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ENTROPIE GENERIQUE

ET MELANGES GAZEUX

PAR

Edouard GUILLAUME

§ 1. DEUX HYPOTHESES ARBITRAIRES DE LA THERMODYNAMIQUE

Lorsque I’on compare les résultats généralement admis de la -
Thermodynamique classique, avec les conséquences de la Théo-
rie statistique, on se heurte & maintes difficultés.

Dans le présent travail, nous nous proposons d’en examiner
deux. .

Nous avons montré (*) que ’entropie statistique d'une masse
gazeuse monoatomique M, comprenant N molécules de masse
m, et occupant un volume V & la température T, avait pour
expression :

I

8
(1) — H=N logg + glog T + log (mk)a} y

&

ol k est la constante universelle d’énergie moléculaire ; v est le
domaine élémentaire de volume et ¢ le domaine élémentaire
d’énergie. Pour avoir en mémoire leur signification mathéma-
tique, il suffit, par exemple, de se rappeler que toutes les molé-
cules qui sont dans un méme domaine v sont censées avoir des
coordonnées identiques ; on peut dire que ces domaines ou
cases jouent un role analogue aux éléments infiniment petits
dans le calcul différentiel et intégral (*).

) Ed. Guillaume, la Théorie des Probabilités et la Physique, Archives,
1915, t. XXXIX, p. 316.

#) Quant & une signification physique simple, voir Archives, ce numéro,
p. 487.

Ancuives, t. XLI. — Juin 1916. 31
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Comparons la formule ci-dessus a ’expression donnée dans
les traités de Thermodynamique. On a:
(M (R ey
(2) S—#(J logM+cv10gT+so),
ol s, est une constante arbitraire ne dépendant pas de M; p,
est la « masse moléculaire ». Or:

M = Nm ; u=N,m; B = kN, ; e, =13,
d’out
k vV 3 J
3) S—-jN{logﬁ+§10gT+(Eso—-logm)}.
On voit immediatement que (1) ne pourra étre identifié a (3)
que si I’on pose par exemple :

(4) Vv = 'U()N 3

oll v, est une constante aussi petite que ’on veut, puisqu’on
pourra toujours reléguer log v, dans la constante arbitraire.

Boltzmann, et avec lui la plupart des cinétistes, tournent la
difficulté en prenant d’emblée le volume spécifique, ce qui revient
a faire implicitement une hypothese analogue & (4).

M. Planck, par contre, introduit explicitement une relation
semblable. Prenant le domaine élémentaire total, il pose

3
4") g = = i
(2m)?

et le fait ainsi varier en outre avec la masse m; g est supposé
indépendant de N et de m .

Il 'avait déduite de certaines conséquences du postulat ther-
mique de Nernst, suivant lequel 1’entropie d’un corps liquide
ou solide au zéro absolu, est nulle. Il en concluait que les
domaines élémentaires devaient avoir une signification chimi-
que, analogue 2 une sphere d’'influence (Wirkungssphire).
MM. O. Sackur et H. Tetrode ont méme cru déduire des cons-
tantes expérimentales des diftérents gaz, notamment de 1’argon
et du mercure, que g était égal a h°, ou & est le quantum d’ac-
tion de la théorie du rayonnement de Planck. Si cette relation
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devait se vérifier d’une fagon générale, dit alors M. Planck, on
aurait acquis un résultat d’une importance fondamentale pour
toute la Thermodynamique et la théorie de Vaffinité(*).

Or, il faut ’avouer, il est extrémement difficile, pour ne pas
dire impossible, de donner une interprétation phyanue satis-
faisante aux relations (4) et (4).

Et I’on est conduit & chercher autre chose.

La relation (1) est, comme nous I’avons montré ailleurs, une
conséquence rigoureuse des Principes généraux de la Théorie
statistique; cette théorie ne cherche qu’a donner une interpre-
tation statistique du Principe de I’équivalence et du Principe
de Carnot ; il serait des lors trés grave que les relations (2) ou
(3) fussent une conséquence rigoureuse de ces seuls Principes,
parce que, dans ce cas, leur interprétation statistique serait liée
a I’équation (4) ou (4') ou d’autres analogues, dont la significa-
tion est fort obscure. Heureusement, il n'en est rien; et il est
aisé de montrer que les relations (2) ou (3) contiennent une
hypothése particuliere, tout a fait étrangere aux deux Principes.

En effet, en Thermodynamique, I’entropie est définie, en uni-
tés thermiques, par:

auv av
(5) 8 = __ich?i__ .

D’autre part, I’équation d’état des gaz parfaits peut s’écrire

sous la forme universelle :

(6) ~© pV =ENT.

En appelant ¢ la chaleur moléculaire & volume constant, et
€n posant:

¥ %
C= 5+,
’ kNA.
on a:
@) dU = oNdT ,

de sorte qu’en substituant dans (5) et en intégrant, on trouve :

\ k
(8) S=3N(logv+clogT)+f(N,m)-

') M. Planck, Vorlesungen wuber die Theorie der Warmestrahlung et
Die gegenwdirtige Bedeutung der Quantenhypothese fur die kinetische
Gastheorte, conférence tenue & Goéttingue en 1913.
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Dans cette relation, (N, m) désigne la constante d’intégra-
tion-qui, en effet, peut dépendre de N et de m.

Nous voyons donc que Uexpression de Uentropie d'un gaz, telle
qu’elle résulte des deux seuls Principes de la Thermodynamique
et de Uéquation d’'état, peut parfaitement étre identifice a U’entro-
pie statistique sans faire appel d une hypothese spéciale sur les
domarines élémentaires.

Par contre, pour retrouver 1’expression habituelle (2) ou (3),
il faut faire une hypothése supplémentaire, & savoir poser pour
la fonction arbitraire :

(9) f(N_,m)=§;N(%su—logm)—NlogNa,

D’ou vient-il donc que, dans tous les traités de Thermodyna-
mique, on donne 1’expression (2) et non 1’expression (8)? Sim-
plement du fait que ’on part toujours, non d’un volume quel-
conque V, mais du volume spécifique v. L’équation différentielle
s’accorde de'un et de 1’autre, puisque:

' av _av
v VvV

(10)
mais, lorsqu’on intégre, on est conduit &4 log v au lieu de log V,
ce qui change la fonction arbitraire d’intégration et introduit

explicitementl\—‘; au lieu de V.

Tant qu’on opére sur la méme masse d’un gaz, ou sur deux
masses différentes d’un méme gaz, la fonction arbitraire d’in-
tégration ne joue aucun role, et nous pouvons la choisir comme
bon nous semble. Par contre, cette fonction prendra une impor-
tance tres grande dans les mélanges gazeux, et il est piquant
de constater que la belle théorie de la dissociation, les théories
de Gibbs et de Planck, la loi d’action de masse, reposent toutes
sur deux hypotheses arbitraires :

‘10 La fonction f(N, m) a la forme (9).

20 L’entropie d’'un mélange de plusieurs gaz est égale a la
somme des entropies qu’aurait chacun d’eux s'il occupait seul
le volume entier du mélange & la méme température.

Ces théories ne sont donc nullement des conséquences pures
des deux Principes et de I’équation d’état.
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Nous allons montrer que la théorie statistique peut rendre
compte trés facilement de 1’expression généralement adoptée
pour I’entropie d’un mélange gazeux, si I’on introduit, comme
le propose Gibbs dans ce but, les ensembles génériques.

§ 2. ENTROPIE GENERIQUE

Résumons briévement les résultats que nous avons dévelop-
pés dans notre travail sur la Théorie des Probabilités et la Phy-
sique. -

Considérons un systéme physique dont I’énergie

E(xly Lzy oy Xy A1y Ogy )

est fonction d’'unnombreimmense » de paramétres x, ,, , ..., &, ,
et de coordonnées extérieures a,, a,, ..., Supposées invariables
qui définissent la position d’ensemble du systéme par rapport
aux corps extérieurs, tels, par exemple, que le cylindre et le
piston pour un gaz. Un état du systéme, c¢’est-a-dire un groupe
de valeurs des n parametres; pourra étre représenté par un
seul point de I’hyperespace & » dimensions. Par suite de I’agi-
tation thermique, ete., ces valeurs changent constamment, et
cela d’une maniére continue. Pour obtenir la discontinuité
nécessaire & I’application du calcul des probabilités, nous ne
considérerons pas le point représentatif & deux instants infini-
ment rapprochés ¢ et ¢ + d¢f, mais & deux instants séparés par
un intervalle fini ¢, qui peut étre grand, comme le montre la
lenteur des phénomeénes de diffusion. Nous pourrons alors dire
que les états aux instants ¢ et ¢ -t sont & peu preés indépen-
dants 'un de 1’autre, parce que la trajectoire du point repré-
sentatif dans ’espace & n dimensions est tres compliquée ; cette
complication résulte directement de ce que u est tres grand ;
¢’est un postulat qui sert de base & la théorie que nous esquis-
sons. Nous pointerons alors, a intervalles fixes ¢, un grand nom-
bre de fois n,, la position du point représentatif ; nous obtien-
drons ainsi un ensemble de n, points formant une certaine

-
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répartition R; nous recommencerons cette opération un grand
nombre de fois, et nous obtiendrons une série de répartitions :

Rn R21 R:-H

dont nous déterminerons la moyenne. Pour que celle-ci existe,
il faut et il suffit que 1’énergie du systeme oscille autour d’une
valeur moyenne E. Nous dirons que le systéme est quasi-con-
servatif. De plus, pour définir complétement les répartitions,
nous imaginerons I’hyperespace divisé en un treés grand nombre
de domaines élémentaires ou cases, si petits, que 1’on puisse dire
que tous les points représentatifs qui se trouvent dans une
méme case, représentent le systéme dans des états identiques.
Sl yan(z,,,, ..., «,) points dans la case de coordonnées
&y Ty, « L, , la probabilité pour que le systéme soit dans1’état
considéré, sera par conséquent:

n(x Loy 0.4 X,
(11) J’Jz (15 2 )

n,

Il est dés lors facile de montrer que la répartition moyenne,
— qui est en méme temps la plus probable, — compatible avec

I'énergie E(x,, z,, ..., x,; a,, a,, ...), est définie par la pro-
babilité:

. L —E
(12) 5 =€ : ’

ol ¢ et 6 sont deux constantes; 6 est lié & la température abso-
lue par:
(18) 6 = kT .

A cet effet, on introduit ’entropre statistique par I’expression :

(14) —H=-Yplogyp,
D

ot la somme est étendue au domaine ® comprenant toutes les
cases; c’est le domaine & I'intérieur duquel varient les parame-
tres . On a alors le théoreme fondamental (*):

') Loc. cit., p. 219.
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Pour la répartition moyenne, la valeur de U'entropie statistique
est maximum et 1’on peut écrire :

(= Hlpay = — H = — logp = — logp ,
(15) =

avec p=ce

Dans cette théorie, nous supposons que tous les parameétres
Zyy Xy y oo T, S€ différencient les uns des autres. Or, tel n’est
pas le cas dans les systémes envisagés, composés d’un tres
grand nombre de molécules identiques. Pour ces systemes et leur
réaction avec d’autres systemes, peu importe que ce soient les
molécules m ou m’ qui aient les coordonnées x;, y,, 2,, les
 vitesses ,, ¥/, , 2,, etc., puisque m ne se distingue en rien de m’.
Nous pouvons deés lors considérer comme identiques tous les
états obtenus simplement en permutant entre elles les molé-
cules identiques. Nous dirons que tous ces états forment un
seul état générique, et les premiers seront désignés sous le nom
d’états spécifiques. Chaque case représente donc un état spéci-
fique, et & un état générique correspondra un groupe de cases.
La probabilité pour que le systéme soit dans un certain état
générique sera donc égale & la probabilité pour qu’il soit dans
une certaine case multiplié par le nombre de toutes les cases
considérées comme identiques & la premiére. S’il y a v mole-
cules d’especes diftférentes, il y aura autant de cases identiques
qu’on pourra faire de permutations entre les molécules de mé-
me espéce, de sorte que la probabilité d’'un état générique
sera :

(16) B=DNIN!...N!yp,

o N, , N,, ... N désignent respectivement le nombre de mo-
lécules de chaque espéce ; leur somme N est supposée invariable.

Nous définirons 'entropie générique § par la valeur moyenne,
prise négativement sur tout le domaine D, du logarithme de la
probabilité générique P:

— ) PlogP
D
(17) —©="—m———~=—21910g53-
pIRL D

D
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On a done :
(18) 9 =H+ logN,! Nt ... N !

et en remplacant par la formule de Stirling, puisque les N,
sont tous supposés tres grands :

(19) § = H + 2 N, log N, + % Zlong — N + log (2m)? .
1 1

La seconde somme sera toujours tres petite par rapport a la
premiere, de sorte que, physiquement, elle ne jouera pas un
role appréciable.

§ 3. ENTROPIE GENERIQUE D’UN MELANGE GAZEUX

Nous avons montré (*) que I’entropie spécifique d’un systéme
mécanique quelconque & n degrés de liberté, dont 1’énergie
potentielle est U(q, , q,,...q,, a,, @, ...) avait pour expression:

Uy n

(20) —H= log{e > e—i) ("—r&e—q)2 :

) /

q

=|dq]

ou la Y doit &tre étendue au domaine total D, de variation des
parametres ¢. Dans le cas des gaz, 1’énergie est considérée
comme entiérement cinétique; 1I’énergie potentielle, qui n’a de
valeur appréciable qu’au moment des chocs, peut étre négligée,
vu que le temps pendant lequel deux molécules sont trés voisi-
nes est extrémement petit comparé au temps de libre parcours
moyen. Par contre, il y a une énergie potentielle due & I’action
des gaz sur les parois du récipient qui les contient. La fonction U
ne déepend done que des coordonnées extérieures; elle devient
g
égale 3 U et on peut dés lors sortir le facteur e ' du signe Y. ;
chaque terme de cette somme se réduit & 'unité; devant étre

1) Loec. ett., p. 313.
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étendue au domaine P, tout entier, elle ne sera autre chose que
le nombre K, de cases en lesquelles ce domaine aura été subdi-
visé. Comme nous I’avons dit ailleurs, ce résultat trouve son
_interprétation simple dans le fait que les points représentatifs
sont uniformément distribués dans D,.

Pour K , nous ne devons pas prendre la valeur vraie, mais
une certaine valeur apparente, afin de rester’en concordance
avec I’équation d’état des gaz parfaits. En effet, la relation (6)
est universelle et ne dépend pas de ’atomicité de la molécule;
la pression p est calculée en envisageant la molécule comme un
édifice & trois degrés de liberté, et seule, dans ce calcul, la
vitesse du centre de gravité de I’édifice est prise en considéra-
tion. On admet donc que I’énergie autour du centre de gravité
nejoue aucun role dans la pression, celle-ci ne résultant que de
I’énergie de translation. Dans cette hypothése simple, toutes
les molécules peuvent étre traitées comme des molécules iden-
tiques & 3 libertés. Supposons, pour simplifier, les cases cubi-
ques dans I’espace ordinaire; leur cote sera [/ vetla case cor-

respondante de I’hyperespace pour tout le gaz sera (|/ v)
N,
v ; raisonnant sur V de la méme maniere, on voit que :

VN
=)

(21) — H =NlogV — Nlogv + log (mﬁ)

de sorte que:

n

Appelons {,, {,, ... [, le nombre des libertés de chaque espece
de molécules. On a: '

Posons () :

') Nous laissons ici de coté les difficultés touchant les relations entre
les chaleurs spécifiques et le nombre de libertés.
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on trouve alors facilement 3 I’aide de (19):

—5:iN,-IOg%+10gT2Nicf"%ilogNi
. 1 ' £ 1

n mek e -
+ 5 log (—s—) + N log (5) + log (2m)2 .

(22)

Telle est ’expression générale de 'entropie d'un systéme de v
gaz différents occupant le volume V d la température T. C’est de
cette expression, moins la troisiéme somme, que 1’on part pour
établir la théorie de la dissociation et la loi d’action de masse,
et le terme — Y N, log N, y joue un role prépondérant. Quant
a la troisieme somme, il est aisé de voir qu’elle ne donnera, lors
de la variation du potentiel thermodynamique, que des varia-
tions negligeables par rapport & celles que donne la premiére
somme. En effet, celle-ci fournit des termes de la forme:

— ON,(1 + logN) ,
tandis que ’autre donne des termes de la forme :

ON

1)

N
t

comme N, est immense, ces derniéres variations seront insen-
sibles par rapport aux premieéres.

Nous pouvons donc, en définitive, énoncer le résultat :

La lot d’action de masse est une conséquence immédiate de U en-
tropie générique, laquelle s’impose lorsque le systéme comporte des
molécules de méme espéce en trés grand nombre; cette loi W’ expri-
me alors pas autre chose que la permutabilité des molécules iden-
tiques.

Dans le cas d’un seul gaz, on a:

s v 1 NI ek
- @‘ — N‘_ logﬁ: + ClAN', log T — 5 ].Og Ni + —2—- log (_8—)

(23) )
+ N, log (5) + log (2::)5 ’
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conforme, aux termes trés petits pres, a ’expression habituel-
lement employée, et 1’on voit que :

(24) 5 = Z @,- ?
autrement dit. '

L’entropie d'un mélange gazeux est égale a la somme des entro-
pies qu' aurait chacun des gaz s'il occupait seul le volume total a
la méme température.

C’est la regle usuelle, énoncée plus haut.

§ 4. PARADOXE DE G1BBS

Enfin, le paradoxe de Gibbs trouve une explication simple
dans les considérations précédentes.

Envisageons, en effet, une masse gazeuse de N molécules. Si
toutes les molécules sont identiques, on peut toutes les permu-
ter ; la probabilité spécifique est alors multipliée par N !. Si les
molécules sont la moitié d’une espéce, la moitié d’une autre, il
faut multiplier cette méme probabilité par gl gl . Il 'y a done

une discontinuité finie lorsqu’on passe du premier cas au second.

Prenons le cas simple, habituellement considéré, de deux gaz
différents, mais dont les molécules ont le méme nombre de
libertés. Si ’un des gaz occupe seul le volume V 4 la tempéra-
ture T, D’entropie est exprimée par la formule (23), dans
laquelle nous supposerons 'indice 4 supprimé. Si les deux gaz

occupent ensemble ce volume, la formule (24) nous donne: .
= N, V, N 1, N, IN K\, N ' 1
Di42=2 (glogﬁ toeglog T — QIOg% + 575 log (E:f) + 510g§ + log (2n)=) ,

2
d’ol1 I’on tire, & ’aide de (23):

o = 1 1
Di4a=9H + Nlog2 --§10gN — élog&n.

Comme les deux derniers termes sont tres petits, on retrouve
bien la différence finie N log 2 calculée en Thermodynamique.
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Ainsi, brievement, le paradoxe de G1ibbs résulte également de
la permutabilité des molécules de méme espéce.

Une remarque encore : M. Planck voit dans le paradoxe de
Gibbs la preuve de la discontinuité des propriétés chimiques.
Voici comment, selon nous, il convient d’envisager la question.
Les molécules de 1’espéce 1 peuvent étre infiniment peu diffé-
rentes des molécules de ’espéce 2, de fagon qu’a 1’échelle molé-
culaire, la discontinuité soit aussi petite qu’on veut; on pren-
dra, par exemple, m, égale & m et m, égale & m - dm. Mais, 2
notre échelle, ol cela a un sens de parler d’entropie, la disconti-
nuité est proportionnelle & N, comme on vient de le voir; elle
sera donc toujours finie puisque N est toujours trés grand. Le
discontinu est done une question d’échelle.

CONCLUSIONS

1. En résumé, la Théorie statistique est en parfait accord
avec les résultats geénéraux tirés des deux Principes, quant &
I’entropie des gaz.

2. Les hypothéses particulieres faites sur I’entropie des gaz
dans la Thermodynamique trouvent leur explication immédiate
dans la Théorie statistique.

3. Cette explication ne fait pas intervenir les domaines élé-
mentaires, qui restent indéterminés.

En terminant, je me fais un réel plaisir d’associer & ce tra-
vail le nom de mon collegue et ami, M. J. Sauter, dont I’esprit
pénétrant m’a été si souvent précieux.

Berne, mai 1916.
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