Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 41 (1916)

Artikel: Formation de bases pyridiques par condensation de cétones et

d'amides

Autor: Piotet, Amé / Stehelin, Pierre

DOI: https://doi.org/10.5169/seals-742655

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

FORMATION DE BASES PYRIDIQUES

PAR CONDENSATION DE CÉTONES ET D'AMIDES

PAR

Amé PICTET et Pierre STEHELIN

On sait que l'acétone, soumise à l'action déshydratante de l'acide sulfurique, se convertit en mésitylène:

Cette réaction est l'une des plus anciennes (Kane 1837) et en même temps l'une des plus simples qui aient permis de passer d'un composé de la série grasse à un composé de la série aromatique.

Etant donnée la grande analogie qui existe entre le noyau du benzène et celui de la pyridine, il nous a paru intéressant de rechercher si cette même réaction se prêterait à l'obtention de bases pyridiques. Il semblait suffire pour cela de remplacer l'une des trois molécules de cétone par une molécule d'amide.

Partant de cette idée, nous avons cherché à réaliser la condensation de 2 mol. d'acétone et de 1 mol. d'acétamide, conformément à l'équation suivante:

L'expérience nous a montré que cette condensation ne peut être effectuée à l'aide de déshydratants (H_2SO_4 , P_2O_5 , $ZnCl_2$), car ceux-ci exercent tout d'abord leur action sur l'amide, et la transforment en nitrile. Mais on arrive au résultat voulu par l'emploi de la chaleur seule. En chauffant à 250°, en tubes scellés, un mélange d'acétamide et d'acétone, nous avons obtenu une base de la formule $C_8H_{11}N$, possédant toutes les propriétés de la triméthylpyridine symétrique de Hantzsch (¹). Le rendement est, il est vrai, très faible (2-3 °/₀) et de beaucoup inférieur à celui que fournit la synthèse du mésitylène (13 °/₀), mais cette différence s'explique par le peu de stabilité de l'acétamide, comparée à celle de l'acétone.

Par une réaction toute semblable, la benzamide (1 mol.) et l'acétophénone (2 mol.), chauffées ensemble à 275° nous ont donné un corps de la formule $C_{28}H_{17}N$, que nous avons trouvé identique à la triphénylpyridine symétrique, obtenue en 1898 par Newmann (²) en faisant agir le chlorhydrate d'hydroxylamine sur la benzylidène-diacétophénone. Ici le rendement est un peu meilleur (9 %0):

Nous avons cherché ensuite à remplacer, dans les réactions précédentes, les cétones par des aldéhydes, et tout d'abord à réaliser une synthèse de la *pyridine* elle-même par condensation de la formamide et de l'aldéhyde acétique:

Mais malgré de nombreux essais, faits dans les conditions les plus variées, avec ou sans addition de déshydratants, et à différentes températures, nous n'avons pas réussi à constater la formation de pyridine; non plus qu'en remplaçant l'aldéhyde acétique par la paraldéhyde, l'acétal ou la trithioparaldéhyde,

¹⁾ Annalen, 215, 32.

²) *Id.*, **302**, **24**0.

et la formamide par la thioformamide. En fait de produits basiques, nous n'avons obtenu que l'aldéhydine de Baeyer et Ador (¹), qui se forme, comme on le sait, par l'action de l'ammoniaque sur l'aldéhyde acétique. Il y a donc, avant toute condensation, décomposition totale de la formamide.

En revanche, nous avons pu obtenir une petite quantité d'α-picoline en chauffant à 280° un mélange de paraldéhyde et d'acétamide:

Ladenburg (²) a montré que l'a-picoline s'unit à l'aldéhyde acétique pour former l'allylpyridine; il aurait donc pu se faire que cette dernière base eût pris naissance dans les conditions de notre expérience. Etant donné qu'elle peut être transformée par réduction en conicine, cela aurait conduit à une nouvelle synthèse, extrêmement simple, de l'alcaloïde de la ciguë. Mais nous ne sommes pas parvenus à reconnaître avec certitude la présence de l'allylpyridine dans notre produit de condensation.

Voici les détails de nos expériences:

Acétone et acétamide

15 gr. d'acétone (2 mol.) et 8 gr. d'acétamide (1 mol.) sont chauffés en tube scellé à 250° pendant 8 h. Le contenu du tube est ensuite additionné d'acide chlorhydrique et soumis à la distillation aux vapeurs d'eau pour chasser l'acétone qui n'est pas entrée en réaction; puis on alcalinise par la soude et on continue la distillation. Le distillat basique est neutralisé par l'acide chlorhydrique, évaporé à sec et décomposé par la soude. Une couche huileuse se sépare; on la sèche sur la potasse et on la soumet à la distillation fractionnée; la plus grande partie passe

¹⁾ Annalen, 155, 294.

²) Id., 247, 26.

à 166-168° (non corrigé). Le point d'ébullition de la triméthylpyridine symétrique est 170° (corrigé).

Analyses:

0.1641 gr. de subst. ont donné 0.4757 gr. CO₂ et 0.1397 gr. H₂O
0.1523 » 15.3 cm³ d'azote à 17° et 728 mm.

Trouvé;	Calculé pour C ₈ H ₁₁ N:			
$C = 79.06^{-0}/o$	$C = 79.27^{-0}/o$			
H = 9.52	H = 9.16			
N = 11.68	N = 11.57			

Le *chloraurate* de notre base forme des aiguilles jaunes fusibles à 112°. Le point de fusion du chloraurate de triméthylpyridine est situé, selon Hantzch (*l. c.*), à 112-113°.

Le *picrate* cristallise en longues aiguilles jaunes et brillantes, peu solubles dans l'eau, facilement solubles dans l'alcool. Il fond à 155°. Le point de fusion du picrate de triméthylpyridine est situé, selon Mohler (¹), à 155-156°.

Acétophénone et benzamide

20 gr. d'acétophénone (2 mol.) et 10 gr. de benzamide (1 mol.) sont chauffés en tube scellé à 275° pendant 6 heures. Le produit est extrait par l'acide chlorhydrique concentré et chaud; par refroidissement il se dépose de beaux prismes incolores, fusibles à 137°. Ceux-ci ne constituent point un chlorhydrate, mais la triphénylpyridine elle-même, dont le point de fusion est situé, selon Newmann (l. c.), à 137,5°.

Analyses:

1. 0.1060 gr. de subst. ont donné 0.3502 gr. CO_2 et 0.0549 gr. H_2O 2. 0.1208 » 5.1 cm³ d'azote à 17°5 et 738 mm.

Trouvé:	Calculé pour C23H17N:			
$C = 90.10^{-0}/o$	$C = 89.96^{-0}/o$			
H = 5.79	H = 5.58			
N = 4.72	N = 4.56			

¹⁾ Berichte, **21**, 1011.

La triphénylpyridine symétrique est peu soluble dans l'alcool et insoluble dans l'eau. Elle se dissout dans l'acide sulfurique concentré avec une fluorescence bleue. Elle est presque entièrement dépourvue de propriétés basiques et cristallise, ainsi qu'il a été dit plus haut, sans altération dans l'acide chlorhydrique.

Nous avons pu cependant en préparer un *picrate*. Ce sel prend naissance lorsqu'on mélange les solutions alcooliques chaudes de ses deux constituants, et se dépose par refroidissement en belles aiguilles jaune citron, qui peuvent atteindre 1 cm. de longueur; leur point de fusion est situé à 192,5°.

Micro-analyse:

31.26 mgr. de subst. ont donné 73.95 mgr. GO_2 et 11.27 mgr. $\mathrm{H}_2\mathrm{O}$

Trouvé:	Calculé pour $C_{23}H_{17}N \cdot C_6H_2(OH)(NO_2)_3$:				
$C = 64.52^{-0}/o$	$C = 64.90^{-0}/o$				
H = 4 03	H = 3.76				

Paraldéhyde et acétamide

Un mélange de paraldéhyde (2 mol.) et d'acétamide (3 mol.) est chauffé en tube scellé à 280° pendant 10 heures. On opère, pour l'extraction des produits basiques, comme il a été dit à propos de la triméthylpyridine. A côté de beaucoup d'aldéhydine (point d'ébullition 173-174°), nous avons recueilli une seconde base, bouillant à 128-130°; c'est le point d'ébullition de l'α-picoline. Mais celle-ci est en quantité si faible que nous n'avons pu la caractériser que par l'analyse de son picrate, ainsi que par la comparaison de ses sels avec ceux de l'α-picoline pure de Kahlbaum.

					Notre base	α-Picoline	Mélange
Point	d'ébullition	•			$128 \text{-} 130^{\circ}$	129°	· -
*	de fusion du picrate		١,	•	163°	164°	163-164°
>>	» du chloraurate				180-182°	180-182°	180-182°

Le picrate cristallise dans l'alcool en très fines aiguilles jaune d'or; il est peu soluble dans l'eau, plus facilement dans l'alcool.

Analyse:

 $0.0993~\rm gr.$ de subst. ont donné $0.1624~\rm gr.$ $\rm CO_2$ et $0.0325~\rm gr.$ $\rm H_2O$

Trouvé:

Calculé pour $C_6H_7N \cdot C_6H_2(OH)(NO_2)_3$:

 $C = 44.60 \, ^{\circ}/_{\circ}$

 $C = 44.70 \, ^{\circ}/_{\circ}$

H = 3.66

H = 3.13

Nous n'avons pu trouver dans notre produit de condensation ni γ -picoline, ni α -allylpyridine.

Genève, Laboratoire de chimie organique de l'Université.