tion (18). Et dans celle-ci figurent seulement les trois combi-
naisons

U = woz —I— ‘L‘IE e t1322 - m32_ ? Y= 2(1’01'3 —l_ wla‘?) ’ } (63)
w = 2(x; — Ty¥s)
entre lesquelles regne 1identité
W 0w = (e et )= 1.

Ainsi I’équation de I' contient deux parametres complexes,
et non pas trois, et au total, nous avons quatre constantes
reelles au lieu des six qu’on attendait.

Les égalités (63) entrainent les conséquences

vxy - wx; — (1 4- u)zz = 0,

wxy, — vr; + (1 + w)r, = 0.

} (64)

Ce sont les équations d’une vrille ¥, fonction du couple u, v.
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Quand le corps C décrit la précédente vrille, le complexe associé
a ce corps par l'intermédiaire de 1’heptasérie ne change pas.
Comme on a, pour I’équation du complexe I,

(aL)" = (bP)" , - et P = Lu + Mv 4 Nw ,
¢’est-a-dire :
(UL)" + (VM)" + (WN)" =0, (65)
avec .
U=bu —a, V=10, W =bw , (66)
-1l est facile, d’aprés ces formules, de se faire une idée de la
construction de I’heptasérie fondamentale.

Rappelons que les variables sont les deux quantités complexes
u et v, et que, pour abréger, on a fait w = V1 — u® — v*.

Prenons sur chaque vrille W' (u, v, w), d’équations (64), un
corps quelconque, bien déterminé; il suffira de vriller ce corps
autour des o=® arétes du complexe associé (65), pour obtenir
toutes les vrilles de I’heptasérie linéaire; elles sont au nombre
de oot > oc® = oo”, comme il convient. L’heptasérie se repro-
duirait & oo* exemplaires, siau lieu de retenir un seul des corps
de chaque vrille W', on employait,dans la eonstruction, tous les
corps appartenant & chacune.

A D’égard de la vrille W, il est aisé de voir que ses coordon-
nées pliickériennes valent

L=wu, M
le’ Q

v, N=w;
0, R=0,

tandis que la vrille ® qui occupe 1’axe de I’heptasérie a pour

coordonnées
’ N=20;

0
0, R=0.

, MRS 3 M —
P=1, Q

De la résulteimmédiatement que la vrille ¥ est superposable
a la vrille-axe @ ; on ’obtient en transportant cette derniére
dans 1’espace, sans déformation, de maniére que son axe tombe
sur un vecteur quelconque u, v, w, choisi & volonté.

Les explications précédentes donnent une idée suffisante du
mode de construction de 1’heptasérie linéaire; cette construc-
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tion se rattache intimement & celle du faisceau (65) de com-
plexes linéaires I', lequel est du second degré.

Mais de plus amples détails sur cette question spéciale, en
m’écartant des éléments de la théorie des corps solides, des
vrilles et des vrilloides, m’entraineraient au deld des bornes que
je veux conserver a ce mémoire; son seul objet était 'étude des
principes de la Géométrie imaginaire.
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