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GEOMETRIE DES CORPS SOLIDES

ET

GEOMETRIE IMAGINAIRE

PAR

C. CAILLER
(Suite 1)

IX. NorioN pE SYMETRIE

Partageons en deux parties égales le mouvement de torsion
qui améne un corps A, sur un autre A, , de telle maniére que si,
pendant la premiére moitié du mouvement, A, vient en A’, dans
la seconde moitié, A" vienne en A,. Dans ces conditions, A" s’ap-
pelle le corps médian des deux autres ; a4 leur tour ces derniers
sont dits symétriques ’'un de 1’autre, par rapport & A". Il est
clair que si on connait un corps médian et 1’un des deux symé-
triques, le second se déduit sans aucune ambiguité de ces don-
nees. _

Au contraire, quand les positions seules des corps A, et A, sont
déterminées, mais non pas le mouvement hélicoidal particulier
qui a transformé 1’'un dans 1’autre, le corps médian possede deux
positions possibles; elles correspondent & la parité du nombre &
employé dans la formule w -} kn qui représente la totalité de
tous ces mouvements. Les deux corps médians obtenus en pre-
nant % pair ou impair sont évidemment orthogonaux, une rota-
tion de 180° autour de.l’axe de la vrille A, A, améne 1'un en
coincidence avec l’autre.

) Voir Archives, t. XLII, p. 89.

ARrcurves, t, XLII — Septembre 1916. - 13



178 GEOMETRIE DES CORPS SOLIDES

La notion de symétrie s’étend immédiatement aux vrilles et
aux vrilloides. Par exemple, ayant projeté le corps A, en A" sur
le vrilloide, le symétrique de A, relativement & A’, soit A, , sera
aussi le symeétrique du corps A, par rapport au vrilloide.

Appliquons 3 ce cas la formule trigonométrique (2), en pre-
nant un corps quelconque A du vrilloide, les deux symétriques
A, et A, et le médian A’. Nous avons ici @ = 90°: par suite

+ cos AA, = cos A’A, cos AA’ (3)
et, de la méme maniere,

+ cos AA, = cos A’A, cos AA’ = cos A_’KO cos AA’ . (4)

Ainsi, les distances d’'un corps quelconque appartenant au vril-
loide a deux corps symétriquement placés par rapport @ ce vril-
loide sont égales entre elles. '

Réciproquement, le liew des corps également distants de deux
corps quelconques A, et A, est un vrilloide mené par le corps mé-
dian A’ perpendiculairement @ la vrille A, A,. Commeil y a deux
corps médians, il existe en réalité deux vrilloides semblables.

En résumé, la symétrie possede les mémes propriétés par
rapport a un plan réel, et par rapport au plan imaginaire qu'est
le vrilloide. On doit toutefois remarquer que si on continue d’ap-
peler distance d’un corps & un vrilloide I'intervalle qui sépare
le corps de sa projection, cette distance ne possede aucune pro-
priété de minimum, contrairement a ce qui a lieu dans le réel.

La différence provient du fait que, dans la formule (3), la
variable AA’" est complexe. Il est clair qu’on peut toujours-la
déterminer de maniere que le premier membre de la formule
ait une valeur quelconque. Et ainsi, il existera toujours dans le
vrilloide (ou dans une vrille quelconque) un corps dont 'inter-
valle avee A, soit arbitraire, par exemple un corps tel que I’in-
variant cos AA, prenne la valeur == 1.

Cette valeur singuliere ne signifie pas du tout que A coincide
avec A ; ce serait contradictoire, puisque nous savons que A,
est, généralement parlant, extérieur au vrilloide. Elle veut dire
que les corps A et A, sont symétriques d’un méme corps par rap-
port a deux droites paralléles ; quel que soit A, , le vrilloide con-
tient toujours des corps A qui participent & ce caractére excep-
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tionnel, ils sont tous & une distance constante de la projection
de A, sur le vrilloide (*).

A T'égard du systéme composé de deux vrilles quelconques,
U et U’, nous savons qu’il détermine deux autres vrilles, con-
juguées l'une de I’autre, qui sont les normales communes du
systeme primitif. Si C et C' désignent les extrémités sur U et U’
de ’une des normales, D et D" les extrémités de I'autre, les
corps extrémes, définissent ce qu’on peut appeler les distances
conjugudes des deux vrilles données. Ces distances conjuguées
caractérisent, en quelque maniére, la situation relative des deux
vrilles ; ce sont les analogues de la distance et de l'angle de deux
droites en Géométrie réglée.

Sitot connues les distances conjuguées, il suffit de donner]’am-
plitude de deux mouvements qui conduisent C ou C’ sur deux
corps A ou A" appartenant respectivement & chaque vrille, pour
que la distance de ces derniers soit elle-méme déterminée ; on
verra plus loin quelle est la loi de variation de cette distance
AA quand les corps A et A’ décrivent chacun leur vrille parti-
culiere.

Les distances conjuguées d’un couple de vrilles peuvent étre
égales & deux quantités complexes quelconques. Pour s’en con-
vaincre il suffirait de se reporter & la figure 8 expliquée ci-des-
sus & la page (109).

Mais la construction Ia plus simple résulte des formules (42)
et (43) que j'aurai & développer plus tard. Il s’ensuit, comme
on verra, que si, dans la figure 7, la distance des droites U et
U’ est égale & la quantité CC' — DD’, tandis que celle de
Pautre couple u, «' est égale a la quantité CC' - DD, les
vrilles (U) et (U") engendrées par le corps mobile ont précisé-
ment les valeurs CC” et DD’ pour distances conjuguées.

L’une des vrilles (U) ou (U’) peut étre donnée & volonté,
'autre admet alors ~* déterminations possibles. C’est le double

') En Géométrie euclidienne, les propriétés de minimum se conservent
partiellement. On voit aisément que la rotation nécessaire pour orienter
A, parallélement & sa projection est plus petite que la rotation qui ren-
drait le méme corps paralléle & un autre corps quelconque du vrilloide.
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des positions possibles d’une droite, quand sa distance & une
autre droite posséde une valeur donnée; on retrouve ici la
duplication caractéristique du passage du réel & I’'imaginaire.

X. REPRESENTATIONS ANALYTIQUES : SOLIDES, VRILLOIDES

ET VRILLES

Il s’agit de représenter ces trois objets & 1’aide de coordon-
nées qui en definissent la position relativement & un systéeme de
référence déterminé. Un vrilloide pouvant toujours étre défini
par son pole, nous n’avons en fait & résoudre que deux ques-
tions essentiellement diftérentes.

Prenons le cas du corps solide, et supposons d’abord que le
corps qu’on veut repérer fagse partie d’une seule et méme vrille
dont I’axe v est dirigé & la maniere d'un vecteur. Soit A, un
corps de la ville, faisant fonction d’origine.

Si % est I'amplitude du mouvement hélicoidal qui améne A,
en coincidence avec un corps A, appartenant a notre vrille, les
coordonnées complexes de A, seront les deux suivantes

Xy = COSU , x, = sinwu .

Elles changeraient de signe, si % augmentant d’un demi-tour,
on revenait au méme corps aprés une rotation d’un tour entier.
Sauf le changement simultané de signes, les coordonnées d’un
corps de la vrille sont completement déterminées; d’ailleurs
deux quantités quelconques z, et z, déterminent toujours un
corps et un seul, faisant partie de la vrille, pourvu qu’elles
vérifient la condition

x02+$1221-

Pour définir les coordonnées dans des cas moins particuliers,
nous n’avons qu’a nous laisser guider par I’analogie. En Géo-
métrie riemannienne plane, le systeme de référence est un
triangle dont les sommets sont conjugués deux 4 deux. En
Stéréométrie, c’est un tétraedre & sommets conjugués. En
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Géométrie réglée enfin, ¢’est un triédre trirectangle, aux arétes
deux & deux orthogonales. |

Plagons-nous tout de suite dans le cas de I’espace. L’analogue
du tétraédre & sommets conjugués est évidemment formé par
un systéme de quatre corps deux & deux orthogonaux; j’appelle
télraedre fondamental un semblable systéme.

II existe oo'? tétraedres fondamentaux. Le premier corps P,
du tétraédre est arbitraire, ¢’est-a-dire qu’il posséde oo® posi-
tions. Le second corps P,, devant étre orthogonal au premier,
est situé dans le vrilloide dont P, occupe le pole; P, admet donc
oo positions. Le troisieme et le quatrieme sommet appartien-
nent tous deux & la vrille conjuguée de celle qui joint P, & P, ;
P, dépend ainsi de deux constantes. Enfin, dés que P,, P,, P,
sont placés dans 1’espace, P, , qui est leur orthogonal commun,
est complétement déterminé. Le nombre total des parameétres
dont dépend la construction du tétraédre fondamental est
6 L 4-192=12.

Les quatre sommets du tétraedre jouent le méme role rela-
tivement au tétraeédre. Toutefois, pour des motifs de précision,
nous emploierons un autre mode de construction du systéme de
référence, d’apparence dissymétrique, dans lequel le sommet P,
est distingué parmi ses congénéres.

Le théoréme fondamental du paragraphe VIII nous apprend
que quand on fait chavirer P, pour ’appliquer sur un des
trois autres sommets, les trois axes de ces renversements sont
orthogonaux deux A& deux, ou forment un triedre trirec-
tangle.

Au lieu d’un tétraédre fondamental, nous pouvons donc tou-
jours adopter un systeme de référence formé des deux objets
suivants : 1° un corps solide P,, que j’appellerai souvent le
corps initial, 2° un triedre trirectangle direct OX,, OX,, OX,
(fig. 13).

Répétons qu’en renversant P,, successivement, autour des
trois axes coordonnés, dans le sens direct, on retrouverait le
tétraedre fondamental. Il est clair que le systéme de repere,
sous sa forme dissymétrique, posseéde également o<'* détermi-
nations possibles, o<¢ relatives au déplacement de P;, o2
celui du triedre, indépendant du premier.
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Soient maintenant x un corps quelconque, D ’axe de la vrille
joignant ce corps au solide initial P, , « la grandeur de la tor-
sion qui améne P, en coincidence avec z dans la vrille D. Dési-
gnons par L., L,, L, les coordonnées du vecteur D, relatives
au triedre T des axes fixes (!). Alors, par rapport au systéme

X3

D

Tig- 15

de référence défini ci-dessus, les coordonnées du solide z seront
données par les relations suivantes, de forme complexe,

T, = cosu x; = L, sinwu , 5)
zy = Ly sinw , x; = Ly sinwu ;
elles entrainent I'identité
2 + 2 + 2 =1 . (6)

Par la comparaison des formules (5) et (6), il est clair récipro-
quement qu’a tout systeme de quatre nombres z, , vérifiant la
relation (6), correspond un corps, et un seul, de I’espace. D’ail-
leurs, suivant le choix particulier de la quantité , chaque eorps
solide possede un double systeme de coordonnées ==z, ; on

) Si le sens de D changeait, Ly changerait de signe, » pareillement,
et ainsi les coordonnées ., resteraient les mémes.
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prendra ’'un des deux arbitrairement, ils sont équivalents. Il y
a ici une différence avec les coordonnées d’un veecteur qui, elles,
sont entierement définies, méme en ce qui concerne le signe,
quand le vecteur et le triedre de référence le sont eux-mémes.

Remarquons encore que si z, est constamment nulle, le vec-
teur D appartient a la recticongruence dont 'axe est OX,;
I’ensemble des positions décrites par le corps mobile x forme
alors un vrilloide. Ce vrilloide passe évidemment par les trois
corps P, P,, P,, lesquels constituent un triangle arbitraire de
corps deux & deux orthogonaux. Rapportés & un semblable sys-
teme de référence, les corps d’un méme vrilloide possédent
donc trois coordonnées complexes x,, x, , x,, entre lesquelles
existe la relation identique

x‘)g + mlz + $22 == 1 . (7)
Ainsi, on descend de 1’espace au vrilloide par le moyen méme

qui, dans la Géométrie analytique ordinaire, fait passer de la
Stéréomeétrie & la Planimétrie.

Distance de deux solides. Soient x, y deux solides, z,ety, ,
leurs coordonnées complexes rapportées au systeme de réfé-
rence (P,, T); je dis que la distance xy de ces corps est donnée
par la formule

CoS XY = XoYo + Tath + ToYs + Tays () . (8)
En effet, puisque

L, = COS U , z, = L, sinu , =1 2; 8)
et, avec des significations analogues,

Yo = COSV | Yy, = M, sinv , k=1, 2, 8)
la formule ci-dessus se transforme en

cosxy = cosu cosv + (LM, + LyM, + LgM;) sinw sinw ;

c’est la méme que (1), puisque, suivant les préceptes de la
Géométrie réglée,

cos = LM, + L,M, + L,M, .

') Cette formule comporte, comme toujours, une incertitude dans le
signe du résultat.
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A titre de corollaire, on peut remarquer que les quatre coor-
données du solide x ont des significations semblables au regard
des quatre sommets du tétraedre fondamental. Si, en eftet, on
fait coincider y avec P, (k = 0,1, 2, 3), toutes les coordonnées y
sont nulles, sauf y,_qui vaut 1; et alors, d’aprés la formule (8)

x, = cos («P,) (") .

Equations du vrilloide et de la vrille. Ces équations dérivent,
comme une seconde conséquence, de la formule (8); elles s’en
tirent de la méme maniére que I’équation du plan de la formule
analogue en Géométrie ponctuelle.
~ Désignons par a le corps polaire du vrilloide et écrivons qu’un
solide mobile x est constamment orthogonal & a. C’est la pre-
miére définition du vrilloide, elle donne pour ce dernier I’équa-
tion linéaire

ax, + ax, + ax, + azx; = 0 .

Faisons rencontrer deux vrilloides (@) et (b), nous auron ,

pour les équations de la vrille qui est leur intersection,

a, + a,x;, + axy, + a,xy = 0,

(8")
boxy, + byxy + boxs + byxy; = 0 .

Mais & la place de celles-ci, on emploiera le plus souvent la
représentation paramélrique, identique a celle de la droite.

Soient sur la vrille, x et y deux corps orthogonaux l'un &
I'autre, lesquels, par suite, donnent lieu aux identités

2 2
ka:_l, Eyk=l, kayk::().

Si X est un corps mobile dans la vrille, s la distance qui le
sépare du premier des deux corps précédents, nous aurons

X, = x,coss + y, sins . (k=0,1,2,3) (9)

') On pourrait prendre cette formule pour la définition des x, . Mais
ce moyen laisse subsister une ambiguité génante provenant de I'indéter-
mination des signes des cosinus. C’est 'intervention du systéme de réfé-
rence, sous la forme dissymétrique, qui a permis d’éviter cette ambiguité;
en fait d’'indétermination. il n’en reste qu’une seule, insignifiante, qui
résulte de la possibilité d’'un changement simultané dans le signe des
quatre coordonnées
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En effet, les quatre coordonnées X vérifient évidemment deux
équations linéaires indépendantes de s et analogues & (8') ; en
outre, les égalités .

cos § = Z z X, sin § = Z v X,

font ressortir la signification de s, conforme & celle indiquée &
I’instant. '

Coordonnées pliickériennes. Toutefois la représentation la plus
employée pour les vrilles est celle que fournissent les coordon-
nées plickériennes ; elles ne different des coordonnées pliické-
riennes de la droite que parce qu’elles sont complexes et non
réelles.

Désignons par z, ¥ deux corps quelconques, qui ne sont pas
en général orthogonaux; soient x, , y, leurs coordonnées. Défi-
nissons six quantités complexes (1),

Isin (xy) = @y, — ®:Y, psin (xy) = Xoys — %Y,
m sin (xy) = 2oy, — L2, , gsin (zy) = a3y, — LYy , ¢ (9)
n sin (xy) = ZoYs — X3Yo , rsin(zy) = 2,y; — T2 -

Les six quantités, complétement connues sauf un signe com-
mun qui reste arbitraire, ne changent pas si et y se déplacent
dans la vrille ; elles en sont les coordonnées pliickériennes. Entre
elles existent les deux identités fondamentales

Pt mdt a4 p + g i1, (10)

Ilp +mg + nr =0. (11)

Enfin tout corps x, appartenant a la vrille (... ), satisfait
les conditions

Pry, = WL, — MLy , qr, = le, — nx, ,

(12) .
rr, = mx, — lrs ,

lesquelles sont compatibles entre elles en vertu dela formule (11).

!} Les notations les plus symétriques seraient ly;, lys, log, gy U3 s liz-
J'éeris I, m, n, p, q, r pour éviter les doubles indices.
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Prenons les équations paramétriques de deux vrilles conju-
guées, sous la forme

X, =a,coss + y, sins Z, =z, cost + ¢ sint .

?

Chacun des quatre corps z, y, z, ¢ est orthogonal aux trois
autres, on a done

v‘.’ ___vﬂ _u‘g _vg .
L% =40 ‘sz *'_atk =1,

! . _ _ YV e WY e _ Y . .
a/\-dxhyk—_zxkzk'—zykzk_ = zkti.-*_'—d llktkv/—i yktk_O’

et ainsi le déterminant | xyzt | est orthogonal. Les relations
connues entre les mineurs complémentaires d’un semblable
déterminant, & savoir

oYy — T1Yo = £ (foly — te23) ...,

rapprochées des formules évidentes sin (xy) = sin (&f) = =% 1,
nous fournissent immédiatement les relations entre les coor-
données pliickériennes de deux vrilles conjuguées V(1,...r) et
vZ,...r. '
 Appliquées aux deux vrilles V et V', les définitions (9") nous
donnent

r

l = x pf == =gt , n = = ¢
] . (_'l 2 (13)
p==x1, g = =m, r= tn.

Dans ces formules le double signe - peut, sans inconvénient,
étre supprimé partout.

Soient encore

Uy + Uy + UTy + usr; = 0 1 (14)
Uy + V1T + Vo + V323 = 0, J
les équations d’une vrille V. Quand le eorps « se.déplace dans
la vrille, les corps fixes % et v lui restent constamment ortho-
gonaux. Si donc on forme une vrille avec les solides u et v,
celle-ci sera la conjuguée de la vrille V.

Reprenons les formules (97), et la regle d’alternance ci-des-
sus pour les vrilles conjuguées; nous en déduisons immédiate-
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ment les coordonnées plickériennes de la vrille V, dont les
deux équations figurent au n° (14) ; ce sont

! sin (uv) = upws — ugvs , p sin (wv) = uyv; — w0, .
m sin (uv) = u,¥; — u; , g sin (uv) = uyvy — UyY, ,
% sin (wv) = w0, — ugv, 7 sin (Uv) = U3 — Uy -

Nous n’avons pu éviter de répéter ici, dans le domaine com-
plexe de la Géométrie des vrilles, des théorémes qui sont tres
connus dans le domaine réel de la Géométrie réglée. Je veux
terminer cette énumération par un nouveau théoréme, sans
analogue dans la Géométrie réelle, et dont on trouvera la
démonstration un peu plus loin. Je tiens & signaler & cette place
ce resultat tout a fait essentiel.

Nous savons comment une vrille est définie au point de vue
géométrique : on marque par deux vecteurs correspondants les
positions de ’axe de la vrille, dans l'espace en v, et dans le
corps en u (fig. 6). Supposons le systeme de référence bien
déterminé. Le second des axes précédents sera donc I’homo-
logue, dans le corps initial P,, de ’axe de la vrille décrite
autour de v. Le théoreme en question est alors le suivant.

Les coordonnées complexes des vecteurs v et u, relativement au
triedre de référence T, sont respectivement égales aux quantités,

L=1+p, M=m+ q, N=an-+r, (15)
P=1-p, M=m-gq, N=n-—r. (15

Par exemple, en Géométrie euclidienne, si L’ est la projection
sur OX, d’un vecteur-unité porté sur v, et L” le moment de ce
méme vecteur autour de OX,, nous aurons [ + p = L'+ <L",
et ainsi des autres grandeurs. '

Il est clair que les six quantités complexes L,... R peuvent
servir de coordonnées pliickériennes & la place des quantités
primitives [,. .. . L’emploi de cette seconde forme se recom-
mande souvent; entre ces nouvelles coordonnées de la vrille,
nous avons les relations

L4+ M4 N2 =1, (16)
P4 Q' RE=1, (16"
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quir remplacent les identités (10) et (11), soit Y. (I* + p*) = 1,
Y Ip = 0, et sont remarquables par leur forme symétrique.

Et il va sans dire que tous les problemes résolus dans ce
paragraphe en fonction des /,. . .r, pourraient 1’étre en fonction
des L,...R. Par exemple, nous aurons & exprimer plus loin la
condition pour qu’un corps x soit contenu dans une vrille V.

Au lieu d’employer a cet eftet les formules (12) qui résolvent
le probleme, nous les écrirons sous la forme nouvelle

on + st — ng = Pil'o == Q;Ca + Rxg 3
— Lz + Mz, + Nz, = Pzx; + Quy — B, (17)
Lxy — Mz, + Nxy = — Pay + Qx; + R, , J

lesquelles, résolues par rapport aux quantités P, Q, R, repro-
duisent le type bien connu des formules de Rodrigues

P=L(x®+a,* — 1,2 — ;) + 2M(, 25 + Lo5) + 2N (2,225 — 20%s) ]
Q='2L(w,a:g—-moxs‘}+M(x02+:c22-—x,2——x32y+2N(m2x3—|—x0x1) , (18)
R=2L(x,2;+ xyxs) + 2M(x,25 — 2o, ) + N(o® + 2032 — 2, 2 — 22, %) . J

XI. CHANGEMENT DU SYSTEME DE REPERE

Le tétraédre de référence P, est formé de quatre corps ortho-
gonaux choisis & volonté. Qu’arrive-t-il, & I’égard des coordon-
nées d’un corps fixe de 1’espace, si on substitue un autre
tétraedre fondamental a la place du premier ?

Il existe en tout =o' tétraedres fondamentaux. Chacun peut
se présenter sous I’apparence dissymétrique d’un corps initial P,
associé & un triedre d’axes coordonnés T. Les oo'? systemes se
déduisent de I'un d’eux en déplacant dans 1’espace, indépen-
damment 1’'un de 1’autre, le corps initial P, et le triedre T.
Parmi les mouvements ainsi considérés ceux qui conservent la
situation relative du triedre et du solide initial sont 1’exception;
leur nombre est seulement oo°, les tétraedres correspondants
different entre eux par la position, mais non dans leur configu-
ration intrinseque. Nous aurons bientdt & considérer ce cas
particulier.
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Prenons la question dans toute sa généralité. Soient donc,
relativement au premier systéme (P, , T), z, et y, les coordon-
nées de deux corps z, y ; soient encore z,’, ,’ les coordonnées
des mémes corps rapportés & un second systéeme de référence
(s I')L

‘La distance des deux corps ne dépend pas des repéres, il faut

done que
Yoy ==Xy,

I’ambiguité du signe s’explique comme toujours. Mais si on
convient que les coordonnées d’un corps doivent varier de
maniere continue quand le systeme de référence se déplace
lui-méme d’une maniére continue, le signe ambigu == ne peut
pas changer brusquement, il restera done constamment égal a
sa valeur initiale soit - ().

Ayant ainsi
Z Y, = E LYy s

et par suite
Yo =Xz, ,

on voit que la relation cherchée entre les anciennes et les nou-
velles coordonnées est de la forme linéaire

Ly =0+ O Ty + Bs Ty + s - (£=0,1,2,3) (19)

Cette transformation est orthogonale ; & cause des propriétés
de continuité, elle doit étre directe, par suite | a, | = 1. De
plus, si on considére les a,, (h =0, 1, 2, 3) comme les coor-
données d’un corps fixe, par rapport & l’ancien systéme de
repére, ce corps est P.’, et 'onaa = cos (P, P,:).

! 11 est clair que si le systéme (Py, T) exécute un mouvement cyclique
en reprenant & la fin la position qu’il avait au départ, rien n’empéche
que les coordonnées x; n’aient changé de signe. Il en sera alors de méme
pour les coordonnées y, d’un autre corps quelconque. Cette remarque
permet de classer les mouvements cycliques du systéme (P,, T) sous
deux espeéces. :

Les considérations ci-dessus se rapportent & ce que j’ai appelé le
signe ou le sens d’un corps. Arch., t. XV, p. 385,
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En un mot, la seule chose qui différencie notre transforma-
tion (19) de celle qui détermine le mouvement non-euclidien
dans I’espace sphérique, ¢’est que, dans le dernier cas, les coef-
ficients de la formule (19) sont des quantités réelles au lieu
qu’ils sont généralement complexes dans la théorie actuelle. De
12 vient que le nombre des parameétres dont dépendent mainte-
nant les @, est double de ce qu’il est en Géométrie ponctuelle,
12 au lieu de 6.

Le mouvement & 12 degrés de liberté du systeme de repere
peut évidemment se décomposer en deux mouvements distinets,
chacun a six degrés de liberté.

Fl'g,iﬁ

En effet, soit (P,, T) le premier systeme de référence,
(P,”, T") le second. Marquons en P,” le corps qui occupe dans
le triedre T la méme position que P, relativement au triédre T
(fig. 14).

1° Déplagons d’abord P, en P,” en maintenant fixe le triedre T.

2° Déplacgons ensuite le systéme nouveau, c¢’est-a-dire 1’en-
semble des deux corps (P,”, T), mais sans changer leur situation
relative, jusqu’a ce que T vienne s’appliquer sur T', ce qui fait
aussi coincider P,” avec P,’.
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Existe-t-il une vrille invariante, qui se présente de la méme
maniere relativement au nouveau et & I’ancien systeme de réfé-
rence? Iinpossible d’en douter d’apres I’ensemble des analogies
entre les droites et les vrilles. Li’existence des vrilles invariantes
ressort méme, de fagon lumineuse, de la décomposition du mou-
vement dans les deux parties dont il vient d’étre question.

En effet, chacune des composantes est une torsion; pour
qu’une vrille soit invariante, il faut que ses axes, dans le corps
et dans ’espace, coincident respectivement avec les axes des
torsions dont il s’agit. Cette condition, qui est nécessaire, est
aussi suffisante. Ou obtient de la sorte deux vrilles invariantes,
elles sont conjuguées 1'une de I'autre. Pour les construire, il
faut transporter I’axe de la vrille P, P,", solidaire du corps, sur
I’axe commun aux deux triedres T et T', en superposant alter-
nativement les deux extrémités de ces deux axes.

Ici, comme dans la stéréométrie riemannienne, les objets inva-
riants sont réels 'un et ’autre, tandis qu’en éométrie pone-
tuelle hyperbolique, I'une des droites invariantes seule est
réelle, I'autre est idéale. Comme toujours 1’analogie s’étab'it
entre la Géométrie des corps solides et la Géométrie ponctuelle
de Riemann,

Revenons aux deux mouvements déerits plus haut et rappe-
lons que si quatre variables x, subissent une transformation
orthogonale, les six déterminants de Pliicker associés & ces
variables, & savoir [, m, n, p, q, r, se transforment de leur coté
de telle maniére que chacune des deux lignes

L=1+4+p, M=m+ q, N=an+4+r,
P=1-—1p, Q=m—gq, R=n-—-r.

subisse également une substitution orthogonale ternaire (*).

On peut présumer que ces deux substitutions correspondent
aux torsions composantes décrites tout a ’heure. Pour le faire
voir, J’introduirai dés maintenant les notations quaternion-
niennes ; il serait facile d’ailleurs, mais trop long, de justifier &

') Voir. par exemple, mon mémoire Soc. de Phys. et d’histoire natu-
relle, Genéve, t. 37, p. 74 et suivantes.
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cette place 1’intervention dans la Géométrie des corps solides
de cet instrument analytique & peu pres indispensable (*).

Rappelons done que, le triedre T étant bien déterminé, toute
torsion ¢, d’amplitude w, autour d’un axe dont les coordonnées
sont ¢, , ¢,, ¢, , a pour représentant le quaternion

t = cosu + (i1t; + 2oty + 2,t3) Sinwu .

De méme, si le systeme de référence est complété par I’adjonc-
tion au triédre T d’un corps initial P,, une torsion convenable
conduit ce corps initial sur n’importe quel autre corps (z) de
I’espace. Ainsi, les reperes étant donnés, le corps (x) sera
déterminé de position par le moyen d’un quaternion

T = Ty + 4,;y + 2 + G2, (20)

dont les composantes sont justement égales aux coordennées
définies ci-dessus (5).

Je rappelle en outre que si on exécute dans ’ordre ¢, s deux
torsions quelconques, la torsion résultante, toujours rapportée
au triedre T, admet pour quaternion représentatif le produit st.

Cela posé, cherchons d’abord comment se présente le pro-
bleme de la transformation des reperes quand on décompose le
mouvement subi par ces reperes de la maniére indiquée plus
haut.

Le triedre T servant toujours de systeme de référence, dési-
gnons par s le quaternion représentatif de la torsion par laquelle
T vient s’appliquer sur T’ ; soit de méme ¢ le quaternion équi-
valent au mouvement de P, en P,”. Le mouvement hélicoidal
par le moyen duquel P, se transporte sur P, est figuré par un
troisieme quaternion égal a st.

Si (x) désigne le corps fixe de I’espace qu’on prétend rappor-
ter tantdt au premier, tantot au second systéme de repere, les
anciennes coordonnées représentent le mouvement de P, en (x),

') Dans ma Note,la définition du systéme de référence est insuffisante.
De la, en plusieurs points de ce travail, des obscurités et des résultats
incomplets, ainsi pp. 382-385 et pp. 457-459. On me pardonnera donc de
revenir en quelques mots sur le sujet.
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estimé & I’aide du triedre T, les nouvelles représentent le mou-
vement de P, en (x), estimé par le second triedre.

Mais le dernier mouvement, estimé a I’aide du triedre primi-
tif, correspond au quaternion xzfs('); par rapport au triédre T’,
ce quaternion devient

s(xts)s ou sxt .

On a done en définitive entre les anciennes et nouvelles coor-
données, la relation quaternionnienne

x = sat ; (21)

elle remplace les formules (19), dont elle donne I’expression la
plus condensée.

Revenons maintenant aux coordonnées pliickériennes (Z,.. .r)
de la vrille qui joint les deux corps (x) et (y), telles qu’elles sont
contenues dans les définitions (9').

Le calcul direct montre que, sauf le facteur de proportiona-
lité sin (xy) qui y est contenu, les quantités

L=1+1p, M=m+4q, N=n+4r,

sont respectivement égales aux coefficients de ¢, , ¢, , ou ¢, , dans
le produit yx. De méme les quantités

P=1l-p, Q=m—gq, R=n—17r,

sont les facteurs des mémes lettres ¢, dans le produit xy.

Or, dans la substitution du nouveau systeme de référence & la
place de l’ancien, les produits précédents se transforment, le
premier suivant la formule s(yx)s, le second suivant la formule
t(xy)t, elles-mémes contenues dans la transformation générale
(21) & titre de cas particuliers. Voici les conséquences de ce
double fait.

A I’égard du vecteur L, M, N, la modification qu’il subit
dépend uniquement de s, c’est-d-dire du déplacement du
triedre T, et point du tout du mouvement du corps initial P, .
C’est donc un vecteur fixe de 1’espace absolu.

) La barre qui surmonte un quaternion signifie qu'on en prend le
. eonjugué en changeant 4, en — %, etc., sans toucher au scalaire <.

ArcHives, t. XLII. — Septembre 1916. 14
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Pour reconnaitre que le dit vecteur coincide avecl’axe de la
vrille qui joint les corps (x) et (y), il suffit de prendre cet axe
pour celui des x, dans le triedre T, le corps initial P, étant
choisi & volonté parmi ceux qui forment la dite vrille. Les défi-
nitions (9°) pour les coordonnées pliickériennes donnent alors
immédiatement

=l4+p=1, M=0, N=0,

ce sont justement les coordonnées de I’axe OX, .

Passons au second vecteur, ou P, Q, R. Laloi de sa transfor-
mation ne dépend que du quaternion ¢. Si donc, prenant { = 1,
on imprime aux deux reperes primitifs (P,, T) un mouvement
commun quelconque qui n’en change pas la situation relative,
le vecteur demeure inaltéré. Qu’on amene donc, par un sem-
blable déplacement, le corps initial P, en coincidence avec un
des corps de la vrille, on aura dans ce cas, comme on voit tout
de suite, p = ¢ = r = 0, soit encore

P=1, Q=M, R=N.

Donc le vecteur P, Q, R représente toujours, relativement
au triedre T, ’axe homologue, par rapport au corps P,, de
celui de la vrille engendrée par le solide mobile.

En résumé, ce qui précede contient la démonstration de la
propriété énoncée & la fin du paragraphe X, et justifie I’inter-
prétation qui y est donnée pour les coordonnées pliickériennes
(L,...R) d’une vrille quelconque.

Je termine ce paragraphe par une remarque générale tou-
chant la notion du mouvement.

Il est clair qu’au lieu de maintenir en place le corps (x), et de
mouvoir librement le systéme des repéres, en employant pour
le tétraedre fondamental un ensemble variable de corps concou-
rants, on aurait pu tout aussi bien laisser les repéres immobiles
et déplacer le corps. Les formules de transformation (19) ou
(21), font alors correspondre & tout corps (x) de I'espace un
autre corps (z') du méme espace. La loi de cette correspon-
dance est manifeste.

Soient deux tétraedres fondamentaux S et S', lesquels, en
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général, ne sont pas superposables; soit C un corps quelconque.
Associons & ce corps un nouveau corps C’, tel que ses distances
aux quatre sommets de S, soient respectivement égales aux
distances qui séparent C des quatre sommets de S'.

L’opération qui transforme C en C’ définit, au sens propre
du terme, un mouvement complexe de ’espace ; on aura le
groupe des mouvements, en donnant au tétraédre S toutes les
situations possibles, dont le nombre est oo

A maintes reprises nous avons déja swnale ces mouvements
complexes, en relevant par exemple le fait, désormais évident,
que la vrille ne posséde pas de propriété invariante au regard
des co'* mouvements complexes possibles. Elle ne peut avoir de
semblable propriété que relativement & certains sous-groupes
du groupe général des mouvements; I'un de ces sous-groupes
est celui des mouvements réels, dont nous dirons deux mots
plus bas.

XII. CAs PARTICULIERS

D’aprés ’ensemble des considérations qui précedent, il est
clair que la Géométrie des corps solides est un systéme maxi-
mal qui contient en soi, & titre de simples cas particuliers, d’un
coté, la Géométrie réglée, de I'autre, la Géométrie ordinaire,
ponctuelle ou tangentielle. Envisagées de ce point de vue géné-
ral, les différences qui séparent les diverses Géométries eucli-
diennes et non-euclidiennes cessent d’étre fondamentales : toute
Géométrie, quelle qu’en soit 1’espéce, rentre dans le cadre de
la Géométrie riemannienne des corps solides.

1= Cas (Espace réglé). Prenons d’abord les corps solides
appartenant a un seul et unique vrilloide. La Géométrie réglée
sera I’histoire de leurs relations mutuelles. Nous savons en effet
associer une droite déterminée & tout corps du vrilloide, et cette
correspondance est congruente, ¢’est-a-dire qu’elle conserve les
distances. .

Si le pole du vrilloide sert de corps initial P, pour le systéme
de référence, z, = 0 sera 1’équation du vrilloide, et pour qu'un
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mouvement complexe transforme le vrilloide en lui-méme, il
faut qu’il laisse inaltérée cette équation. Les formules géné-
rales de la transformation (19) se réduisent alors au type

2 = a,,%, + ATy + a1y . (k=1,2,3) (22)

Cette transformation ternaire est orthogonale, mais les coef-
ficients en sont généralement complexes. Géométriquement par-
lant, la transformation s’exécutera en laissant fixe le corps
initial P,, au pole du vrilloide, et en déplacant & volonté le
triedre T dans 1’espace. Les six parameétres que contiennent les
formules (22) correspondent aux six degrés de liberté d’un
pareil mouvement.

Sous réserve du fait que les éléments de la Géométrie réglée
sont complexes et que les mouvements qu’exécutent ces élé-
ments sont aussi complexes, la Géométrie réglée se réduit a la
Planimétrie riemannienne. Ainsi, la droite imaginaire du plan
elliptique s’extériorise dans le réel sous une double forme: elle
apparait & volonté sous I’aspect d’une vrille contenue dans un
vrilloide déterminé ; ou encore sous celui d’une recticongruence
contenant toutes les normales & 1’axe de la vrille précédente.

2me Cas (Espace ponctuel). Prenons toujours comme systéme
de référence un tétraédre fondamental P, (k = 0, 1, 2, 3), ou,
sous la forme dissymétrique, un corps initial P, et un triedre T.

Si, par rapport & ces reperes, un corps solide C posséde 4
coordonnées réelles, c’est que ses distances aux quatre corps P,
sont également réelles. Dans ces conditions, le corps C rencon-
tre (*) les 4 sommets du tétraedre ; ¢’est donc I’un des =o* corps
obtenus en faisant pirouetter P, autour de 1’origine du triedre
T. L’ensemble de ces o* corps définit done une stéréocouronne
(%) a centre fixe; I'espace ponctuel riemannien n’est que I’'image
d’une semblable stéréocouronne de corps solides.

) En Géométrie hyperbolique deux corps sont concourants quand la
torsion qui améne l'un sur I'autre se réduit soit & une simple rotation,
soit & un simple glissement. Il est aisé de montrer que si C rencontre les
4 corps Cy,, les 4 torsions correspondantes sont nécessairement des rota-

tions.
?) Yoir ma Note, Archives, t. XLI, p. 93 et suivantes.
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Tout changement des repéres revient & échanger le tétragdre
P, contre un autre P, . Pour qu’un corps solide, réel au regard
du premier tétraédre, le reste pour le second, il faut que les 4
sommets P, appartiennent, eux aussi, a la stéréocouronne.

On voit que le mouvement de ’espace ordinaire, & six degrés
de liberté, s’obtient par le moyen d’une double opération ; elle
consiste & faire tourner, indépendamment I'un de 'autre, le
corps initial P, et le triedre T autour du centre de la stéréocou-
ronne. Chacune de ces rotations est équivalente & une certaine
transformation orthogonale réelle ; ce sont les deux transforma-
tions ainsi déterminées que 1’on rencontre, qnand on cherche,
comme nous l’avons fait ci-dessus & 1’occasion du probléme
des vrilles, & définir 'influence du mouvement sur les coor-
données pliickériennes de la droite. La décomposition en deux
transformations orthogonales distinctes du sous-groupe adjoint
au groupe du mouvement recoit ici une interprétation tres
claire. : &

Les corps contenus dans une stéréocouronne déterminée sont
imaginaires par rapport & une autre stéréocouronne. Malgré
cela, il est clair que toute stéréocouronne & centre peut servir
de représentant & ’espace ponctuel elliptique ; il existe autant
de ces images différentes qu’il y a de stéréocouronnes & centre,
4 savoir oof, _

Chacune de ces représentations est congruente, en ce sens que
la distance de deux corps de la stéréocouronne, soit la moitié de
I’angle que 1’'un des corps doit décrire pour venir s’appliquer
sur 'autre, est égale a la distance des points auxquels les corps
servent d’images. De 1a les conséquences suivantes.

Prenons deux corps de la stéréocouronne; les éléments réels
de la vrille qui les joint forment une couronne; c’est donc la
couronne qui correspond & la droite joignant dans l'espace
ponctuel les points figuratifs de ces deux corps. De méme,
les éléments réels du vrilloide qui passe par trois corps donnés
de la stéréocouronne dessinent, dans I’espace ponctuel, la figure
connue sous le nom de couronoide. C’est donc le couronoide qui
est I'image, dans la Géométrie des corps solides, du plan de la
Géométrie ponctuelle. Et voild mise en évidence la cause qui
fait que les relations entre solides, couronnes et eouronoides,
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sont exactement les mémes que celles qui existent dans 1’espace
ponctuel entre les points, les droites et les plans.

Le couronoide s’obtient en renversant un corps fixe autour
de tous les axes issus d’un certain centre O; ¢’est I’ensemble
des corps communs au vrilloide (P,), qui admet pour son pdle le
corps initial, et & une stéréocouronne de centre Q. Voila pour-
quoi la planimétrie, contenue comme cas particulier dans la
stéréométrie, peut étre envisagée a volonté comme la Géométrie
~ des corps d’un méme couronoide, ou sous 1’aspect de la Géomé-
trie des rayons issus d’'un méme centre fixe.

3= Cas (Espace hyperbolique). Les diverses Géométries qui
viennent d’étre examinées ont toutes le caractére riemannien.
Mais, sans sortir du domaine de la Géométrie des corps solides,
il est aisé d’y découvrir une interprétation concréte des proprié-
tés de la Géométrie non-euclidienne hyperbolique. Il suffit de
considérer, pour les étudier & part dans leurs relations mutuel-
les, les o<® corps d’une stéréocouronne @ plan fixe.

Xs

r.-f.ﬁs

Choisissons pour ce plan celui des x, «,, et engendrons la
stéréocouronne en faisant tourner le corps initial P, autour de
tous les axes qui sont contenus dans le plan. (Fig. 15.)

Si L désigne I'un d’entre eux, et % I’amplitude de la rotation,
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les composantes L, et L, sont réelles, tandis que L, = ¢ 1", est
purement imaginaire. Apres la rotation, les coordonnées du
corps P, sont devenues

Ly = 5, = cosu , x, = § = L,/ sinu ,

P

Ty = & = L, sinu x, = 15 = 1L," sinwu ;

les trois premiéres sont réelles, la quatrieme est purement ima-
ginaire. Entre les composantes réelles de ces diverses quantités
existe la relation

2+ & - &P =1

TS

&2
S0 -+

qui caractérise un plan dans [’espace hyperbolique. Donc, @
chaque.corps de la stéréocouronne d plan fixe correspond, d'une
maniére déterminée, un plan de Uespace de Lobatchewsky.

D’apres sa construction, il est clair que la dite correspon-
dance implique conservation des relations métriques, de sorte
que la distance de deux corps de la siéréocouronne est égale @
Uangle des dewx plans qui représentent Uun et Uautre corps.

Il est clair que la stéréocouronne étant donnée, le systéme de
référence admet ~o° positions. En effet, o< est le nombre de
positions du corps initial dans la stéréocouronne; une fois fixée
la situation de P, le plan OX, OX, est défini; c’est celui dela
stéréocouronne, mais le systeme d’axes peut étre encore choisi,
dans le dit plan, de o=* maniéres distinctes. Toutes ces varian-
tes dans la détermination du systéme de référence correspon-
dent aux mouvements de 1’espace hyperbolique, qui sont aussi
sextuplement infinis. '

En Géométrie euclidienne les seuls systémes de oo® corps
deux & deux concourants sont les deux stéréocouronnes. Mais
dans la Géométrie hyperboliquey il s’en rencontre de différentes
especes. Par exemple, un de ces nouveaux systemes est celui qui
correspond par dualité & la stéréocouronne & plan fixe. Il est
formé de tous les corps obtenus en faisant glisser un solide
déterminé, de toutes les maniéres possibles, le long des droites
d’une méme gerbe. On reconnaitra facilement que ce sont les
corps appartenant 4 une semblable stéréocouronne qui corres-
pondent aux points de l’espace hyperbolique et peuvent leur
servir d’images.
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Et il ne serait pas plus difficile de définir de nouvelles espéces
de stéréocouronnes pouvant servir a représenter les points d’un
espace non-euclidien, out la forme fondamentale serait, par
exemple, la suivante :

2 2 2
22 — 1% — ;® + xs? .

Je termine en rappelant que les résultats précédents ne
seraient pas sensiblement modifiés si 1’espace feuilleté qui sert
de lieu & nos corps solides était du type euclidien, et non pas
hyperbolique. En adoptant cette hypothése, toute naturelle, on
trouverait, et de différentes maniéres, dans la Géométrie eucli-
dienne des corps solides, un mode d’interprétation concréte
pour les diverses géométries non-euclidiennes.

Mais j’arréterai ici ces quelques observations sur une théorie
qui appellerait de longs développements et sur laquelle j’aurai
peut-étre & revenir quelque jour en raison de son intérét.

(A suivie).
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