A new defined medium for cultivating "Leishmania" promastigotes

Autor(en): Melo, Norma Maria / Peixoto de Azevedo, H. / Roitman, I.

Objekttyp: Article

Zeitschrift: Acta Tropica

Band (Jahr): 42 (1985)

Heft 2

Persistenter Link: http://doi.org/10.5169/seals-313462

Nutzungsbedingungen

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch
A new defined medium for cultivating *Leishmania* promastigotes*

Norma Maria Melo¹, H. Peixoto de Azevedo², I. Roitman², W. Mayrink¹

Summary

A chemically defined medium to grow the promastigotes of 19 stocks of *Leishmania* is described. The medium was developed by making qualitative and quantitative modifications of the medium AR-103 devised for *Trypanosoma cruzi*. The new medium, designated as MD-29, can be used in studies on the nutritional requirements of promastigotes.

Key words: Leishmania; cultivation of *Leishmania* promastigotes; chemically defined culture medium.

Introduction

The complexity of the media used to cultivate members of the genus *Leishmania* has complicated the feasibility of comparative studies on nutritional requirements, metabolism and other characteristics of these organisms, especially those isolated from mammals. The cultivation of *Leishmania* in a defined medium opens up new possibilities to determine biochemical and immunological characteristics.

A chemically defined medium (AR-130) for the cultivation of *Trypanosoma cruzi* was developed (Azevedo and Roitman, 1983); quantitative and qualitative (ATP and AMP were omitted and iron nitrate was added) modification of this medium led to the design of a chemically defined medium, herein designated as MD-29 in which several strains of *Leishmania* can be cultivated.

* This work is part of a Thesis for the Doctor Degree in Parasitology, by the senior author.

Correspondence: Prof. Isaac Roitman, Departamento de Biologia Celular, Universidade de Brasília, 70910 Brasilia DF, Brazil.
Table 1. Defined medium MD-29 for Leishmania cultivation

<table>
<thead>
<tr>
<th>Components</th>
<th>mg/l</th>
<th>Components</th>
<th>mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fructose</td>
<td>2000</td>
<td>D Choline</td>
<td>12</td>
</tr>
<tr>
<td>A Na₃PO₄·12H₂O</td>
<td>5000</td>
<td>E L-Alanine</td>
<td>285</td>
</tr>
<tr>
<td>β-glycerophosphate Na salt</td>
<td>20000</td>
<td>L-Arginine</td>
<td>550</td>
</tr>
<tr>
<td>Sodium acetate 3H₂O</td>
<td>540</td>
<td>L-Aspartic acid</td>
<td>100</td>
</tr>
<tr>
<td>NaCl</td>
<td>4000</td>
<td>L-Cystein HCl</td>
<td>100</td>
</tr>
<tr>
<td>KCl</td>
<td>400</td>
<td>L-Glutamic acid</td>
<td>1045</td>
</tr>
<tr>
<td>EDTA Na salt</td>
<td>80</td>
<td>L-Glycine</td>
<td>350</td>
</tr>
<tr>
<td>Trisodium citrate 2H₂O</td>
<td>600</td>
<td>L-Histidine</td>
<td>350</td>
</tr>
<tr>
<td>Fe(NO₃)₃·9H₂O</td>
<td>0.0000005</td>
<td>L-Isoleucine</td>
<td>260</td>
</tr>
<tr>
<td>Sodium succinate 6H₂O</td>
<td>270</td>
<td>L-Leucine</td>
<td>760</td>
</tr>
<tr>
<td>B Adenosine</td>
<td>20</td>
<td>L-Lysine HCl</td>
<td>750</td>
</tr>
<tr>
<td>Adenine HCl</td>
<td>50</td>
<td>L-Methionine</td>
<td>175</td>
</tr>
<tr>
<td>Guanosine</td>
<td>20</td>
<td>L-Phenylalanine</td>
<td>373</td>
</tr>
<tr>
<td>Guanine HCl</td>
<td>1.5</td>
<td>L-Proline</td>
<td>780</td>
</tr>
<tr>
<td>Hypoxantine</td>
<td>1.5</td>
<td>L-Hydroxiproline</td>
<td>50</td>
</tr>
<tr>
<td>Xantine</td>
<td>1.5</td>
<td>L-Serine</td>
<td>285</td>
</tr>
<tr>
<td>C Folic acid</td>
<td>30</td>
<td>L-Threonine</td>
<td>270</td>
</tr>
<tr>
<td>D-α tocopherol succinate</td>
<td>4</td>
<td>L-Tryptophan</td>
<td>140</td>
</tr>
<tr>
<td>DL-αlipoic acid</td>
<td>0.4</td>
<td>L-Tyrosine etil ester</td>
<td>360</td>
</tr>
<tr>
<td>Nicotinic acid</td>
<td>0.125</td>
<td>L-Valine</td>
<td>485</td>
</tr>
<tr>
<td>Nicotinamide</td>
<td>10</td>
<td>Double distilled H₂O to make up to 1000 ml pH adjusted to 7.5 with 1n HCl</td>
<td></td>
</tr>
<tr>
<td>D-Biotin</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riboflavin</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inositol</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Ca pantothenate</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyridoxine HCl</td>
<td>0.125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyridoxal</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiamine</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: All ingredients were obtained from Sigma Chemical Company. A, B, C, and E were added from a dry mix stored at -4 °C. D was added from a frozen stock solution. The medium was Seitz filtered before an autoclaved solution of haemin (F) was added aseptically. Fructose was added to the completely prepared medium.

Material and Methods

The composition of medium MD-29 is given in Table 1. Nineteen strains of Leishmania have been cultivated in medium MD-29. Cultures in the chemically defined medium were initiated with amastigotes from cutaneous lesions (BH6, BH121, BH32, BH132, BH216, BH224, LV78, PH8) and the spleen of experimentally infected hamster (BH46), and from promastigotes grown at 23 °C in LIT (liver infusion-tryptose) medium (Camargo, 1964) (BH46, BH121, BH32, BH132, BH216, BH224, LV78, PH8, BH49, LV9, LV4, LV414, LRC-L7, LRC-L121, LRC-L134, LRC-L259, LUMP1482 and LUMP1701).

A fine pointed Pasteur pipette was used to aspirate material from infected tissue. In order to isolate parasites from cutaneous lesions, the animal was anesthetized with chloroform, hair on the
Table 2. Leishmania strains cultivated in defined medium MD-29

<table>
<thead>
<tr>
<th>Designation and source</th>
<th>Species</th>
<th>Place of isolation</th>
<th>Number of passages</th>
<th>Mean growth* (×10^7/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH6 (Man)</td>
<td>L. mexicana mexicana</td>
<td>Brazil</td>
<td>187</td>
<td>4.0</td>
</tr>
<tr>
<td>BH46 (Man)</td>
<td>L. donovani</td>
<td>Brazil</td>
<td>208</td>
<td>4.5</td>
</tr>
<tr>
<td>BH49 (Man)</td>
<td>L. mexicana</td>
<td>Brazil</td>
<td>152</td>
<td>3.2</td>
</tr>
<tr>
<td>BH121 (Man)</td>
<td>L. mexicana</td>
<td>Brazil</td>
<td>218</td>
<td>4.3</td>
</tr>
<tr>
<td>LV9 (Man)</td>
<td>L. donovani</td>
<td>Ethiopia</td>
<td>106</td>
<td>3.6</td>
</tr>
<tr>
<td>LV4 (Nyctomys sumichrasti)</td>
<td>L. mexicana mexicana</td>
<td>Belize</td>
<td>106</td>
<td>6.0</td>
</tr>
<tr>
<td>LV78 (Proechimys sp.)</td>
<td>L. mexicana amazonensis</td>
<td>Brazil</td>
<td>106</td>
<td>4.0</td>
</tr>
<tr>
<td>LV414 (Tarentolae sp.)</td>
<td>L. tarentolae</td>
<td>Africa</td>
<td>106</td>
<td>5.3</td>
</tr>
<tr>
<td>PH8 (Luizomyra flaviscutellata)</td>
<td>L. mexicana amazonensis</td>
<td>Brazil</td>
<td>126</td>
<td>3.5</td>
</tr>
<tr>
<td>BH32 (Akodon cursor)</td>
<td>Leishmania sp.</td>
<td>Brazil</td>
<td>59</td>
<td>6.1</td>
</tr>
<tr>
<td>BH132 (Proechimys dimidiatus)</td>
<td>Leishmania sp.</td>
<td>Brazil</td>
<td>55</td>
<td>3.7</td>
</tr>
<tr>
<td>BH216 (Akodon cursor)</td>
<td>Leishmania sp.</td>
<td>Brazil</td>
<td>55</td>
<td>3.3</td>
</tr>
<tr>
<td>BH224 (Proechimys dimidiatus)</td>
<td>Leishmania sp.</td>
<td>Brazil</td>
<td>55</td>
<td>3.0</td>
</tr>
<tr>
<td>LRC-L7 (Man)</td>
<td>L. tropica</td>
<td>India</td>
<td>50</td>
<td>3.2</td>
</tr>
<tr>
<td>LRC-L121 (Agama stellio)</td>
<td>L. agamae</td>
<td>Israel</td>
<td>52</td>
<td>3.5</td>
</tr>
<tr>
<td>LRC-L134 (Man)</td>
<td>L. aethiopica</td>
<td>Ethiopia</td>
<td>50</td>
<td>3.1</td>
</tr>
<tr>
<td>LRC-L259 (Man)</td>
<td>L. mexicana amazonensis</td>
<td>Brazil</td>
<td>53</td>
<td>3.4</td>
</tr>
<tr>
<td>LUMP1482 (Coendu rothschildi)</td>
<td>L. hertigi hertigi</td>
<td>Panama</td>
<td>51</td>
<td>3.1</td>
</tr>
<tr>
<td>LUMP1701 (Coendu sp.)</td>
<td>L. hertigi deanei</td>
<td>Brazil</td>
<td>51</td>
<td>3.2</td>
</tr>
</tbody>
</table>

*Final cell density after 9 days incubation at 25°C
BH = Belo Horizonte
LRC = Leishmaniasis Research Centre – Jerusalem
LV = Liverpool
LUMP = London University Medical Protozoology
PH8 = Obtained from Ralph Lainson – Instituto Evandro Chagas – Belém

The border of the lesion was removed, and the skin surface was sterilized with merthiolate before inserting the pipette into the margin of the lesion. When parasites were to be isolated from the spleen, the animal was killed and the abdomen opened to expose the organ. When promastigotes were used to initiate cultures, 1 ml was withdrawn from 48-h LIT cultures containing 2–3×10^7 flagellates/ml, and added to the defined medium in 20×150 mm screwcap test tubes to give a final volume of 5 ml.

Subcultures were made at 9-day intervals by transferring 1 ml of the culture to 5 ml of the chemically defined medium. Cultures were incubated at 25°C and growth was assessed qualitatively and quantitatively by observations on the appearance and mobility of promastigotes and by assessing their numbers by means of a Coulter Counter, model ZB.

Results

A summary of the results obtained with 19 strains of Leishmania is given in Table 2. The defined medium supports the growth of strains isolated from both vertebrate and invertebrate host, with a yield of more than 3×10^7 promastigotes/ml in a 9-day period.
Discussion

Medium MD-29 can be used for mass produce promastigotes for analytical biochemical studies. In fact, the medium was used already for the production of promastigotes for studies on surface polysaccharides (Fiorini et al., 1981), nutritional requirements (Melo et al., 1982) and other important aspects of in vitro development as the maintenance of the pathogenicity of *Leishmania* (Melo, 1983).

As far as we know, this is the first time that strains of *L. tropica*, *L. aethiopica*, *L. hertigi*, *L. mexicana* and New World *L. donovani* have been cultivated in a defined medium. The defined media previously described (Trager, 1957; Steiger and Steiger, 1976, 1977; Berens and Marr, 1978) were used to culture only *L. tarentolae*, Old World *L. donovani* and *L. braziliensis*. Medium RE III of Steiger and Steiger (1977) did not support the development of *L. tropica*, *L. mexicana texana* or *L. hertigi* (Fish et al., 1978).

Leishmania species seem to be fastidious in their nutritional requirements since many strains of *Leishmania* are not able to grow in a defined medium – containing 10 amino acids, 7 vitamins, purine and hemin – (Roitman et al., 1972), that supports the growth of many lower trypanosomatids (unpublished results).

The availability of a defined medium contributes to an improved understanding of the biology of *Leishmania*. It helps to develop rational methods of chemotherapy; provides a source of cells free of extraneous antigenic material; and may lead to a better knowledge of the genetics of the parasites. The knowledge of the nutritional requirements by using the present medium will allow to design a minimal medium for *Leishmania*. Studies on antigens for immunodiagnosis derived from promastigotes, cultured in our defined medium, are in progress.

Acknowledgments

This investigation received financial support from the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases and Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasil.

