Zeitschrift: Acta Tropica

Herausgeber: Schweizerisches Tropeninstitut (Basel)

Band: 21 (1964)

Heft: 1

Artikel: Zur Oekologie des Zooplanktons der Lagune Ebrié (Elfenbeinküste)

Autor: Rahm, U.

DOI: https://doi.org/10.5169/seals-311180

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Zur Oekologie des Zooplanktons der Lagune Ebrié (Elfenbeinküste)*

Von U. RAHM

Einleitung

Die Studie über das Zooplankton der Lagune Ebrié der Elfenbeinküste wurde während eines dreijährigen Aufenthaltes an der Schweizerischen Forschungsstation in Adiopodoumé in den Jahren 1953 und 1954 durchgeführt. Verschiedene Umstände verzögerten die Publikation dieser Arbeit. Das Ziel der Untersuchungen war, einen ersten, summarischen Überblick über die Zooplankton-Arten und deren Verbreitung in der Lagune zu gewinnen. Besonders interessant war die Frage, in welchem Masse das Brackwasser der Lagune einen Einfluß auf die Planktonarten und deren Vorkommen ausübt. Es ist selbstverständlich, daß viele Probleme der Verteilung, Wanderung und Entwicklung der Formen noch zu beantworten bleiben, und es kristallisieren sich mehrere Fragen heraus, die ein eingehenderes Studium rechtfertigen würden.

Wir sind folgenden Personen zu großem Dank verpflichtet, die uns mit Rat und Tat beistanden oder unser Material bestimmten: P. Rancurel, IFAN Abidjan; J. Tournier, IFAN Abidjan; E. de Sousa e Silva, Lissabon; G. Trégouboff, Villefranche; K. Lindberg, Lund; P. de Beauchamp, Paris; E. Wimmer, Abidjan; V. Brehm, Lunz; J. Picard, Marseille; J. P. Harding, London; R. Margalef, Barcelona; D. Grobe, Basel; J. Jaag, Zürich; Eaux et Forêts, Abidjan; Service Météorologique, Abidjan. Zu ganz besonderem Dank bin ich Herrn Prof. R. Geigy, Basel, verpflichtet, der mich zu dieser Arbeit anregte und mir in freundlicher Weise das Arbeitsmaterial zur Verfügung stellte.

Folgende Publikationen, die das von uns gesammelte Material betreffen, sind bereits erschienen: Picard, J. & Rahm, U. (1954), DE BEAUCHAMP, P. (1955), RAHM, U. (1955), RAHM, U. (1956), RAHM, U. (1956), LINDBERG, K. (1957).

Topographie der Lagune:

Die Lagune Ebrié erstreckt sich entlang der Küste des Golfes von Guinea (zwischen 10° und 20° nördlicher Breite und 3°45′ und 4°50′ westlicher Länge). Sie ist vom Meere, je nach Ort, durch einen 1—8 km breiten Dünengürtel getrennt. Die buchtenreiche Lagune ist 118 km lang und 2—8 km breit.

Im östlichen Teil ist die Lagune Ebrié mit dem Fluß Comoe in Verbindung und durch dessen Mündung mit dem Meere. Den westlichen Lagunenteil verbindet schon seit einigen Jahrzehnten der Canal d'Asagny mit der Lagune von Grand Lahou und damit ebenfalls mit dem Meere. Seit der Eröffnung des Canal de Vridi im Jahre 1951 dringt auch durch diesen Kanal Meerwasser in die Lagune ein.

Die Lagune ist nur wenig tief. Die tiefste Stelle befindet sich in der Gegend von Abidjan beim Canal de Vridi. Auf der Übersichtskarte in Abb. 1 sind einige Messungen der Lagunentiefe eingetragen (in Decimeter), die der von TOURNIER (1951) publizierten Karte entnommen sind.

^{*} Meinem verehrten Lehrer Herrn Professor Rudolf Geigy zum 60. Geburtstag gewidmet.

¹ Acta Tropica 21, 1, 1964

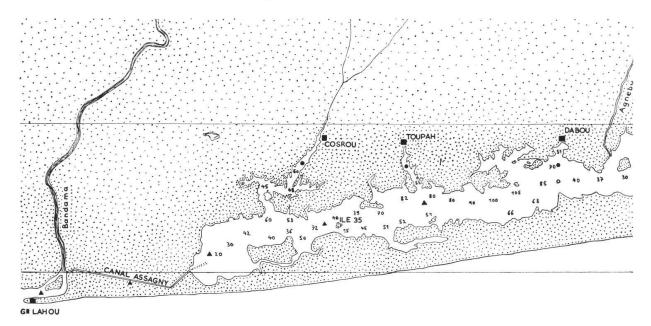
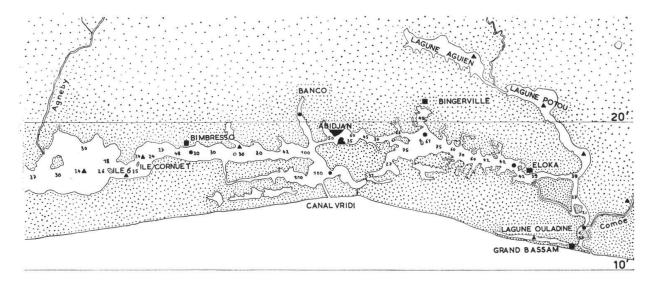


Abb. 1. Lagune Ebrié. Zahlen in der Lagune = Lagunentiefe in Dezimetern.


Die Ufervegetation variiert je nach Ort. Im östlichen Teil säumen da und dort große Mangrovenbestände das Ufer. Im Westen, besonders in der Bucht von Cosrou, ist das Ufer mit schönen Pandanusbeständen bewachsen. An anderen Stellen wiederum finden sich Ufergürtel mit Echinochloa stagnina. In einigen Buchten bedecken Teppiche von Nymphaea und Pistia stratiotes das Wasser. Felsige Uferpartien sind selten.

Im Osten steht die Lagune Ebrié, außer mit dem Fluß Comoe, mit den Lagunen Potou und Aquien, sowie mit der Lagune Ouladiné, in Verbindung. Im mittleren Lagunenabschnitt mündet der Fluß Agneby in der Gegend von Dabou in die Lagune. An anderen Stellen, wie z. B. in der Bucht von Cosrou, bei Mopoyem und im Banco, ergießen sich Flüßchen und Bäche in die Lagune.

Weitere Angaben über die Lagune Ebrié finden sich unter anderem in einer Arbeit von ROUGERIE (1950).

Methode:

Als Fortbewegungsmittel auf der Lagune dienten uns Pirogen der Eingeborenen, ein Schlauchboot und gelegentlich ein Motorboot. Die Planktonproben wurden in der Regel einmal pro Monat an den auf der Karte in Abb. 1 eingezeichneten Fangorten entnommen, Kontrollfänge an anderen Stellen wurden in regelmäßigen Abständen durchgeführt. Für die Schließnetzfänge bedienten wir uns zweier normaler Planktonnetze von 30 cm, resp. 50 cm Durchmesser. Die quantitativen Proben entnahmen wir mit einer 1-Liter-Schöpfflasche (Modell Friedinger, Luzern), wobei aus jeder Tiefe zwei Proben à 1 Liter ausfiltriert wurden (Tiefen: 0; 0,5; 1; 1,5; 2; 4; 6 Meter). Alle quantitativen Angaben in dieser Publikation sind jedoch auf 1 Liter Wasser berechnet. Die Proben wurden am Fangort in Formol fixiert, sofern sie nicht lebend im Labor untersucht wurden. Die Wassertemperatur errechneten wir aus dem Mittelwert von drei identischen Thermometern. Diese wurden gleichzeitig, unmittelbar nach der Entnahme einer 1-Liter-Probe, in die Schöpfflasche eingetaucht. Die Sichttiefe wurde mit einer Secci-Scheibe von 30 cm Durchmesser ermittelt. Den Salzgehalt bestimmten wir mit der Kaliumbichromat-Methode.

Lufttemperatur und Niederschlagsmenge

Sowohl die Lufttemperatur als auch die Niederschlagsmenge üben einen großen Einfluß auf die Lagune aus. In Abb. 2 sind die Monatsmittelwerte der Lufttemperatur dargestellt, wie sie in Abidjan für die Jahre 1953 und 1954 gemessen wurden (Maxima; Minima und Mittel $\frac{\max + \min}{2}$). In Abb. 3 sind die Niederschlagsmengen von Abidjan der Jahre 1953 und 1954 graphisch dargestellt. Man unterscheidet an der Basse Côte d'Ivoire vier «Jahreszeiten»: eine große Trockenzeit (1. Dezember bis 15. Mai); eine große Regenzeit (15. Mai bis 15. Juli); eine kleine Trockenzeit (15. Juli bis 1. Oktober) und eine kleine Regenzeit (1. Oktober bis 1. Dezember). Die größten Niederschlagsmengen fallen dementsprechend im Juni, sie waren besonders groß im Jahre 1954.

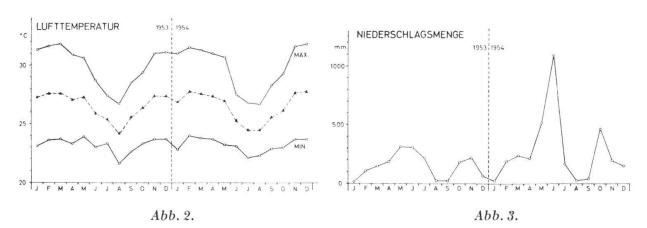


Abb. 2. Lufttemperatur bei Abidjan 1953 und 1954 nach Angaben der Meteorologischen Station.

Abb. 3. Niederschlagsmenge bei Abidjan 1953 und 1954 nach Angaben der Meteorologischen Station.

Die meteorologischen Einflüsse bestimmen die Wassertemperatur, die Sichttiefe und den Salzgehalt der Lagune, sei es direkt oder indirekt, und sie sind deshalb von großer Wichtigkeit für die Interpretation der nachfolgenden Ergebnisse.

1. Die Wassertemperatur

Der Umstand, daß die Lagune in einem tropischen Gebiet liegt und daß sie eine relativ geringe Tiefe aufweist, bedingt, daß die Wassertemperaturen relativ hoch sind und daß die Temperaturunterschiede in den einzelnen Tiefen relativ klein ausfallen.

In Abb. 4 sind die in 1 Meter Tiefe gemessenen Temperaturen der Fangorte Bimbresso, Banco, Dabou, Toupah und Cosrou von 1953 dargestellt. Ähnliche Resultate ergaben sich 1954; in Abb. 5 sind die Wassertemperaturen aus 1 Meter Tiefe der Fangorte Bimbresso, Dabou, Toupah, Cosrou und Eloka eingetragen Ein Vergleich der Ergebnisse der beiden Jahre der Fangorte Bimbres-

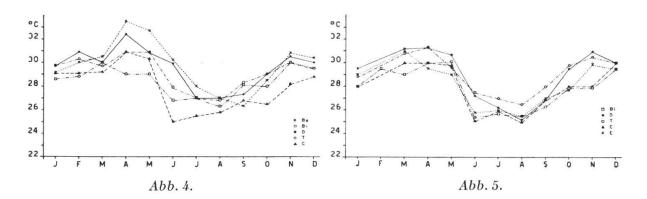


Abb. 4. Wassertemperatur in 1 m Tiefe (1953) der Fangorte: Ba = Banco; Bi = Bimbresso; D = Dabou; T = Toupah; C = Cosrou.

Abb. 5. Wassertemperatur in 1 m Tiefe (1954) der Fangorte: Bi = Bimbresso; D = Dabou; T = Toupah; C = Cosrou; E = Eloka.

so, Dabou, Toupah und Cosrou zeigt, daß grundsätzlich kein Unterschied besteht für 1953 und 1954. In Abb. 6 sind die Temperaturen vom Fangort Abidjan aus 0 m, 2 m und 4 m wiedergegeben (1954). Abb. 7 gibt die Wassertemperaturen aus 0 m, 2 m und 4 m vom Fangort Banco (1954) wieder. Aus den Darstellungen geht hervor, daß die Wassertemperaturen an allen Fangorten grundsätzlich den gleichen Schwankungen unterworfen sind. Im Laufe der großen Trockenheit steigt die Wassertemperatur an und fällt mit Eintritt der großen Regenzeit stark ab. Der erneute Wassertemperaturanstieg ist im Vergleich zum Beginn der kleinen Trok-

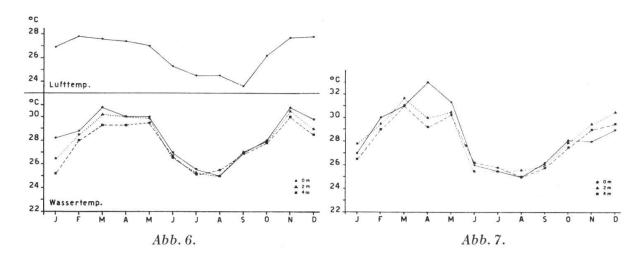


Abb. 6. Wassertemperatur bei Abidjan in 0 m, 2 m, 4 m Tiefe im Jahre 1954. Obere Kurve: Lufttemperatur bei Abidjan (Mittelwert).

Abb. 7. Wassertemperatur bei Banco in 0 m, 2 m, 4 m Tiefe im Jahre 1954.

kenzeit um etwa einen Monat verschoben. Die kleine Regenzeit hat an manchen Fangorten keinen, an anderen nur einen geringen Einfluß auf die Lagunentemperatur. Sie nahm z. B. 1953 bei Bimbresso und bei Cosrou im September-Oktober leicht ab (Beginn der Regenzeit). Ende Regenzeit ist beinahe an allen Fangorten ein leichtes Sinken der Wassertemperatur festzustellen (November-Dezember). Die folgende Tabelle gibt einen Überblick über die Wassertemperaturschwankungen an drei verschiedenen Fangorten im Jahre 1953:

Bimbresso:

cm	Jan.	Febr.	März	April	Mai	Juni	Juli	Aug.	Sept.	Okt.	Nov.	Dez
0	29,0	29,0	30,1	29,6	28,8	27,0	27,0	26,5	29,0	28,0	30,2	29,4
50	28,8	29,0	30,0	29,1	29,0	26,8	27,0	26,3	28,3	28,0	30,2	29,1
100	28,6	28,8	30,0	29,0	29,0	26,8	27,0	26,3	28,1	28,0	30,0	29,5
150	28,6	28,6	30,0	28,9	29,0	26,8	27,0	26,3	28,1	28,0	30,0	29,5
200	28,6	28,5	28,5	28,9	28,9	26,5	27,0	26,2	28,0	28,0	30,0	29,4

Dabou:

cm	Jan.	Febr.	März	April	Mai	Juni	Juli	Aug.	Sept.	Okt.	Nov.	Dez.
0	29,9	31,1	30,2	32,5	31,0	30,0	27,1	27,0	27,5	29,2	31,0	30,0
50	29,9	31,0	30,0	32,4	30,8	29,9	27,0	27,0	27,3	29,0	30,5	30,0
100	29,7	30,9	30,0	32,4	30,8	29,9	27,0	27,0	27,3	29,0	30,5	30,0
150	29,6	30,8	30,0	32,1	30,0	29,9	27,0	26,9	27,3	29,0	30,5	30,0
200	29,5	30,8	29,9	32,1	29,9	29,8	26,8	26,9	27,2	29,0	30,5	30,0
400									27,0			

cm	Jan.	Febr.	März	April	Mai	Juni	Juli	Aug.	Sept.	Okt.	Nov.	Dez.
0	29,0	29,2	29,5	31,3	30,6	26,9	25,7	26,0	27,0	26,9	29,2	29,5
50	29,1	29,1	29,4	31,1	30,6	25,5	25,7	25,9	27,0	26,9	28,5	29,1
100	29,0	29,1	29,2	30,9	30,3	25,0	25,5	25,8	26,8	26,5	28,2	28,8
150	28,9	28,9	29,1	30,5	30,2	24,9	25,5	25,5	26,8	25,9	27,2	28,5
200	989	28 5	28.0	28.0	20.1	94.0	25.3	25.0	26.6	25.0	26.1	28.0

Cosrou:

Die höchsten Wassertemperaturen wurden in der Bucht vom Banco gemessen, die niedrigsten erwartungsgemäß bei Abidjan in der Nähe des Canal de Vridi.

Interessant ist, daß Collignon (1955) in der Bucht von Pointe Noire ganz ähnliche Wassertemperaturschwankungen im Verlaufe eines Jahres festgestellt hat. Zufällig handelt es sich ebenfalls um die Jahre 1953 und 1954. Zum Vergleich mit unseren Daten geben wir Abb. 10 und 11 seiner Arbeit wieder.

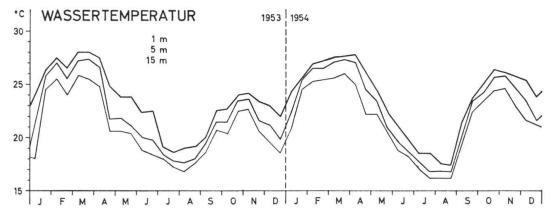


Abb. 8. Wassertemperatur in der Bucht von Pointe Noire in 1 m, 5 m, 15 m Tiefe in den Jahren 1953 und 1954 (nach J. COLLIGNON, 1955).

2. Die Sichttiefe

Auch bei der Sichttiefe läßt sich ein Einfluß der Trocken- und Regenzeiten feststellen, obwohl dieser weniger deutlich ist als bei der Wassertemperatur und dem Salzgehalt. Zu bemerken ist, daß die Kurvenbilder der Sichttiefe der beiden Fangorte Toupah und Dabou stark von denjenigen der übrigen Fangorte abweichen. In den Abb. 9 und 10 sind die Resultate der Sichttiefen-Messungen einiger Fangorte für 1953 und 1954 graphisch dargestellt.

Die beiden Orte Abidjan und Banco, welche nahe beim Canal de Vridi liegen, haben eine ähnlich verlaufende Sichttiefenkurve. Das Maximum liegt bei 140 cm während der Monate Dezember bis März, d. h. während der großen Trockenzeit. Mit dem Einbruch der großen Regenzeit vermindert sich die Sichttiefe. Sie er-

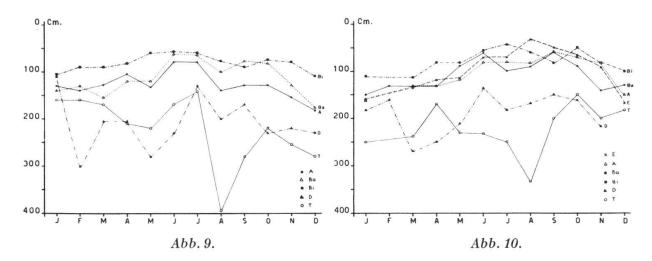


Abb. 9. Sichttiefe (1953) der Fangorte: A = Abidjan; Ba = Banco; Bi = Bimbresso; D = Dabou; T = Toupah.

Abb. 10. Sichttiefe (1954) der Fangorte: E = Eloka; A = Abidjan; Ba = Banco; Bi = Bimbresso; D = Dabou; T = Toupah.

reichte 1953 ihr Minimum im Juni-Juli mit 60 cm, im Jahre 1954 im September mit 60 cm. Eine minime Zunahme der Sichttiefe während der kleinen Trockenzeit ist 1953 für die Orte Abidjan und Banco festzustellen. Das unregelmäßige Kurvenbild von 1954 ist auf die besonders starken Regenfälle im Juni zurückzuführen. Bei Bimbresso ist die Sichttiefe im allgemeinen etwas geringer. Bei Eloka, im östlichen Lagunenteil, nimmt die Sichttiefe bis in den August kontinuierlich ab, d. h. es ist kein Einfluß der kleinen Trockenzeit zu verzeichnen. Dies ist darauf zurückzuführen, daß während dieser Periode ein Großteil des schmutzigen Hochwassers des Flusses Comoe via Lagune durch den Canal de Vridi ins Meer fließt.

Einen ganz anderen Kurvenverlauf finden wir bei Dabou und Toupah, wo die Sichttiefe wesentlich größer ist als an den übrigen Fangorten. An diesen beiden Stellen im westlichen Lagunenteil wird die Sichttiefe weder von den Gezeiten noch vom Hochwasser von Flüssen beeinflußt. Immerhin ist die Kurve von Dabou ebenfalls mehr oder weniger dem Einfluß der «Jahreszeiten» unterworfen, mit einem Minimum von 150 cm im Juni 1954 resp. Juli 1953. Paradox scheint die große Sichttiefe bei Toupah im August beider Jahre, zu einem Zeitpunkt also, an welchem sämtliche anderen Stationen nur geringe Sichttiefe zu verzeichnen haben. Dies findet darin seine Erklärung, daß erstens die Bucht von Toupah von der übrigen Lagune ziemlich isoliert ist, und zweitens darin, daß am Ende der Bucht zwei Quellbäche einmünden. Diese Quellbäche werden vom Grundwasser gespeist, und die maximale Wassermenge führen sie erst etwas nach der großen

Regenzeit, d.h. im August. Dieses klare Wasser und die Tiefe der Bucht von Toupah erklären die große Sichttiefe.

Sicher hat die Dichte des Phytoplanktons ebenfalls einen Einfluß auf die Sichttiefe.

Das Lagunenwasser ist während der Trockenzeit schieferfarbig, während der Regenzeiten bräunlich oder grünlich-braun (außer bei Toupah).

3. Der Salzgehalt

An jedem Fangort in der Lagune wurden regelmäßig Proben aus 0 m, 2 m und 4 m analysiert. Wie erwähnt, ist die Lagune Ebrié an drei Stellen direkt oder indirekt mit dem Meere verbunden: Canal de Vridi bei Abidjan, Canal d'Asagny am westlichen Lagunenende und die Mündung des Flusses Comoe am östlichen Lagunenende. Theoretisch kann demnach an drei Stellen Salz- respektive Brackwasser in die Lagune eindringen. Aus unseren Messungen geht hervor, daß weitaus am meisten Salzwasser durch den Canal de Vridi eindringt und daß die Comoe-Mündung nur relativ wenig Salzwasser in jenen Lagunenteil einströmen läßt. Der Canal d'Asagny ist für die Salzkonzentration in der Lagune nicht von Bedeutung. Der Salzgehalt der Lagune wird grundlegend durch die Trocken- und Regenzeiten bestimmt. Im folgenden seien der Salzgehalt und seine Schwankungen an den Fangstellen charakterisiert.

Abidjan: Der Verlauf der Salzkonzentrationskurven für die beiden Jahre stimmt im großen und ganzen gut überein, und die beiden graphischen Darstellungen lassen sich ohne weiteres vergleichen (Abb. 11).

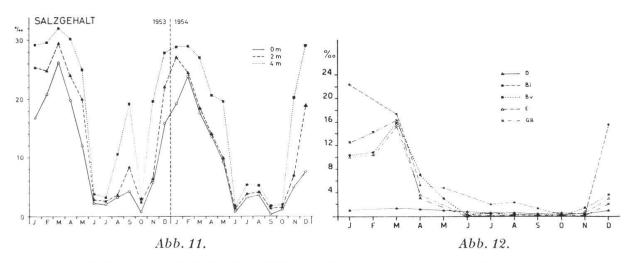


Abb. 11. Salzgehalt bei Abidjan 1953 und 1954. ——: 0 m; ---: 2 m;: 4 m. Abb. 12. Salzgehalt in 2 m Tiefe im Jahre 1954 an den Fangorten: D = Dabou; Bi = Bimbresso; Bv = Bingerville; E = Eloka; GB = Grand-Bassam.

Im Jahre 1953 nahm der Salzgehalt vom Januar bis im März leicht zu, um dann in den folgenden drei Monaten sehr stark abzufallen. So wurde im Juni und Juli nur noch ein Salzgehalt von 2-4 ‰ gemessen. Bis im September ist dann ein leichter Anstieg zu verzeichnen, worauf im Oktober die Cl-Ionen-Konzentration wieder abnimmt. In den Monaten November und Dezember steigt der Salzgehalt wiederum an. 1954 wurde die höchste Konzentration bereits im Februar erreicht und sie nahm dann in den folgenden Monaten bis im Juni kontinuierlich ab. Eine leichte Erhöhung des Salzgehaltes war im Juli und August zu verzeichnen, und im September und Oktober wurde die gleich niedere Konzentration gemessen wie im Juni. Wie 1953, so stieg auch 1954 der Salzgehalt im November und Dezember wieder stark an. Aus der Darstellung in Abb. 11 geht auch hervor, daß der Salzgehalt mit der Lagunentiefe zunimmt. Vergleicht man die Niederschlagsmengen von Abidjan (Abb. 3) mit dem Salzgehalt dieses Fangortes, so ist eine deutliche Korrelation festzustellen. Die Regenfälle im Mai und Juni bewirken den rapiden Abfall der Salzkonzentration, der sich bis in den Juli auswirkt. Der eigentliche Effekt der Regenfälle wird erst einen Monat später spürbar, so daß die Salzgehaltkurve gegenüber der Kurve der Niederschläge um etwa einen Monat verschoben ist. Im Jahre 1954 wirkten sich die höheren Niederschläge im Februar und März bereits auf den Salzgehalt aus, und die abnorm hohen Regenmengen im Juni dieses Jahres hatten eine so starke Aussüßung der Lagune zur Folge, daß der Salzgehalt bis im Oktober sehr niedrig blieb. Selbst in den tieferen Zonen der Lagune war keine wesentlich höhere Salzkonzentration zu verzeichnen, obwohl im August und September wenig Regen fiel.

Banco: Ein ganz ähnliches Bild wie bei Abidjan ergibt sich auch für den Salzkonzentrationswechsel an der Fangstelle Banco. Auch hier ist eine deutliche Korrelation zwischen den Niederschlägen und der Salzkonzentration vorhanden. Die beiden Fangorte Abidjan und Banco sind nicht weit voneinander entfernt und befinden sich in der Nähe des Canal de Vridi.

Bimbresso: In der Lagune bei Bimbresso ist der Salzgehalt im Februar am größten und fällt dann kontinuierlich ab bis im Juli. Im September, d. h. in der kleinen Trockenzeit, ist auch in diesem Lagunenabschnitt eine gewisse Zunahme des Salzgehaltes zu beobachten. Die schwächste Cl-Ionen-Konzentration wurde im Oktober und November gemessen. Ähnliche Verhältnisse fanden wir im Jahre 1954.

Bingerville, Eloka, Grand-Bassam: Die Salzkonzentrationskurven dieser Stellen sind praktisch identisch. Vom Monat März an fällt der Salzgehalt stark ab und erreicht im Juni beinahe den

0-Wert, welcher bis im November erhalten bleibt. Der ganze Lagunenteil östlich von Abidjan wird sehr stark vom Hochwasser des Flusses Comoe beeinflußt. Beobachtungen und Messungen haben gezeigt (ausgeführt durch die IFAN), daß seit der Eröffnung des Canal de Vridi ein Großteil des Hochwassers dieses Flusses während und nach der Regenzeit nicht durch das Mündungsgebiet bei Grand-Bassam, sondern via Lagune Ebrié durch den Canal de Vridi abfließt. Durch die enormen Wassermassen des Comoe wird dieser östliche Lagunenteil vollkommen mit Süßwasser überflutet. Nur während der großen Trockenzeit vermag durch die Comoe-Mündung eine geringe Menge Salzwasser in die Lagune einzudringen.

Dabou, Toupah: Wie die Tabelle vom Fangort Dabou zeigt, ist der Salzgehalt in dieser Lagunengegend das ganze Jahr hindurch in allen Tiefen sehr gering. Auch hier sind jedoch, wenn auch nur minim, die jahreszeitlichen Schwankungen noch festzustellen, indem die höchsten Konzentrationen in der großen Trockenzeit gemessen wurden. Da sich in dieser Gegend keine größeren Flüsse in die Lagune ergießen, reicht die in die Lagune fallende Regenmenge nicht aus, um die Lagune total auszusüßen, so daß das ganze Jahr hindurch ein minimer Promille-Gehalt Salz vorhanden ist.

Jan. Febr. März April Mai Juni Juli Aug. Sept. Okt. Nov. Dez. Tiefe 1953 0,9 1,5 2,0 1,4 1,3 1,0 0,8 0,9 0,9 0 m1,7 1,5 1,1 2 m1,0 1,6 2,0 1,8 1,5 1,4 1.3 1,5 1,1 1,0 1,0 0,9 1,0 2,0 1,7 1,3 2,3 1,2 1,0 4 m 1,5 1,0 1954 0,8 1,3 0,7 1,0 0,6 0,5 0,5 0,5 0,4 0,3 $0 \, \mathrm{m}$ 2 m0,8 1,3 1,1 1,0 0,7 0,5 0,5 0,4 0,5 0,3 4 m 1,0 1,5 1,1 0,7 0,6 0,4 0,5 0,3 1,1 0,5

Salzgehalt bei Dabou:

Dasselbe gilt für Toupah, wobei hier der Salzgehalt auch während der großen Trockenzeit sehr niedrig bleibt. Am westlichen Lagunenende gelangen geringe Mengen Brackwasser durch den Canal d'Asagny in die Lagune, und es ist diesem Umstande zuzuschreiben, daß im westlichen Lagunenteil überhaupt noch Cl-Ionen nachgewiesen werden können.

Cosrou: Im obersten Teil der Bucht von Cosrou ist reines Süßwasser vorhanden, und dieser Ort wurde als Station gewählt, um die Süßwasserfauna untersuchen zu können. Der kleine Fluß, welcher am Ende der Bucht einfließt, verunmöglicht ein Vordringen auch nur minimer Brackwassermengen.

Tiefe	Jan.	Febr.	März	April	Mai	Juni	Juli	Aug.	Sept.	Okt.	Nov.	Dez.
1953						120 27 22						
0 m	0,3	0,5	1,0	0,1	0,8	0,7	0,4	0,3	0,3	0,4	0,4	0,4
2 m	0,4	0,5	0,8	0,1	0,8	0,7	0,6	0,5	0,3	0,4	0,4	0,4
4 m	0,4	1,5	1,5	0,1	0,8	1,0	0,7	$0,\!5$	0,5	0,6	0,4	0,4
1954	Ċ											
0 m	0,3		0,2	0,5	0,4	0,2	0,1	0,1	0,1	0,1	0,3	0,2
2 m	0,4		0,4	0,5	0,4	0,2	0,2	0,1	0,1	0,2	0,3	0,2
4 m	0,4		0.4	0,6	0,4	0,2	0,3	0,2	0,1	0,2	0,3	0,6

Salzgehalt bei Toupah:

Ergänzende Angaben: in Abb. 13 sind die Orte Dabou, Ile 6, Dagbé und Bimbresso im Verhältnis ihrer Distanz eingetragen. Daraus geht hervor, daß bei der relativ kurzen Lagunendistanz zwischen der Ile 6 und Dagbé der Salzgehalt rapid abnimmt. Dies ist vor allem auf die dort vorhandene Untiefe der Lagune zurückzuführen. Deshalb steht der Lagunenteil westlich der Ile 6 nur wenig unter dem Einfluß des durch den Canal de Vridi eindringenden Salzwassers. Andererseits hat, wie bereits erwähnt, der Canal d'Asagny nur geringe Bedeutung, was die Zufuhr von Brackwasser anbelangt. Dieser Kanal ist ziemlich lang (15 km) und relativ schmal. Messungen an einigen zusätzlichen Stellen im westlichen Lagunenabschnitt haben folgende Resultate ergeben:

Februar:	Asagny Dorf Kanalende bei Asagny	0,6%0 5,0%0
	Kanalmitte	6,8‰
Mai:	Asagny Dorf	$1,5\%_{0}$
	Kanalende bei Asagny	$6,3\%_{0}$
	Kanalmitte	5,0%0
	Lagune Grand Lahou	7,0%0
November:	Ile Deblay	0,3%0
	Kanalende bei Asagny	0,1%0
	Kanalmitte	0,0%0
	Lagune Grand Lahou	$0,3\%_{0}$

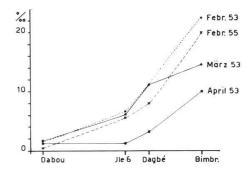


Abb. 13. Abnahme des Salzgehaltes zwischen Bimbresso und Dabou. Vergi. Text Seite 11.

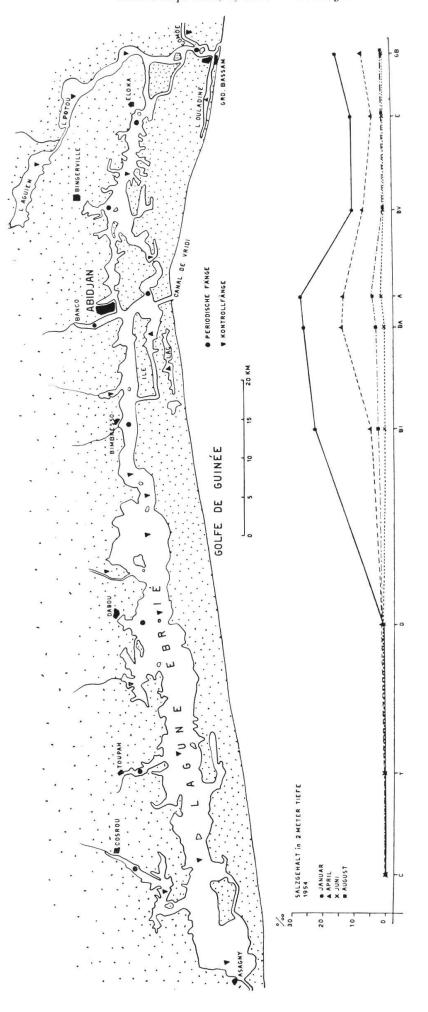


Abb. 14. Salzgehalt in bezug auf die Distanz der Fangorte. 1954, Januar, April, Juni, August.

Trägt man den Salzgehalt, welcher an den einzelnen Fangorten gemessen wurde, in bezug auf die Distanz der Orte ein, so ergibt sich das Bild, wie es in Abb. 14 dargestellt ist.

4. Die Plankton-Arten 1

Tunicata

Appendicularia

Oikopleuridae: Folia. Eine Art der Gattung Folia fanden wir an den Fangorten Abidjan und Banco während der großen Trockenzeit. Ihr Auftreten war vom Salzgehalt der Lagune abhängig.

Abidjan 1953	Jan. Febr. März April			11	Sanco 1953	Jan. Febr. März April				
0 50 100 150 200 400 Schlnf.	3 4 +	1 5 4 +	2 +		So	0 50 100 150 200 400 chlnf.	3 +	1 +	+	2 +

Thaliaceae

Doliolidae: Doliolum. Eine Art der Gattung Doliolum war nur in wenigen Exemplaren in Schlnf. bei Abidjan, Banco und Grand-Bassam im Januar nachzuweisen.

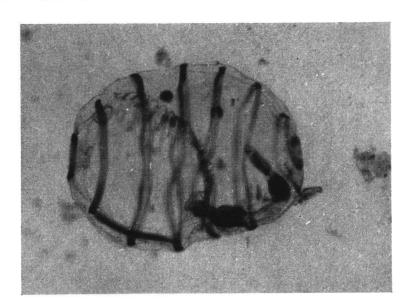


Abb. 15. Doliolum.

¹ Die Zahlen unter den Fangorten in den Tabellen bedeuten: Fangtiefe in cm. Schlnf. = Schließnetzfänge. += selten; ++ = häufig; +++ = sehr häufig.

Echinoderma

Echinoidea

Echinidae: Einige Echinoplutei einer Fibularia-ähnlichen Form fanden sich in Schlnf. von Abidjan während der Monate Januar bis März 1953 und 1954.

Coelenterata

Hydrozoaria

Acalepha: Oceaniidae. Archaeoceania tournieri wurde 1954 von Picard und Rahm als neue Gattung und Art beschrieben. Ihr Vor-

Abidjan	J.	F.	Μ.	A.	М.	Banco	J.	F.	Μ.	A.	M.
0			2			0	1				1
50					2	50	2		2	1	
100			1			100	4				
150			1			150	2	1			
200						200	1	1	1		2
400					1	400					
Schlnf.	+	+	++	+	+	Schlnf.	+++	+	+++	+	++

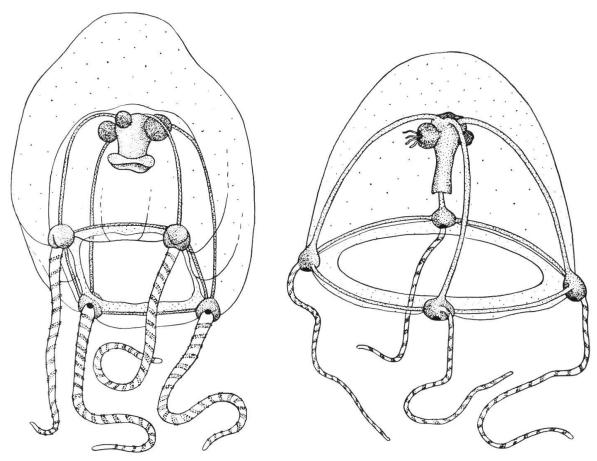


Abb. 16. Archaeoceania tournieri. Picard et Rahm. Links: kontrahiert; rechts entfaltet.

kommen in der Lagune im Jahre 1953 ist aus jener Publikation zu ersehen; wir geben an dieser Stelle die Daten für 1954 wieder.

Außerdem fanden wir Archaeoceania 1954 in Schlnf. bei Bimbresso (Jan./März), bei Eloka (Jan./März), bei Bingerville (März/April), bei Grand-Bassam (März) und in der Lagune Ouladiné (März).

Trachynemidae. *Aglaura hemistoma*. Diese Meduse war in einem Schlnf. von Abidjan im März 1953 vertreten.

Campanulariidae: *Clytia sp.* Diese Gattung fand sich im selben Schlnf. wie Aglaura.

Geryoniidae: *Liriope sp.* Liriope konnte in Schlnf. von Abidjan im Januar und Februar 1953 nachgewiesen werden.

Annelida Vermes

Chaetopoda: Polychaeta. Syllidae. Larven eines pelagischen Syllidiers fanden sich nur in Proben aus Brackwasser. Die Tabellen geben einen Überblick über ihre Häufigkeit in den quantitativen Fängen (1953).

A 1. : J :	T	E-L-	M:	A!1	Ma:	T	T12	A	C 1	01-4	N	D
Abidjan	Jan.	Febr.	Marz	April	Mai	Jum	Jun	Aug.	Sept.	OKt.	Nov.	Dez.
0					1							
50												
100		3	1									
150	1				1							
200		1		1								
400		8	1	3	10						5	
Banco	Jan.	Febr.	März	April	Mai	Juni	Juli	Aug.	Sept.	Okt.	Nov.	Dez.
0												
50												1
100		1										1
150					2							3
200	3	7						2	6	1		1
400								3				
Bim-		ъ.,		,					G .	01.4		D
bresso:	Jan.	Febr.	Marz	April	Mai	Juni	Juli	Aug.	Sept.	Okt.	Nov.	Dez.
0	5	3	12									1
50	2	9	8	6								
100	6	4	13	4								
200	2	5		1								

Chaetognatha

Sagitta. Diese Gattung war in Schlnf. von Abidjan, Banco, Bimbresso und Grand-Bassam während der großen Trockenzeit vertreten.

Arthropoda

Crustacea

Entomostraca: Cladocera

Daphniidae: *Ceriodaphnia rigaudi*. Diese Art fand sich nur in einigen wenigen Exemplaren in Schlnf. von Toupah (Jan., März, Juli), von Bingerville (Okt.) und von Cosrou (Dez.).

Simocephalus vetulus. Der einzige Fundort dieser Art liegt in der Bucht von Dabou und bestand aus einer dichten Seerosen- und Pistia-Vegetation. Wir sammelten sie hier in zahlreichen Exemplaren im Juli, Okt. und Nov. 1954.

Moina dubia. Diese Daphnia war in Schlnf. von mehreren Stationen vorhanden (Cosrou, Toupah, Bingerville, Eloka im Juli und Okt.; Abidjan im Okt. u. Nov.; Banco im Nov., Juli und Sept.; Cosrou und Toupah praktisch während des ganzen Jahres).

Moinodaphnia macleayi. In der Lagune Ebrié fand sich diese Art nur in einer sumpfigen, mit Echinochloa bedeckten Bucht bei Bingerville.

Scapholeberis kingi. Scapholeberis fanden wir nur in der sumpfigen Bucht bei Bingerville und im sumpfigen Ufer bei Bimbresso.

Macrothricidae: *Ilyocryptus halyi*. War in geringer Zahl in Schlnf. von Dabou und Eloka vorhanden sowie in einer Uferprobe von Bingerville.

Ilyocryptus sordidus. Ilyocryptus aus der Bucht von Toupah gehört dieser Art an. Wir fanden sie in Schlnf. im Jan., Juli, Sept. und Mai.

Macrothrix chevreuxi. In Schlnf. von Toupah und in Uferproben von Bingerville und Dabou.

Grimaldina brazzai. Aus der Lagune Ebrié ist diese Cladocere nur aus der Bucht von Dabou bekannt, wo wir sie an der Uferzone in einem Seerosenbestand einsammelten.

Bosminidae: Bosminopsis deitersi. Wir fanden diese Art nur in der Lagune Ebrié und im Fluß Comoe. Während der kleinen Regenzeit war sie in minimer Zahl in Schlnf. von Eloka, Bingerville und Banco vorhanden. Bei Cosrou zählten wir sie auch in den quantitativen Fängen (Jan., Juli, Aug.). Extrem häufig war Bosminopsis in der Bucht von Toupah.

Chydoridae: *Pseudalona longirostris*. Öfters in Schlnf. von Cosrou und Toupah. Bei Eloka in einem Schlnf. im Juli 1953.

Camptocercus rectirostris. Konnte in der Bucht von Cosrou in Schlnf. im Jan., Juni, Juli nachgewiesen werden.

Alonella diaphana. Fand sich nur in Uferproben aus der Bucht von Dabou und der Insel 35.

Alonella sculpta. Nur in einer Uferprobe von der Insel 35.

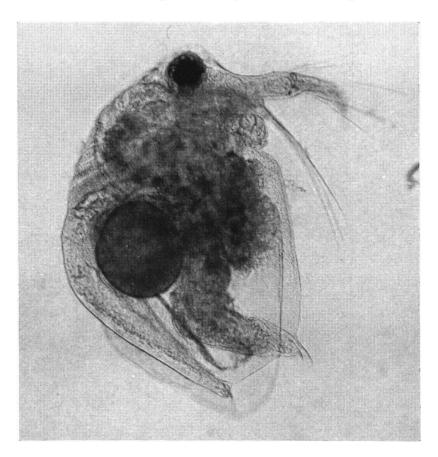


Abb. 17. Bosminopsis.

Chydorus eurynotus. Ebenfalls nur in einer Uferprobe von der Insel 35.

Chydorus globosus. War in der Lagune nur in einer Uferprobe der Bucht von Dabou vorhanden.

Chydorus pubescens. Konnte in einer Probe von der Insel 35 nachgewiesen werden. Wir haben bereits an anderer Stelle (RAHM 1956) mitgeteilt, daß dies der erste bekannte Fundort auf dem afrikanischen Kontinent ist.

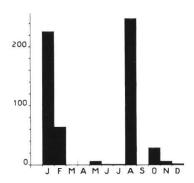


Abb. 18. Bosminopsis deitersi. Individuenzahl bei Toupah 1953. Quantitative Fänge.

Sididae: *Diaphanosoma sarsi*. Fand sich in Schlnf. von Cosrou und Toupah, sowie, während der Regenzeit, von Eloka (Okt.), Bingerville (Okt.), Banco (Okt.), Dabou und Abidjan (Okt.). Besonders zahlreich war diese Form in Uferproben von Bingerville.

Pseudosida szalai. War nur in einer Uferprobe von Bingerville vorhanden.

Penilia avirostris. Diese marine Cladocere fand sich in Proben von Abidjan, Banco und Grand-Bassam während der Monate Januar und Dezember.

Polyphemidae: *Evadne nordmanni*. Das Vorkommen von Evadne in der Lagune ist ebenfalls von der Salzkonzentration abhängig. Wir fanden diese Art in Schlnf. von Abidjan im Jan. bis März, von Banco im Jan. bis April.

Ostracoda:

Euconchoetia. Dieser marine, pelagische Ostracode fand sich nur in Schlnf. von Abidjan und Grand-Bassam vom Januar bis Mai.

Copepoda:

Cyclopidae: *Thermocyclops neglectus*. Diese Art ist eine der häufigsten Cyclopiden des Süßwassers in der Lagune. Besonders zahlreich war sie in den Buchten von Cosrou und Toupah.

Cosrou 1953	Jan.	Febr.	März	April	Mai	Juni	Juli	Aug.	Sept.	Okt.	Nov.	Dez.
0	9		1									
50	3	2	1		2							7
100												5
150	7	1										2
200	1	1		1	2						3	4
Schlnf.	++	++	+	+	++	+	+	+		+	+	++
Toupah 1953	Jan.	Febr.	März	April	Mai	Juni	Juli	Aug.	Sept.	Okt.	Nov.	Dez.
0				1	3		1	1	2			
50	6				2		1	2				
100	4	1		1	1		2					
150												
200	5	1					2	2				
400	26	9		14	1		2		2			
Schlnf.	++	++	+	+	+		+	+	+			

Wir fanden diese Art auch bei Dabou, Eloka und Bingerville. *Microcyclops varicans*. Fand sich in Schlnf. von Dabou und in Uferproben dieser Gegend. Paracylops affinis. In einer Probe aus dem westlichen Lagunenteil in geringer Zahl vorhanden.

Mesocyclops leuckarti. Exemplare dieser Art traten in Schlnf. und Uferproben auf (westl. Lagunenteil, Banco, Eloka, Cosrou, Toupah und Bingerville).

Cryptocyclops falsus. Fand sich nur in einem Schlnf. aus dem westlichen Lagunenteil.

Halicyclops orae eburnensis Diese von LINDBERG (1957) an Hand unseres Materials beschriebene Art war in Uferproben von Dabou und Banco vorhanden.

Cryptocylops bicolor linjanticus. Fand sich in Uferproben von Banco, Dabou, Cosrou und Bingerville in z. T. großer Zahl.

Eucyclops van douwei. In Schlnf. aus dem westlichen und östlichen Lagunengebiet.

Ectocyclops phaleratus f. rubescens. Fand sich in Proben von Eloka und in einer Uferprobe von Cosrou.

Eucyclops stuhlmanni. War nur in einer Uferprobe von Cosrou nachzuweisen.

Oithona plumifera. In den Schlnf. von Abidjan und Grand-Bassam war Oithona während der Monate Januar bis März vorhanden.

Calanidae: Acartia clausi gaboonensis. Über das Vorkommen und die Verbreitung von Acartia in der Lagune Ebrié haben wir bereits an anderer Stelle berichtet (RAHM 1955). Diese marine Form hat sich anscheinend gut an die Brackwasser-Verhältnisse in der Lagune angepaßt und kann sich an Stellen mit sehr schwacher Salzkonzentration halten.

Corycaeidae: Corycaeus sp. Diese marine Form war nur in Schlnf. von Abidjan, Banco und Grand-Bassam während der großen Trockenzeit zu finden.

Oncaea. Eine Oncaea-Art war ebenfalls während der großen Trockenzeit in Fängen von Abidjan und Grand-Bassam vorhanden.

Ergasilus kandti. Fand sich in Schlnf. von Cosrou, Toupah und Dabou, wo er das ganze Jahr hindurch sporadisch in geringer Zahl auftrat.

Cirripedia:

Balanidae: *Balanus*. Nauplien dieser Gattung waren im Brackwasser oft in relativ großer Zahl vorhanden. Wir fanden die Adulttiere an mehreren Stellen in der Lagune, besonders im östlichen Teil, an Holzpfählen der Fischreusen und an Steinen. Die Tabelle zeigt ihr Auftreten bei Abidjan 1953, die Resultate von 1954 waren sehr ähnlich.

Abidjan	Jan.	Febr.	März	April	Mai	Juni	Juli	Aug.	Sept.	Okt.	Nov.	Dez.
0 50 100 150 200 400 Schlnf.	+	2	++	2 2 2 2	1 1 1	+	+	+	+	++	1	7 1 3 3 2

Außerdem fanden sich diese Nauplien in Fängen bei Bimbresso (März, April, Dez.) bei Banco (Jan. bis Aug.), Dabou, Eloka und Bingerville.

Malacostraca: Euphausiacea: Protozoea einer Euphausiacee fanden sich in Schlnf. von Abidjan, Banco und Grand-Bassam während der großen Trockenzeit.

Decapoda: *Penaeus*, Metanauplien und Protozoeen einer Garneelenart fanden sich in Schlnf. von Abidjan im Januar.

Brachyura. Zoea einer Krabbenart waren während der großen Trockenzeit in Schlnf. von Abidjan, Banco, Bimbresso und Grand-Bassam vorhanden. Bei Bimbresso zählten wir sie auch in quantitativen Fängen im März und April 1953.

Jaxea. Larven dieser Art fanden sich in geringer Zahl in Schlnf. von Abidjan, Banco und Grand-Bassam in den Monaten Januar bis April.

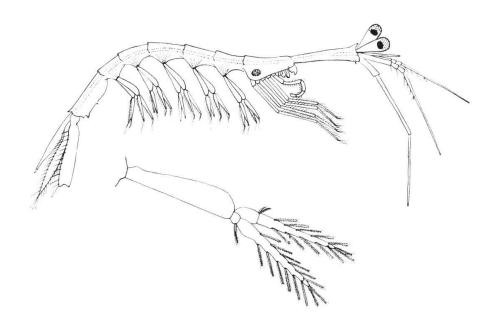


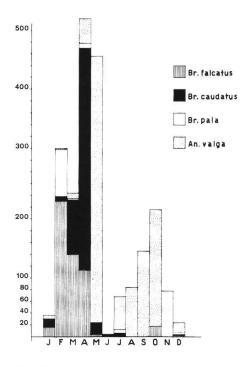
Abb. 19. Larve von Jaxea.

Rotatoria:

Monogonata: Asplanchnidae: Asplanchna brightwelli. Dieser Rotator war besonders häufig in den Schlnf. als auch in den quantitativen Proben von Cosrou und Toupah. Die Tabellen geben die Resultate von 1953 wieder.

Cosrou 1953	Jan.	Febr.	März	April	Mai	Juni	Juli	Aug.	Sept.	Okt.	Nov.	Dez.
0	1	1	1	1		1	1			12	2	1
50	1			4		1	1	1	4	3	2	1
100		4			3				1	2	1	
250								1		1		1
200						1						1
Toupah 1953	Jan.	Febr.	März	April	Mai	Juni	Juli	Aug.	Sept.	Okt.	Nov.	Dez.
0	10	118			1						1	
50	26	89										
100	6	52		1								
150	5	44		2							1	
200	5	38										
400	6	12										

Außerdem waren zahlreiche Exemplare in den quantitativen Fängen von Banco im Nov. 1953 vorhanden. Auch im Fluß Comoe wurde diese Art nachgewiesen, sowie bei Eloka und Bingerville vom Juni bis Nov.


Triarthridae: *Triarthra sp.* Eine Triarthra-Art fand sich in einem Schlnf. von Bingerville im Juli 1953.

Polyarthra. Ein Vertreter dieser Gattung war in Schlnf. von Toupah (April 1953) und von Bingerville (Juli 1953) vorhanden.

Tetramastix opoliensis. Diese Art ist charakteristisch für die Bucht von Cosrou.

Cosrou 1953	Jan.	Febr.	März	April	Mai	Juni	Juli	Aug.	Sept.	Okt.	Nov.	Dez.
0	7			1	13				4		2	
50	1	2			2	1			1	5	3	
100		5	3		15				5	1		
150	5	2	1		5				1	2	1	
200	3	4	1		1				2			

Sporadisch trat diese Form auch bei Toupah und Dabou auf. Im östlichen Lagunenteil war sie nur während und nach der Regenzeit nachzuweisen, so ebenfalls bei Bimbresso, Abidjan und

 $Abb.\,20.$ Individuenzahl der Brachionus- und Anuraea-Arten bei Toupah 1953. Individuenzahl = Summe der quantitativen Fänge in den einzelnen Tiefen.

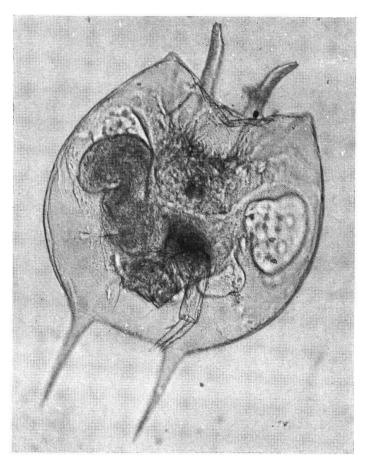


Abb. 21. Platyias quadricornis.

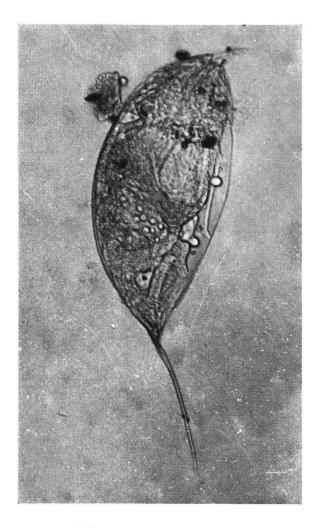


Abb. 22. Rattulus chattoni.

Banco (Okt. und Nov.). Bei Bimbresso zählten wir im Okt. 1953 bis zu 100 Individuen pro Liter.

Hydatinidae: *Notops macrourus*. Diese Art fand sich nur in einigen Schlnf. in der Bucht von Toupah.

Rattulidae: Rattulus stylatus. Auch diese Form kam nur in der Bucht von Toupah vor.

Rattulus chattoni. Bei Cosrou und Toupah zählten wir diese Art auch in den quantitativen Fängen. Bei Abidjan, Banco und Bingerville fanden wir sie während der Regenzeit (Juni, Juli).

Brachionidae: *Brachionus falcatus*. Diese Art war besonders zahlreich in den Proben von Toupah im Febr. bis April. Sie wurde auch in Banco und bei Abidjan vom Juni bis Oktober, und im östlichen Lagunenteil nachgewiesen.

Brachionus caudatus. Zahlreiche Exemplare dieser Art fanden sich in den quantitativen Proben bei Toupah und Cosrou im März und April 1953. An den übrigen Fangstellen fanden wir sie zu denselben Zeitpunkten wie Br. falcatus, jedoch weniger zahlreich.

Brachionus pala. Nur wenig häufig in den Fängen von Toupah und Cosrou, relativ zahlreich bei Abidjan während der Regenzeit.

Noteus militaris. Diese Art konnte in einem Schlnf. vom Banco im August 1954 gewonnen werden.

Platyias (Noteus) quadricornis. Diese Form trat in Schlnf. von Eloka und Bingerville während der Regenzeit auf, jedoch nur in geringer Zahl.

Anuraeidae: Anuraea valga. Anuraea war sehr häufig und beinahe regelmäßig in den Buchten von Toupah und Cosrou vertreten. An den übrigen Fangorten trat sie in geringer Zahl zusammen mit den Brachioniden auf.

Pedalidae: *Pedalia femica*. Diese Art wurde in Schlnf. an der Uferzone bei Bingerville (Juli 1953 und Okt. 1954) sowie in der Bucht von Toupah nachgewiesen.

Melicertidae: Conochiloides dossnarius. Fand sich in einer Probe aus der Uferzone von Bingerville (Okt. 1954).

5. Charakteristik der Fangstellen und quantitative Angaben

Für die Untersuchung des Zooplanktons wurden jeweils an den verschiedenen Fangstellen Schließnetzfänge durchgeführt und quantitative Proben entnommen. An den Stellen mit nur ca. 2 m Lagunentiefe wurde mit dem Schließnetz in 1 m Tiefe horizontal gefischt, an den Stellen mit 4 m Tiefe wurden Schlnf. in 50 cm und 200 cm ausgeführt. Quantitative Proben entnahmen wir aus 0; 50; 100; 150; 200 und 400 cm Tiefe.

Das Auftreten und auch die Quantität des Zooplanktons hängt eng zusammen mit dem gegebenen Salzgehalt. Analog dem Verlauf der Salzkonzentrationen finden sich im westlichen Lagunenteil, der nicht oder kaum Brackwasser enthält, nur Süßwasserformen. In der Gegend des Canal de Vridi und im östlichen Teil der Lagune finden sich, je nach «Jahreszeit», Meeresplankter oder Süßwasserformen. Ganz allgemein ist zu bemerken, daß die Lagune eher arm an Zooplanktonarten ist; sie ist etwas reichhaltiger an Meeresformen, wenn diese auftreten. Die mit Vegetation bewachsenen oder bedeckten Uferzonen sind reichhaltiger an Süßwasserformen als die offenen Lagunenstellen.

Cosrou: An dieser Fangstelle im westlichen Lagunenteil treten nur Süßwasserformen auf. Nur Acartia clausi vermochte bis hierher vorzudringen. Sowohl artenmäßig als auch quantitativ ist das Plankton nur spärlich vertreten in dieser Bucht. An den mit Echinochloa bewachsenen Uferstellen der Bucht von Cosrou ist die Artenzahl wesentlich größer und die Cladoceren sind besonders reichhaltig vertreten.

Toupah: Die Bucht von Toupah ist artenmäßig etwas reicher als Cosrou. Es fällt vor allem die relativ hohe Zahl von Brachionus auf und das Vorkommen von Bosminopsis. Bosminopsis fand sich an den übrigen Stellen nur äußerst selten und ist charakteristisch für die Bucht von Toupah. In beiden Jahren waren die Schlnf. während der Trockenzeit etwas ergiebiger als in der Regenzeit.

Dabou: Die ganze Gegend von Dabou ist arm an Zooplankton. Einzig Acartia clausi ist während aller Monate vorhanden. In den Fängen waren vereinzelt Cladoceren und Ergasilus nachzuweisen. Hingegen war in dieser Gegend das Phytoplankton, besonders einige Arten, reichlich vertreten. Im Jahre 1953, das wesentlich weniger Niederschläge aufwies als das Jahr 1954, verirrten sich auch einige marine Plankter bis in diese Gegend. Das Ende der Bucht ist mit Seerosenbeständen bedeckt.

Bimbresso: Der Lagunenabschitt von Bimbresso steht während der großen Trockenzeit bereits unter dem Einfluß des durch den Canal de Vridi eindringenden Meerwassers. Sowohl in den quantitativen als auch in den Schlnf. fanden sich typische Meeresplankter. Mit der Regenzeit verschwindet der Großteil dieser Formen, und in den Schlnf. waren in den Monaten Juni bis November nur noch vereinzelt Meeresformen nachzuweisen. Während der Regenzeit werden einige Süßwasserarten von der Uferzone in die Lagune geschwemmt.

Abidjan und Banco: Diese beiden Orte und damit die ganze Kanalzone machen deutlich den Wechsel der «Jahreszeiten» mit. In den Monaten Dezember bis Mai sind hier Meeresformen in relativ großer Arten- und Individuenzahl vorhanden. Mit dem Einsetzen der großen Regenzeit werden das Salzwasser und damit auch die Planktonformen aus der Lagune via Canal de Vridi ausgeschwemmt. In den Monaten Juni bis August sind in den quantitativen Fängen nur wenig Arten und diese in geringer Zahl nachzuweisen. In den Schlnf. treten mehrere Arten des Süßwassers auf, die vor allem aus dem östlichen Lagunenteil durch das Hochwasser des Comoe eingeschwemmt werden. Bei Abidjan werden während der kleinen Trockenzeit durch das Meerwasser in der Tiefe wieder Meeresformen eingeführt, so daß an dieser Stelle gelegentlich sowohl Meeres- als auch Süßwasserarten vorhanden sind.

Bingerville und Eloka: Im östlichen Lagunenteil, in welchem diese beiden Fangorte liegen, herrschen in den Monaten Dezember bis April die Meeresplankter vor. Während der Monat Juni zunächst sehr planktonarm ist, treten in den folgenden Monaten mehrere

Süßwasserarten auf, die sich zahlenmäßig auch in den quantitativen Proben bemerkbar machen. Die Süßwasserformen werden größtenteils durch das Hochwasser des Comoe aus den Sümpfen und Tümpeln ausgeschwemmt. Die kleine Trockenzeit macht sich in diesem Lagunenabschnitt nicht bemerkbar.

Grand-Bassam: Durch das Mündungsgebiet des Comoe dringen während der großen Trockenzeit einige Meeresformen in den östlichsten Lagunenteil ein. Wir fanden hier im Prinzip dieselben Arten wie bei Abidjan. Die enormen Wassermassen des Comoe süßen während der großen Regenzeit die Lagune vollkommen aus. Wie wir bereits erwähnten, fließt eine große Menge des Comoewassers nicht durch dessen Mündung, sondern via Lagune durch den Canal de Vridi ins Meer. Selbst hier im Mündungsgebiet des Comoe dringen nur sehr wenig Salzwasserformen während der kleinen Trockenzeit in die Lagune ein.

6. Die quantitativen Proben und die Schließnetzfänge

Die Arbeit würde viel zu umfangreich, wollten wir die über 200 quantitativen Proben und Schließnetzfänge der Fangorte hier tabellarisch darstellen. Wir publizieren im folgenden einige Tabellen der Fangstellen, die besonders typisch sind und welche insbesondere den Wechsel während der Trocken- und Regenzeiten verdeutlichen. Die Erklärungen der Tabellen ergeben sich einerseits aus den Kapiteln 4 und 5 (Die Planktonarten und Charakteristik der Fangstellen) und andererseits aus der Schlußfolgerung.

Liste der Abkürzungen der Plankterarten in den Tabellen:

NaCo	=	Nauplien von Copepoden	NaBa	=	Nauplius von Balanus
Accl	=	Acartia clausi	Sagi	=	Sagitta
Arch	=	Archaeozeania tournieri	Appe	=	Appendicularia
Syll	=	Syllidierlarven	Ost1	=	mariner Ostracode
Cop1	=	mariner Copepode	Ost2	=	mariner Ostracode
Cop2	==	mariner Copepode	ZoCr	=	Zoea Crevette
Oith	=	Oithona plumifera	ZoKa	=	Zoea Krabbe
Evad	===	Evadne	Diap	=	Diaphanosoma
Cory	Name of Street, or other lands	Corycaeus	Ratt	=	Rattulus
Eplu	===	Echinupluteus	Erga	=	Ergasilus
Brfa	=	Brachionus falcatus	Aspl	=	Asplanchna
Brpa	=	Brachionus pala	Macr	=	Macrothrix
Brca	-	Brachionus caudatus	Ilyo	=	Hyocryptus
Anur	=	Anuraea	Lame	==	Lamellibranchier-Larve
Tert	=	Tetramastix	Mecl	=	Mesocyclops
Thel	=	Thermocyclos negl.	Moin	=	Moina dubia
Bosm	=	Bosminopsis	Ceri	=	Ceriodaphnia

a) Quantitative Proben.

Eloka: 7. Januar 1954.

Tiefe	NaCo		Accl Cop1	Arch	ZoCr	ZoKa
0	22	3	1			
20	23	21		1		
100	12	21	2			
150	23	က	11		10	-
200	30	12	22		7	

Eloka: 24. März 1954.

Tiefe	NaCo	Accl	Cop1
0	17	1	6
50	23		10
100	15	2	33
150	2	7	10
200		21	

Eloka: 29. Juli 1954.

Tiefe	NaCo	Thel
0	П	
20		1
100	2	
150		
200		

Bingerville: 8. Januar 1954.

Tiefe	NaCo	- 1	Accl Cop1	Arch	Lame	ZoCr Syll	Syll
0	73	-	က	11	જ	1	
50	51		7	10			
100	48	1	2	4	22		2
150	24	က	က	5	9		4
200	19	7	9	6	7		7
400		ಣ	17	2	က		

Bingerville: 24. März 1954.

Tiefe	NaCo	Accl	Cop1
0	275	-	22
50	234	က	41
100	140	က	45
150	83	21	20
200	22	15	14

Bingerville: 26. Juli 1954.

0 12 3 2 6 50 1 9 100 3 2 150 7 1 1 1 200 10 2 10 400 9 1 1 6	Tiefe	NaCo	Accl	NaCo Accl Brpa Brfa Thel Ratt	Brfa	Thel	Ratt
50 1 9 100 3 2 150 7 1 1 1 200 10 2 10 400 9 1 1 6	0	12	က	7	9		
100 3 2 150 7 1 1 1 200 10 2 10 400 9 1 1 6	20			1	6		
150 7 1 1 1 1 200 10 2 10 400 9 1 1 6	100	က			21		
200 10 2 10 400 9 1 1 6	150	7	1	1	1	1	
400 9 1 1 6	200	10	2		10		
	400	6	1	1	9		_

Tert

Anur

Brpa

Brfa

NaCo Accl

Tiefe

Abidjan: 21. Juli 1953.

Bingerville: 25. September 1954.

Tiefe	NaCo	Accl	Diap	NaCo Accl Diap Anur Cop1	Cop1
0	2		1		
20	က		1	1	
100	kein	keine Probe	e e		
150	_		-		
200	2			က	2
400		2			21

Abidjan: 17. Januar 1953.

Tiefe	NaCo	Accl	NaCo Accl Arch Syll Cop1	Syll	Cop1	Cop2	Oith	Oith Evad Cory	Cory
	11		2		5				•
	14	61	1		rċ			1	
	10	ū			∞				1
	9	6		1	က				
	2	က			1				
	ಣ	1			1	ಣ	7		

Abidjan: 17. März 1953.

Tiefe	NaCo	NaCo Accl	Syll	Eplu	Cop1	Cop2	Cop2 Oith	Cory
0	27				2			
20	48	1			5			
100	58	2	1		4			
150	142	1			14			
500	64	1			22	1	7	
001	34	က	-		33		Т	1

Abidjan: 27. Oktober 1953.

Tiefe	NaCo	Accl	Thel	NaCo Accl Thel Brpa Tert Bosm	Tert	Bosn
0	20	5	1		1	
50	16	1				1
100	15	4				
150	7	∞		1	1	
200	9	2		1		
400	5	37		1	2	

Abidjan: 17. November 1953.

	Tiefe	NaCo	NaCo Accl	Cop1	Syll	Arch	NaBa
	0	15	1				
	20	12	6				
**********	100	44	56				1
-	150	25	32				
	200	24	31	1			
	400	10	21	10	2	2	

Abidjan: 20. Januar 1954.

Abidjan: 24. September 1954.

Tiefe	NaCo	Accl	NaCo Accl Cop1 Syll Sagi Eva	Syll	Sagi	Evad	Appe	Cory Os	d Appe Cory Ost1 Cop2		Tiefe NaCo Accl Thel Brfa Brea Ratt Diap	NaCo	Accl	Thel	Brfa	Brca	Ratt	Diap
0	36		15	1				1			0	ಣ	1	1			1	
50	142	5	55		_	1	က	1			20	4	1				2	
100	65	4	54				က	1			100	9			1			1
150	48	%	100		_				1		150	7	1		1		1	
200	77	10	74	ಣ	21						200	2	1		1	1		
400	47	17	43	2	-		4	1	50.00		400	11			1	7		
	-									_								

Banco: 13. Januar 1953.

Abidjan: 18. März 1954.

Cop1	14	21	3	9	16	
Arch	1	1		1	1	1
Accl	1	1		4		16
NaCo Accl Arch Cop1	67	45	16	17	%	13
Tiefe	0	20	100	150	200	400

Abidjan: 21. Juli 1954.

Tiefe	aco	aco Accl	Brfa
0		1	
20	1		-
100	4	2	
150	က	5	
200	1	7	
400		3	1

ZoCr	-					
NaBa	-	1	1	1		
Arch	21		1	_		
Appe						73
NaCo Accl Cop1 Syll Evad Appe Arch	2			1		
Syll			1			10
Cop1	17		12	14	4	14
Accl	2	2	7	6	7	က
NaCo	41	2	27	34	15	12
Tiefe	0	20	100	150	200	400

Banco: 18. April 1953.

	NaCo	Accl	NaCo Accl Cop1 Arch	Arch
0	55	80	637	
50				
100	170	18	221	
150	120	17	183	-
200				
400	11	7	229	

Bimbresso: 14. Januar 1953.

Arch

Tiefe

Banco: 16. Juli 1953.

Tiefe	NaCo	Accl	Brfa	Brfa Brpa Anur	Anur
0	12	1	1	84	10
50	2			51	24
100	-			140	10
150	9			46	10
200	9			21	SI
400	18	30		64	01

Banco: 19. September 1953.

Fiefe	NaCo Accl	Accl	Thel	Brfa	Brpa	Anur
0	26	_			61	
50	14	13				
100	24	00			1	
150	32	ro		01		4
200	17	13				
400	21	30	3	23		1

0 50 100 150 200

Banco: 26. Oktober 1953.

Tiefe	NaCo	Accl	Thel	Brfa	Brpa	Anur	Tert	Diap
	22	12		П	4		11	
_	65	39		22	∞		144	
_	23	18		4	4		100	
•	19	22		4	2		86	
200	29	35		5	21	5	49	
0	14	51	1	1	21	21	12	

 NaCo
 Accl
 Cop1
 Syll

 175
 6
 24
 5

 55
 2
 39
 2

 55
 12
 32
 6

 29
 10
 40
 4

 32
 15
 33
 2

0 50 100 150 200

	ZoKr
i	NaBa ZoKr
z 1953	Syll
17. März 1953.	Accl Cop1 Syll
Bimbresso: 1	Accl
Bimbr	NaCo
	iefe

Bimbresso: 22. Juli 1953.

Tiefe	NaCo Accl	Accl	Cop1
0			
50		1	
100	23	2	23
150		લ	
200			

Bimbresso: 28. Oktober 1953.

Bimbresso: 25. Juli 1954.

NaCo

Accl

Tiefe

Tiefe	NaCo	Accl	NaCo Accl Brfa Tert Erga	Tert	Erga
0	10	11			
20	5	6	-	ಣ	
100	12	6			1
150	1	9			
200	21	4			

Bimbresso: 21. Januar 1954.

Tiefe	Accl	NaCo	Cop1	Syll	Appe	Sagi
0		54	130	27		
20		33	138	18		
100	1	44	184	16	1	T
150	2	33	57	15	ಣ	
200	21	30	61	14		

Bimbresso: 19. März 1954.

Tiefe	NaCo	Accl	Cop1	Syll	ZoCr
0	5	15	7	_	2
20	18	21	23		
100	28	9	22	1	
150	2	1	15	П	
200	4	2	က		

∞ m m

12 12 13 8 8 0 10 8

0 50 100 150 200 Bimbresso: 26. Oktober 1954.

Diap				1	
NaCo			67	-	
Accl				61	
Tiefe	0	50	100	150	200

Dabou: 16. Januar 1953.

Tiefe	NaCo	Accl	Thel	NaCo Acel Thel Brea	Tert	Brfa
0	14	1	1	15		
20	58			7		
100	24			4	2	
150	25			2		1
200	99		4	ಣ	1	1
400	20	1	9			

Dabou: 20. Juni 1953.

Tiefe	NaCo	Accl	NaCo Accl Thel	Brca
0	00	21		
50	2			_
100	20	SI		1
150	9			1
200	4	က		
400	2	1	_	

Dabou: 21. September 1953.

fe 5) Accl					_
Tiefe	0	50	100	150	200	400

Toupah: 16. Januar 1953.

Tiefe	Accl	Mecl	Aspl	Brfa	Brca	Brca Bosm	Moin	Diap
0			10	2	7			
20		9	56	9		28		
100	_	4	9	7	က	58	5	
150	21		2		1	66	_	_
200		5	5	4	6	30	1	2
400	_	9	9	2		6	2	က

1953.
März
19.
Toupah:

Tiefe	Accl	Brfa	Brca	Accl Brfa Brca Anur Ceri	Ceri
0	5	10	7	5	
20		15	7	21	
100		19	30	_	
150	2	13	7		
200		39	35	2	
400		44	9		_

Toupah: 20. Juli 1953.

Tiefe	Accl	Thel	Brca	Brpa	Accl Thel Brea Brpa Anur Bosm	Во
0		1			က	
20		1	2		12	
100		2	1		10	
150				-	15	
200		01			6	
400	1	2		4	7	1

Toupah: 19. November 1953.

Tiefe	Accl	Aspl	Ratt	Accl Aspl Ratt Anur Bosm	Bosn
0		1		45	က
20			7	11	
100			က	4	-
150	-	-	1	7	_
200			1	9	-
400				4	

Toupah: 12. Januar 1954.

Toupah: 25. September 1954.

Cop1

NaCo Bosm Anur

Tiefe

0 50 100 150 200 400

	•					
Tiefe	NaCo	Accl	NaCo Accl Bosm Brfa Tert Ratt	Brfa	Tert	Ratt
0	ro	1	-	13		-
20	4		2	15		5
100	8		21	9	2	ಣ
150	20			21		01
200	7	1	Ţ	7	-	21
400	6			22	10	ಣ

Toupah: 23. März 1954.

Tiefe	NaCo	Accl	Bosm	Brfa
0	7			31
50	9		7	10
100	10		_	13
150	9	1	21	14
200	9		21	15
400	12	_	2	41

Toupah: 29. Juli 1954.

Tiefe	NaCo	Thel	Brfa	NaCo Thel Brfa Bosm	Ratt
0	25		57	27	7
50	25		22	5	4
100	24		23	9	9
150	35	Ø	20	8	10
200	19		17	4	4
400	32	2		9	3

 71
 7
 6
 1

 32
 11
 13
 2

 26
 6
 18
 1

 39
 6
 18
 1

 18
 2
 6
 2

 24
 1
 4

1953.
15. Januar
Cosrou:

Tiefe	Moin	Thel	Tert	Aspl	Brfa	Brca	Anur	Bosm
0	21		7	1	1		7	∞
50	1	က	1	-	9	1	4	
00					1	1	1	
150		7	5		7	21	14	
00		1	ಣ				7	

Cosrou: 18. März 1953.

	Ī				
Tert Anur	14	4	ū	17	8
Tert			က	1	1
Thel	1	_			
Tiefe	0	20	100	150	200

Cosrou: 23. März 1954.

Tert

Aspl

Thel

Accl

Tiefe

110 29 111 38 99

9 50 100 150 200

1953.	Anur	5		21	2		
	Aspl	1	1				
Cosrou: 19. Juli	Tiefe	0	20	100	150	200	

Cosrou: 18. November 1953.

Tiefe	Accl	Accl Tert Aspl	Aspl	Brfa	Brfa Anur
0			1	5	2
20			2	2	7
100		ಣ	1	2	16
150	-			က	13
200					11

Cosrou: 12. Januar 1954.

Tiefe	NaCo	Accl	NaCo Accl Thel Aspl Brfa Tert	Aspl	Brfa	Tert
0	37	-				
20	72		က	21	4	1
100	13					
150	9				70	
200	18				∞	

	Cosrou: 28. August 1954.	28. Aug	gust 19	54.	
Tiefe	NaCo	Accl	Thel	NaCo Accl Thel Macr	Ilyo
0	4				-
20	က	-	_		
100	7				
150	က				
200	1			1	

Cosrou: 28. November 1954.

Thel	1	2	1		
Aspl	4	က		2	
Accl Brfa Aspl			2	_	
Accl	1				
NaCo	74	87	155	55	43
Tiefe	0	50	100	150	200

b) Schließnetzfänge.

GrandBassam1954	J.	F.	M.	A.	M.	J.	J.	A.	S.	0.	N.	D.
Acartia clausi	+	+++	++			+	+			+		++
Naupl. Balanus	+++	+	+++									++
Zoea Krabbe	+	+	+				+			+		+
Metan. Crevette	+		+			+				+	+	+
Archaeoceania			+									
Sagitta	+	+										+
Appendicularia	+											
Doliolum	+	++										
Larve Jaxea		+										
Penilia	+	++										
Corycaeus	+	+										
Euconchoetia	+	++										++
juv. Lamellibr.												+
Bosminopsis						+						+
Diaphanosoma						+				+	+	+
Grimaldina						+				+		+
Pseudalona						+						+
Ilyocryptus											+	+
Macrothrix												+
Moina										+		

Bingerville 1954	J.	F.	M.	A.	M.	J.	J.	A.	S.	0.	N.	D.
Acartia clausi	++		++	+	+	+	+	+	+	+	++	++
Naupl. Balanus	+++		+	++						+		
Metan. Crevette	+		+	+					+			
Archaeoceania	++		++	+								++
Corycaeus	+		+						+			
juv. Brosobr.								+			++	+
juv. Lamellibr.	+++		+++	+							+	+++
Asplanchna										+		
Tetramastix							+				+	
Brachionus						+	+		+		+	
Anuraea												
Triarthra							+					
Polyarthra							+					
Rattulus chatt.						+	+					
Platyias						+	+					
Bosminopsis						+	+		+	+		
Moina						+	+	+	++	++	++	
Diaphanosoma								++	++	++	+	
Ceriodaphnia									+	+		
Thermocyclops						+	+			+		

Eloka 1954	J.	F.	M.	A.	M.	J.	J.	A.	S.	Ο.	N.	D.
Acartia clausi	++		+	+	+	+		+	+		+	+
Naupl. Balanus	+++			+			+					+
Metan. Crevette	+		+			++	++			++	+	
Zoea Krabbe	+					+	+				+	
Archaeoceania	+		+									
Cyclops	+											
Sagitta			7									
juv. Brosobranch			+								+	++
Asplanchna						+			+		+	
Platyias										+		
Bosminopsis						+				+		
Diaphanosoma						+	+	+	+	+		
Grimaldina						+						
Ilyocryptus						+	+					
Ceriodaphnia						+			+			
Macrothrix							+		+			
Moina							+		++	+	+	
Pseudalona									+			
Thermocyclops						+	+	+	++	+	+	
Mesocyclops leuc.												
Ostracode							+			+	+	+

Abidjan 1953	J.	F.	M.	A.	M.	J.	J.	A.	S.	Ο.	N.	D.
Acartia clausi	+++	+++	+++	+++	++	++	+++	+++	+++	+++	+++	+++
Naupl. Balanus	+	++	++	+++	++	+		+	+	++	+	++
Zoea Krabbe	+	+		+	+				+	+		+
Metan. Crevette	+	+	+	+								+
Archaeoceania	++	+	+	+	+						++	++
Sagitta	+	+	+						+			+
Appendicularia	+			+	+							
Corycaeus	+	+	++									+
Euconchoetia	+	+	+									+
Echinopluteus	+		+									
Evadne	+	+										
juv. Brosobr.	+		+	+++	+							+++
juv. Lamellibr.		+	+						+		+	+
Penaeus	+	+	+									
Cyclops	+	+	+									
Copepode	+	+	+	+	+						+	+
Larve Jaxea		+										
Otracode		+	+									+
Ergasilus			+		+							
Asplanchna							+	+				
Brachionus falc.							+		+	+		
Tetramastix										+		
Anuraea							+		+	+		
Moina										+		
Diaphanosoma										+		
Thermocyclops						+	+	+	+	+		

Abidjan 1954	J.	F.	M.	A.	M.	J.	J.	A.	S.	0.	N.	D.
Acartia clausi	+++	+++	+++	++	+++	++	+	+++	+++	+++	+++	
Naupl. Balanus	++	+++	+	++	+			+				
Zoea Krabbe	+	+	+	+	+	+	+		+		+	
Metan. Crevette	+	+	+	+	+	+			+		+	
Archaeoceania	+	+	++		+						+	
Sagitta	+	+	+	+							+	
Appendicularia	+	+	+								+	
Corycaeus	+	++		+							++	
Euconchoetia	+	+	+								+	
Echinopluteus	+	+										
Evadne	++	++	++	+								
juv. Brosobr.		+	+	+	++							
juv. Lamellibr.		+					+					
Oithona	+	+	+									
Oncaea	+	+	+									
Syllidierlarve		+	+	+								
Doliolum	+											
Copepode	+	+	+									
Larve v. Jaxea		+										
Liriope		+										
Clythia			+		+							
Ergasilus							+					
Asplanchna									+			
Brachionus falc.						+	+		+	+		
Anuraea										+		
Tetramastix						+						
Moina						+	+		+	+	+	
Diaphanosoma						+			+	+	+	
Thermocyclops					+	+	+			+		

Banco 1953	J.	F.	M.	A.	M.	J.	J.	A.	S.	0.	N.	D.
Acartia clausi	+++	++		+++	++	++	+	++	+++	+++	+++	+++
Naupl. Balanus	+	+		+	+		+	+				
Zoea Krabbe	+			+							+	+
Metan. Crevette				+								
Archaeoceania	++	+		+	+						+	++
Corycaeus		+			+							
Syllidierlarve											+	+
Euconchoetia												+
Appendicularia												+
Penaeus	+											
Evadne	+	++										
juv. Brosobr.	+	+++		+++	++							
Ergasilus						+					+	
Brachionus						++	+++	++		++		
Tetramastix							+			+	+	
Rattulus chatt.						+	+					
Anuraea						+	+	+				
Cyclops				+	+				+	+	+	+
Moina							+		+			
Diaphanosoma										+		

Banco 1954	J.	F.	M.	A.	M.	J.	J.	A.	S.	0.	N.	D.
Acartia clausi	++	+++	+++	+++	+++	++			+++	+++	+++	
Naupl. Balanus											+	
Zoea Krabbe		+			+	+						
Archaeoceania	++	+	++	++	++						++	
Sagitta	+	+		+							+	
Doliolum	+											
Appendicularia	+	+		+								
Syllidierlarve	+		+	+	+							
Evandne	+											
Corycaeus		+			+							
Aglaura				+	+							
Liriope		+										
Metan. Crevette		+				+					+	
Moina						+			++	+		
Diaphanosoma						+			++	+		
Ceriodaphnia									+			
Brachionus						+			++	++		
Tetramastix						+			+	++		
Anuraea										+		
Asplanchna									+			
Thermocyclops						+			++			

Bimbresso 1953	J.	F.	M.	A.	M.	J.	J.	A.	S.	Ο.	N.	D.
Acartia causi	++	+++	+++	+++	+++	++	++	+++	+++	+++	++	+++
Naupl. Balanus		++	++			+			+	+		+
Zoea Krabbe	++	+	+	+	+		+			+		+
Metan. Crevette		+		+	+	+	+			+		++
Archaeoceania	++	+	+		+							++
Sagitta	+	+										+
Corycaeus	+	+										+
Syllidierlarve	+		+	+								
Ostracode	+	+										
juv. Brosobranch			+									+
Ergasilus				+	+	+				+		
juv. Lamellibr.							+	++	+			+
Moina								+		+		
Tetramastix										+		
Brachionus sp.										+		

Bimbresso 1954	J.	F.	M.	A.	M.	J.	J.	A.	S.	0.	N.	D.
Acartia clausi	+++	+++	+++	++	+++	+	++	+	++	+	++	
Naupl. Balanus		+	+						+			
Zoea Krabbe	+		+		+				+		+	
Metan. Crevette			+		+	+			+		+	
Archaeoceania	+		+									
Sagitta	+	+	+									
Corycaeus	+											
Syllidierlarve	+	+	+									
Ostracode	+										+	
juv. Brosobr.			+									
Ergasilus					+							
mariner Copep.	++	++	+	+								
Appendicularia	+											
juv. Lamellibr.			+									
Moina										+	+	
Diaphanosoma										+	+	
Ceriodaphnia											+	

Dabou 1953	J.	F.	M.	A.	M.	J.	J.	A.	S.	0.	N.	D.
Acartia clausi	+++	++	++	++	++	+	++	++	+++	++	+++	++
Naupl. Balanus		+	+									
Zoea Krabbe					+				+	+		+
Ergasilus	+		+	+	+	+		+		+		+
Ostracode				+						+		
Tetramastix	+					+						
Brachionus	+											
Diaphanosoma	+											
Ilyocryptus				+								
Thermocyclops	+	+					+			+		

Dabou 1954	J.	F.	M.	A.	M.	J.	J.	A.	S.	O.	N.	D.
Acartia clausi	+++		++	+	++	+	++	++	+++	++	+++	
Naupl. Balanus												
Zoea Krabbe				+	+				+	+	+	
Ergasilus				+	+	+	+	+				
Brachionus									+			
Moina									+	++	++	
Diaphanosoma	+								++		+	
Ilyocryptus					+							
Ceriodaphnia									+			
Thermocyclops							+		+			
Metan. Crevette					+					+	+	

Toupah 1953	J.	F.	M.	A.	M.	J.	J.	A.	S.	0.	N.	D.
Acartia clausi	+	+	+		++	+	+	+	+	+	++	+
Zoea Krabbe	+											
Ergasilus	+				+							
Brachionus	İ	+	+		+		+	++	++	+	++	+
Asplanchna	++	++	+								++	
Tetramastix												
Triarthra				+								
Notops macr.												
Rattulus styl.												
Rattulus chatt.												
Anuraea												
Bosminopsis	+++	++	+		+	+	+	+++	+	++	+	+
Diaphanosoma	+						+					
Moina	+	++			+							+
Ceriodaphnia	+		+				+					
Ilyocryptus	+						+	+	+			
Chydorus		+										
Grimaldina												+
Thermocycloyps	++	+	+	+	+		+	+	+			+
Mesocyclops										+		

Toupah 1954	J.	F.	M.	A.	M.	J.	J.	A.	S.	Ο.	N.	D.
Acartia clausi	+		+	++	+	+		+	+	+		+
Ergasilus	+		+	+	+					+		
Brachionus					+		++	++	+			+
Asplanchna			+	+	+			+	++	+		++
Tetramastix												
Rattulus chatt.												
Anuraea												
Bosminopsis	+		++	+	+	+	+++	++	++	++		++
Diaphanosoma										+		
Moina			+									++
Ceriodaphnia			+	+	+							
Pleuroxus sim.			+									
Macrothrix					+		+		+	+		
Alona sp.				+								
Thermocyclops	+		+	+	+		+	+	+			
Ostracode					+							+

Cosrou 1953	J.	F.	M.	A.	М.	J.	J.	A.	S.	0.	N.	D.
Acartia clausi	+	+	+	+	+		+		+	+	+	++
Ergasilus	+		+									
Brachionus	+	+	++	+		+	+	+	+	+	+	+
Asplanchna	+	++	+	++	+	+	+	+	++	+++	++	++
Tetramastix	++	++	+	+	+++	+			++	+	+	
Polyartha												
Anuraea												
Bosminopsis	+	+	+		+			++	+		+	+
Diaphanosoma	+											
Moina	+		+		+					+		
Ceriodaphnia												+
Pseudalona		+		+						+		
Camptocercus				+		+	+					
Thermocyclops	++	++	+	+	++	+	+	+		+	+	+

Cosrou 1954	J.	F.	M.	A.	M.	J.	J.	A.	S.	Ο.	N.	D.
Acartia clausi	+		+	+	++	+		+	+	+	+	+
Ergasilus									+		+	
Brachionus	+		+	+	+	+			++	+	+	
Asplanchna	++		+	+++	+	++		++	+++	+	+++	
Tetramastix	+		+		+					+	+	
Anuraea												
Bosminopsis				+								
Diaphanosoma									+			
Moina												
Camptocercus										+		
Pseudalona			+					+				
Thermocyclops	+		+	+		+		+	+	+	+	
Ostracode				+								

Die Lagunen Aquien, Potou und Ouladiné

Im folgenden seien einige Resultate von Schließnetzfängen aus diesen Lagunen wiedergegeben. Einzig die Lagune Ouladiné ist ebenfalls dem Einfluß des Brackwassers unterworfen und macht mehr oder weniger denselben jahreszeitlichen Wechsel durch wie die Lagune Ebrié. Sie enthält die gleichen Arten wie diese, jedoch keine typischen marinen Formen in der Trockenzeit. Die Lagunen Aquien und Potou enthalten das ganze Jahr hindurch Süßwasser, und dem entsprechend sind in ihnen nur Süßwasserarten vertreten.

Lagune Ouladiné.

29. 3. 1954.		1. 9. 1954.		
Acartia	++	Acartia	+	
Archaeoceania	+	Nauplius Balanus	++	
Zoea Crevette	+	Br. falcatus	++	
Zoea Krabbe	+	Tetramastix	+	
Nauplius Balanus	+	Thermocyclops	+	
Ostracode	+			

Lagune Aquien.

13. 4. 1954.		23. 9. 1954.	
Thermocyclops	++	Thermocyclops	+++
Moina	++	Br. falcatus	++
Br. falcatus	+	Br. pala	+
Tetramastix	+	Asplanchna	++
Asplanchna	+	Zoea Krabbe	+
Copepode	+		

Lagune Potou.

4. 12. 1954.	
Thermocyclops	+++
Asplanchna	++
Br. falcatus	+
Zoea Crevette	++
Zoea Krabbe	++
Diaphanosoma	+
Ceriodaphnia	+
Pseudalona	+

Bemerkungen zum Phytoplankton

Das Phytoplankton wurde in dieser Arbeit nicht speziell untersucht. Einige Proben von Süßwasseralgen wurden in verdankenswerter Weise in den Laboratorien von Prof. Jaag, Zürich, bestimmt. Die Proben stammen aus der Bucht von Toupah und aus der Uferzone von Bingerville. Die nachfolgenden Listen enthalten die darin gefundenen Arten.

Toupah, 13. 1. 1952.

Aphanocapsa elachista var. conferta
Chroococcus limneticus
Merismopedia lauca
Microcystis aeruginosa
Lyngbya limnetica
Phormidium mucicola
Melosira ambigua
Aulacodiscus sp.
Staurastrum cf. tetracerum

Toupah, 8. 2. 1955.

Anabaena cf. variabilis Anabaena sp. Aphanocapsa elachista Chroococcus limneticus Lyngbya contorta Lyngbya limnetica Microcystis aeruginosa Coscinodiscus lacustris Melosira ambigua Vorticella sp.

Bingerville, Nov. 1954.

Tetraspora sp.
Trachelomonas volvocina
Clostridium sp.
Penium sp.
Pleurotaenia cf. eugeneum
Eisenbakterien

Die Diatomeen, Dinoflagellaten und Tintinnidae, welche z. T. in reichlicher Menge in den Proben von Abidjan und Grand-Bassam vorhanden waren, wurden von Estela de Sousa e Silva bestimmt.

Abidjan, Jan. 1954.

Bacteriastrum hyalinum
Cerataulina bergonii
Chaetoceros coartatus
Chaetoceros decipiens
Chaetoceros peruvianus
Chaetoceros peruvianus
Chaetoceros rostratum
Coscinodiscus excentricus
Coscinodiscus gigas
Coscinodiscus granii
Coscinodiscus oculus iridis
Coscinodiscus radiatus
Rhizosolenia acuminata
Rhizosolenia alata
Rhizosolenia castracanei
Rhizosolenia formosa

Rhizosolenia robusta
Rhizosolenia stolterforthi
Rhizosolenia styliformis
Rhizosolenia temperei
Stephanopyxis palmeriana
Streptotheca thamensis
Ceratium cotrarium
Ceratium subrobustum
Ceratium tricoceros
Ceratium tripos
Dinophysis caudata
Noctiluca scintillans
Peridinium depressum
Pyrocystis fusiformis
Tintinnopsis compressa

Grand-Bassam, Febr. 1954.

Bacilaria paradoxa Bacteriastrum hyalinum Biddulphia mobiliensis Cerataulina bergonii Cerataulina compacta Chaetoceros anastomosans Chaetoceros atlanticus Chaetoceros decipiens Chaetoceros pseudocurvisetus Chaetoceros tortissimum Coscinodiscus gigas Coscinodiscus oculus iridis Coscinodiscus radiatus Dactyliosolen mediterraneus Guinardia flaccida Lithodesmium undulatum Navicula bombus Nitzschia seriata Paralia sulcata

Planctoniella sol Pleurosigma balticum Pleurosigma sp. Rhizosolenia acuminata Rhizosolenia alata Rhizosolenia formosa Rhizosolenia robusta Rhizosolenia schrubsolei Rhizosolenia stolterforthi Rhizosolenia styliformis Schroderella schroderi Stephanopyxis palmeriana Thalassiothrix nitzschioides Ceratium candelabrum Ceratium hexacantum Ceratium lunula Ceratium massiliense Ceratium ranipes Ceratium tricoceros

Ceratium tripos Dinophysis caudata Peridinium depressum Proplectella claparedei Tintinnopsis beroidea Tintinnopsis mortenseni

7. Schlußfolgerung:

Trotz dem Umstande, daß sich unsere Untersuchungen lediglich über 2 Jahre erstreckten, können an Hand der Resultate mehrere Schlußfolgerungen gezogen werden.

a) Die Wassertemperatur ist abhängig von den Klimaschwankungen, d. h. vom Wechsel der Trocken- und Regenzeiten. Die höchsten Wassertemperaturen wurden Ende der großen Trokkenzeit, die niedrigsten Ende der großen Regenzeit gemessen.

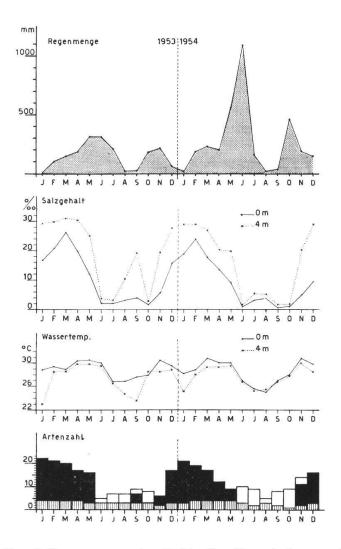


Abb. 23. Die Darstellung veranschaulicht die Korrelation zwischen Niederschlagsmenge, Salzgehalt, Temperatur und Planktonarten-Zahl beim Fangort Abidjan (1953 und 1954). Schwarz = marine Formen, weiß = Süßwasserformen, schraffiert = Brackwasserformen.

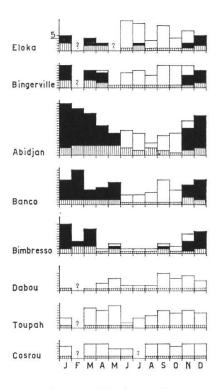


Abb. 24. Zusammenfassung der Schließnetzfänge. Artenzahl der marinen, Brackwasser- und Süßwasserarten pro Monat an den jeweiligen Fangstellen. Schwarz = marine Formen, weiß = Süßwasserplankter, schraffiert = Brackwasserarten (1954).

- b) Der Einfluß dieser «Jahreszeiten» ist bei der Sichttiefe weniger deutlich, doch wurde im allgemeinen eine maximale Sichttiefe während der großen Trockenzeit und eine minimale Sichttiefe während der großen Regenzeit festgestellt.
- c) An zwei Stellen kann Meerwasser in die Lagune eindringen: durch den Canal de Vridi bei Abidjan und bei der Mündung des Flusses Comoe bei Grand-Bassam. Der Salzgehalt der Lagune an diesen Stellen steht in enger Korrelation mit den Niederschlagsmengen. Das heißt, daß nur während der Trockenzeiten (vor allem während der großen Trockenzeit) Salzwasser in die Lagune eindringt. Während der großen Regenzeit wird die Lagune fast vollkommen ausgesüßt.
- d) Dadurch, daß während einer gewissen Zeit des Jahres an den beiden erwähnten Stellen Salzwasser in die Lagune vordringt, findet man in diesen und den benachbarten Lagunenabschnitten marine Plankter, sofern die Salzkonzentration genügend hoch ist.
- e) Die quantitativen Fänge zeigen, daß die Lagune relativ planktonarm ist, besonders was die Süßwasserformen anbelangt.
- f) Die Tabellen der Schließnetzfänge bringen klar zum Ausdruck, daß an denjenigen Fangstellen, welche einem Wechsel von Salz- und Süßwasser unterworfen sind, während der Trocken-

zeit marine Formen, während der Regenzeit Süßwasserformen, vorherrschen. Diejenigen Lagunenteile, welche diesem Wechsel nicht unterliegen, d. h. das ganze Jahr hindurch Süßwasser enthalten, beherbergen nur Süßwasserplankter.

Abb. 23 veranschaulicht die Korrelationen zwischen Regenmenge, Salzgehalt, Planktonarten (marine und Süßwasser) und der Wassertemperatur beim Fangort Abidjan in den Jahren 1953 und 1954.

Abb. 24 faßt die Resultate der Schließnetzfänge zusammen (1954): Aus dieser Darstellung geht deutlich hervor, daß bei den Fangorten Eloka, Bingerville, Abidjan, Banco und Bimbresso während der großen Trockenzeit marine Formen, und während der großen Regenzeit Süßwasserarten vorherrschen. Die kleine Trokkenzeit brachte in diesem Jahre keinen Wechsel der Planktonarten, da keine marinen Formen in die Lagune einzudringen vermochten. Die Ort Dabou, Toupah und Cosrou wiesen, neben einigen Brackwasserarten, nur Süßwasserplankter auf.

Literaturverzeichnis.

Beauchamp, P. de. (1955). Sur quelques rotifères de la Côte d'Ivoire. — Acta trop. 12, 68-72

Collignon, J. (1955). Observations hydrologiques dans la baie de Pointe Noire.

— Bull. Inst. Etudes centrafr. N.S. no 10, 153-166

GAUTHIER, E. F. (1931). Les Côtes de l'Afrique Occidentale au Sud de Dakar. — Ann. Géogr. 40: 163-174.

LINDBERG, K. (1957). Cyclopides (Crustacés copépodes) de la Côte d'Ivoire. — Bull. Inst. franç. Afrique noire, 19 A, 134-179

Malavoy, L. (1937). Géologie du littoral de la Côte d'Ivoire. — C. R. Congrès de Varsovie, Tome II

RAHM, U. (1954). La Côte d'Ivoire, centre de recherches tropicales. — Acta trop. 11, 222-295

RAHM, U. (1955). Verbreitung und Biologie von Acartia clausi gaboonensis (Scott) in der Lagune Ebrié (Elfenbeinküste). — Verh. Schweiz. naturf. Ges. Pruntrut 155-158

RAHM, U. (1956). Sur la présence de *Trochosphaera solstitialis* (Thorpe, 1893) en Afrique. —Bull. Inst. franç. Afrique noire, 18 A, 708-711

RAHM, U. (1956). Cladoceren aus dem Regenwaldgebiet der Elfenbeinküste. – Verh. naturf. Ges. Basel, 67, 239-268

Picard, J. & Rahm, U. (1954). Archaeoceania n.g. tournieri n.sp. Une nouvelle Anthoméduse de la famille des Oceaniidae, provenant de la lagune Ebrié (Côte d'Ivoire). — Acta trop. 11, 303-307

ROUGERIE, G. (1950). Le port d'Abidjan. — Bull. Inst. franç. Afrique noire. 12 A, 751-837

SERVICE MÉTÉOROLOGIQUE de la Côte d'Ivoire, Abidjan.

Sousa E Silva, E. de. (1956). Contribution à l'étude du microplancton de Dakar et des régions maritimes voisines. — Bull. Inst. franç. Afrique noire, 18 A, 335-371

Résumé.

Une enquête sur l'écologie du zooplancton de la lagune Ebrié a été effectuée en 1953 et 1954. La lagune, son hydrologie et son plancton sont décrits. Les résultats de ces observations sont les suivants :

- 1º La température de l'eau varie selon les saisons (saisons sèches et saisons des pluies).
- 2º La transparence de l'eau dépend également des saisons. Elle est plus grande en saison sèche.
- 3º A deux endroits, la lagune est reliée à la mer de façon telle que l'eau salée y pénètre pendant la saison sèche.
- 4º Dans le chapitre 4, les différentes espèces des formes planctoniques sont discutées.
- 5º Des échantillons quantitatifs de plancton ont été prélevés tous les mois à 8 stations différentes. On a aussi travaillé avec un filet à plancton (voir carte fig. 1).
- 6º En ce qui concerne la station d'Abidjan, la figure 23 démontre la corrélation existant entre la pluviosité, la salinité et la température d'une part et la présence et la fréquence des formes planctoniques d'autre part (noir = formes marines, blanc = formes d'eau douce, hachuré = formes d'eau saumâtre). Figure 24 résume les échantillons pris avec le filet à plancton aux différentes stations en 1954.

Summary.

An ecological survey on the zooplankton of the lagoon Ebrié was carried on during 1953 and 1954. The lagoon, the hydrology and the plankton are discussed and the following conclusions can be drawn:

- 1. The temperature depends on the "seasons" (dry seasons and rain seasons).
- 2. Also the visibility in the water changes with the seasons.
- 3. At two places the lagoon is in connection with the sea where during the dry seasons saltwater penetrates into the lagoon.
 - 4. In chapter 4 the different species of plankton are described.
- 5. Quantitative samples were taken regularly each month at 8 different stations (see map fig. 1).
- 6. Fig. 23 shows the correlation between the rainfall, saltwater-concentration, water temperature, and the number of plankton species present at Abidjan (black = marine forms; white = fresh water forms; hatched = brackish water forms). Fig. 24 gives a summary of the samples taken with the plankton net at the different stations in 1954.