Zeitschrift: Acta Tropica

Herausgeber: Schweizerisches Tropeninstitut (Basel)

Band: 13 (1956)

Heft: 4

Artikel: Zum Problem der Attraktion von Stechmücken durch den Menschen

Autor: Rahm, U.

DOI: https://doi.org/10.5169/seals-310613

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Zum Problem der Attraktion von Stechmücken durch den Menschen. ¹

Von U. RAHM.

Die Faktoren, welche blutsaugenden Insekten das Auffinden des Wirtes (Mensch und Tier) ermöglichen, wurden schon an mehreren Insektengattungen und -arten untersucht. Von besonderem Interesse sind hierbei Insekten, die als Krankheitsüberträger in Frage kommen. Versuche mit Anopheles, Aedes und Culex haben zum Teil schon viele aufschlußreiche Resultate geliefert, und die Arbeiten von Brown (1954, 1956), Crumb (1922), Gjullin (1947), Herter (1953), HOWLETT (1910), KENNEDY (1939), LAARMAN (1955), PARKER (1948, 1952), Peterson and Brown (1951), Reeves (1953), Reuter (1936), Rudolfs (1922), Schaerffenberg und Kupka (1951), Van Thiel (1937), Thomson Muirhead-(1938), WILLIS & ROTH (1952) und anderen haben gezeigt, daß Wärme, Feuchtigkeit, Kohlendioxyd, Schweiß, Bewegung, Farbe und Duftstoffe eine Rolle spielen können. Wir stellten uns zur Aufgabe, mehrere Personen im Einzelund Vergleichsversuch auszutesten. In dieser Arbeit wird vorerst die Attraktion von fünf männlichen und fünf weiblichen Personen im Alter zwischen 20 und 30 Jahren verglichen. Außerdem wurden an einigen Leuten Feuchtigkeits- und Temperaturmessungen auf der Haut vorgenommen.

Diese Versuche wurden im Rahmen einer Arbeitsgemeinschaft des Schweizerischen Tropeninstitutes durchgeführt, die unter der Leitung von Herrn Prof. R. Geigy steht und an welcher sich Herr Dr. Th. Freyvogel (z. Z. Ifakara, Tanganyika) sowie der Autor dieser Publikation als Mitarbeiter beteiligen. Frl. Dr. D. Wiesinger (Basel), die seinerzeit die Anziehung von Triatoma zum Warmblüterwirt untersucht hat (1956), ging uns bei der Ausarbeitung der Methoden, sowie bei den ersten Versuchen in freundlicher Weise an die Hand, wofür ihr hier der beste Dank ausgesprochen sei. Auch den verschiedenen geduldigen Versuchspersonen, die sich uns zur Verfügung gestellt haben, möchten wir herzlich danken.

Material und Technik.

a) Versuchsmücken: Als Versuchstier diente uns die Gelbfieber-Mücke Aedes aegypti L., die seit Jahren im Schweizerischen Tropeninstitut gehalten wird. Die Mücken wurden nach den von Gander (1951) und Geigy & Herbig (1955, S. 117 ff.) angegebenen Methoden gezüchtet und gehalten. Die Aktivität von Aedes ist im Gegensatz zu Anopheles nicht an die Abendstunden gebunden, weshalb diese Mücken für unsere Versuche geeigneter schienen. Für sämtliche Teste wurden jeweils 100 Weibchen verwendet, die bereits mindestens einmal auf einem Meerschweinchen eine Blutmahlzeit eingenommen hatten und im übrigen mit Honigwasser gefüttert wurden. Wir achteten stets darauf, daß den Mücken 48 Stunden vor Versuchsbeginn kein Honigwasser mehr geboten wurde. Ferner erhielten sie die letzte Blutmahlzeit 5—6 Tage vor dem Versuch. Diese Maßnahmen garantierten gute Stechlust. Die 100 Weibchen wurden am Morgen des Versuchstages mit einem Saugrohr dem Sammelkäfig entnommen und in den

¹ Diese Arbeit ist aus Arbeitsbeschaffungskrediten des Bundes finanziert worden.

Versuchskäfig verbracht, wo sie sich eine halbe Stunde adaptieren konnten. Pro Tag wurden mit denselben Mücken 6—8 Versuche durchgeführt, und zwar ca. einer pro Stunde. Für jeden Versuchstag wurden neue Aedes-Weibchen verwendet. Wir führten diese Teste in einem Laborraum bei einer Temperatur von 25° C (± 1°) und bei einer relativen Luftfeuchtigkeit von 60% (± 10%) bei Tageslicht aus, wobei die Versuchskäfige immer gleich orientiert waren.

b) Testkäfige: Es wurden drei Typen Versuchskäfige verwendet. Wir gingen von der Idee aus, einen Versuchskäfig zu bauen, mit welchem die Attraktion des Unterarmes und der Hand von Personen im Einzel- und Vergleichsversuch getestet werden konnten. Es schien uns jedoch für Serienuntersuchungen wichtig, daß die Leute während des Testes von den Mücken nicht gestochen werden konnten. Die Käfige setzten sich deshalb aus zwei Teilen zusammen; einem oberen Abteil für die Mücken und einem unteren Raum, in welchen die zu testenden Arme (oder andere Objekte) eingeführt werden konnten. Das 45 · 45 · 45 cm große Mückenabteil ist seitlich mit feiner Metallgaze, oben mit Sperrholz und vorn mit einer Glasscheibe abgeschlossen. Die Sperrholzplatte der Rückwand hat zwei mit Tüllärmeln versehene Schlupflöcher von 15 cm Durchmesser. Gegen den unteren Raum ist dieser Käfigteil mit einem Gazegitter abgeschirmt, so daß die Mücken das Testobjekt nicht erreichen können. Im Käfigtyp I für Einzelversuche ist dieser Zwischenboden mit zwei Kartonstreifen seitlich so abgedeckt, daß in der Mitte eine 13 cm breite Längsbahn des Gazegitters frei bleibt. Im Käfigtyp II für Vergleichsversuche ist das Gazegitter in der Mitte abgedeckt, so daß links und rechts je eine Längsbahn von 10 cm frei bleibt. Außerdem ist beim Typ II der untere Raum senkrecht in zwei gleich große Abteile getrennt. Die Testarme konnten hier eingeführt und so nahe an das Gazegitter gebracht werden, daß die Mücken eben nicht mehr stechen, daß aber Wärme, Feuchtigkeit, Duft usw. durch das Gitter ins obere Abteil zu den Mücken gelangen konnten (Abb. 1). Käfigtyp III ähnelt im Prinzip dem Typ II, nur daß hier durch Einbau von Zwischenelementen der Abstand des Mückenabteils vom unteren Raum beliebig vertikal verringert, beziehungsweise vergrößert werden kann (25, 50 und 75 cm).

Die Mücken verhielten sich im Versuchskäfig ruhig und saßen vor allem an den beiden seitlichen Gitterwänden, an der hinteren Wand und an der Decke, nur selten am Gitterboden des Käfigs. Wurde ein Arm (oder ein anderes attraktives Objekt) in den unteren Raum gehalten, so begannen die Mücken bald unruhig im Käfig umherzufliegen, und eine gewisse Anzahl ließ sich auf der Drahtgaze über dem Testobjekt nieder und versuchte, durch die Gittermaschen zu stechen. Unter dem Begriff «Einstich» wurden alle diejenigen Tiere gezählt, welche im Moment des Auszählens solche Stechbewegungen ausführten. Als «Anflug» bewertet wurden diejenigen Mücken, welche sich beim Auszählen dem Testobjekt über dem Gazegitter fliegend bis auf eine Distanz von ca. 5-8 cm genähert hatten. Jeder Test dauerte 10 Minuten; es wurde jeweils nach Ablauf einer Minute «Einstich» und «Anflug» gezählt, wobei die erste Zählung immer 30 Sekunden nach Versuchsbeginn erfolgte. Die Handfläche mit geschlossenen, gestreckten Fingern und die Arminnenseite wurden nach oben, d. h. gegen das Mückenabteil gehalten. Schon in den Vorversuchen hatte sich ein wesentlicher Unterschied in der Attraktionsstärke von Hand und Unterarm gezeigt, deshalb wurden die «Einstiche» auf Hand und Arm gesondert notiert. Als «Hand» wird die gesamte Innenfläche der Hand bis und mit Gelenk bezeichnet, als «Arm» die Innenseite des Armes bis 5 cm vor dem Ellbogengelenk. Der sogenannte «künstliche Arm» wurde folgendermaßen hergestellt. Ein rundes 3/4 1 Einmachglas wurde mit 43° C warmem Wasser gefüllt, waagrecht gelegt und mit einem feuchten Tuch bedeckt. Die Temperatur auf dem Tuche betrug

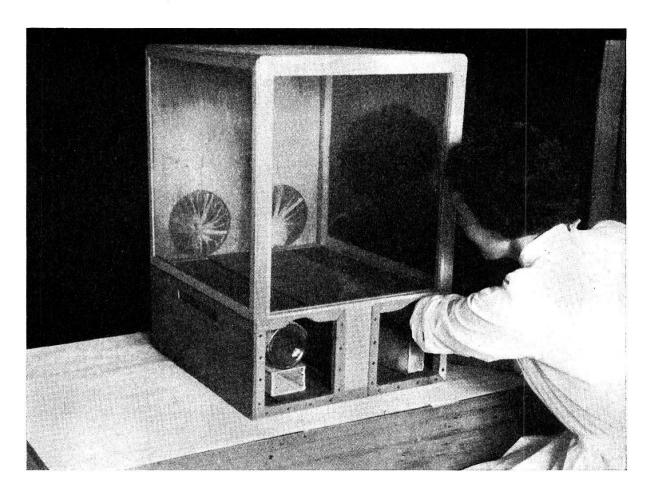


Abb. 1. Testkäfig Typ II für Vergleichsversuche.

so 34—35° C und nahm während der jeweiligen 10-Minuten-Versuche nicht wesentlich ab. Ein zweites, identisches Einmachglas wurde ebenfalls mit 43° C warmem Wasser gefüllt, aber mit einem trockenen Tuch bedeckt. Diese beiden Gläser wurden hintereinander angeordnet, wobei wir, wie aus den Versuchen ersichtlich ist, die feuchte Flasche als «Hand» und die trockene als «Arm» bezeichneten. Alle Versuche wurden vom Verfasser oder seiner Mitarbeiterin überwacht, ausgezählt und protokolliert. Dadurch konnten allfällige Zählfehler auf ein Minimum reduziert werden, was durch die gleichzeitigen Kontrollzählungen der Versuchspersonen selbst bestätigt wurde.

- c) Feuchtigkeitsmessungen. Im Zusammenhang mit diesen Vergleichsversuchen schien es interessant, die an Arm und Hand abgegebene Feuchtigkeit zu messen. Ungefähr 30 mg mittelkörniges Kalziumchlorid purum siccum wurden in einer kleinen Petrischale von 4,5 cm Durchmesser und 1 cm Höhe abgewogen, sofort auf die Hautstelle aufgelegt und 15 Minuten darauf belassen. Dann wurde die Gewichtszunahme bestimmt, die, in Milligramm ausgedrückt, die Feuchtigkeitsabgabe der Hand oder des Armes zeigte. Kontrollversuche mit Phosphorpentoxyd ergaben analoge Resultate, doch war diese Substanz weniger geeignet, da sie auf der Haut ätzend wirkt. Während unsere Versuche im Gange waren, erschien die Arbeit von SMART & BROWN (1956), welche Autoren mittels umgebundener Plastiksäckchen die an den Händen abgegebene Feuchtigkeitsmenge aufgefangen und durch Wägen bestimmt haben.
- d) Temperaturmessungen. Die Hauttemperaturen wurden mit einem Kupfer-Constantan Thermoelement, das an einem Galvanometer angeschlossen war, gemessen.

Kohlendioxyd-Untersuchungen.

Um festzustellen, ob das von der Haut abgegebene CO2 bei der Attraktion der Mücken eine Rolle spielt, versuchten wir das von einem relativ kleinen Hautflächenbezirk abgegebene CO₂ aufzufangen und zu messen. Eine Schröpfflasche wurde auf die Hautstelle aufgeschnallt und 30 Minuten darauf belassen. Mit einer Injektionsnadel entnahmen wir durch eine kleine, mit einem Gummipfropfen verschlossene Öffnung die aufgefangene Luft. Versuche, das so gewonnene CO₂ mit dem Mikroanalyseapparat von Krogh (1908) ² zu bestimmen, ergaben jedoch kein Resultat, da die von der Haut abgegebene CO₂-Menge viel zu gering ist. Nach OPPENHEIMER beträgt die Hautatmung bei 22° C 25 ccm CO₂ pro Stunde und m² Hautfläche. Die verwendete Schröpfflasche hatte eine Öffnung von 6,7 cm², d. h. etwa den 1490sten Teil eines m². Der durchschnittliche CO₂-Gehalt der ausgeatmeten Luft beträgt 4% (nach Höber und eigenen Messungen). Nach Oppenheimer und Van THIEL (1954) macht die Hautatmung 1% der Lungenatmung aus, was einer Konzentration von 0,04% CO₂ entspricht, die, verglichen mit den 0,03% CO₂ der Luft, sehr gering ist.

Es zeigt sich somit, daß das in so minimen Mengen von der Haut abgegebene CO₂ für unsere Fragestellung nicht von Bedeutung sein kann und jedenfalls nicht als ausschlaggebender Faktor in Frage kommt. In der Literatur finden sich z. T. widersprechende Angaben, besonders in bezug auf Aedes. Brown (1952) konnte in Feldversuchen mit einem Robot, der einen trockenen, warmen Luftstrom mit 10% CO2 ausströmte, eine deutliche Attraktion feststellen. In CO₃-gesättigtem Wasser getränkte Stoffe waren in Feldversuchen ohne erhöhte Wirkung. In Laborversuchen (Brown, Sarkaria & Thompson 1952) wirkte ein trockener Luftstrom mit CO2 attraktiver als nur trockene Luft und gleich stark wie ein feuchter Luftstrom. 100% CO_2 war $\frac{1}{3}$ weniger attraktiv als ein feuchter Luftstrom. REEVES (1953) fand für gewisse Anopheles-Arten in Feldversuchen mit verschiedenen CO₂-Konzentrationen eine positive Wirkung. Wenn zu verdünnten Schweißlösungen, die sich als deutlich attraktiv erwiesen, CO2 hinzugefügt wurde, so erhöhte sich die Attraktion für Aedes nicht (Thompson & Brown 1955). WILLIS, DE LONG und auch CRUMB fanden bei verschiedenen Stechmückenarten keine positive Wirkung von CO₂. Bei Laborversuchen von Van Thiel und Laarman (1954) wirkte ein 0,25—10prozentiger CO₃-Strom auf Anopheles attraktiv. An-

² Herr Dr. E. Flückiger von der Physiologischen Anstalt der Universität Basel hat mir in freundlicher Weise diesen Apparat zur Verfügung gestellt.

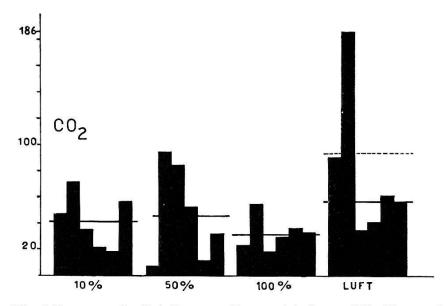


Abb. 2. Attraktion von Luftströmen mit verschiedener CO₂-Konzentration.

dererseits vermindert aber die Elimination des von der Haut abgegebenen CO₂ die Attraktion nicht.

Einige wenige eigene Testversuche mit einem CO₂-Strom zeigten ebenfalls keine positive Wirkung auf Aedes. An den Boden des Käfigs wurde ein Glasrohr geführt, dessen Öffnung direkt unter dem Gitter lag. Nach der Methode von Wiesinger (1956) testeten wir verschiedene CO₂-Konzentrationen in einem Luftstrom, der mengenmäßig ungefähr unserer Atemluft entsprach. Die Resultate (Abb. 2) zeigen, daß bei 10% und 50% CO₂ die Durchschnittswerte ungefähr gleich sind und daß bei 100% CO₂ eher eine Repellentwirkung zustande kam. Der Kontrolluftstrom scheint sogar im Durchschnitt attraktiver, doch wenn man den einzelnen, extrem hohen Wert vernachlässigt (Abb. 2 «186»), so bekommt man etwa den gleichen Durchschnitt wie bei 10% und 50% CO₂. Auch die Aktivität der Mücken wurde in unseren Versuchen durch CO₂-Beigabe nicht erhöht, doch muß betont werden, daß ein nicht erwärmter Luftstrom benützt wurde.

Temperaturmessungen.

Ein Temperaturunterschied zwischen Hand und Arm der Versuchspersonen war bei den meisten Messungen festzustellen, doch beträgt er im Mittel nur ca. 0.45° C. Interessant ist, daß bei den weiblichen Personen D. W. und O. W., welche sich in den Versuchen als sehr schwach attraktiv erwiesen, die Temperatur der Hand oft geringer oder gleich war wie die des Armes (Tab. 1). Dies stimmt mit neueren Befunden von SMART & BROWN (1956) überein. Vergleicht man jedoch die übrigen Temperaturmessungen mit den entsprechenden Versuchsresultaten, so ist nicht immer eine

TABELLE 1.
Temperaturmessungen.

Ve	rsuchspe	erson: D.	W.	Ve	rsuchspe	rson: U. l	R. 3
Vers. Nr.	Hand	Arm	Diff.	Vers. Nr.	Hand	Arm	Diff.
57	34.2	34,7	0.5	558	34,9	33,1	1,8
58	34.4	$32,\!5$	-1,9	559	34,9	33,9	1
61	28,1	32,9	4,8	560	34,6	33,3	1,3
62	32	31,5	+ 0.5	561	35,4	35	0,4
63	28	33,1	5.1	562	$35,\!5$	34,6	0,9
66	32,7	32,1	+ 0.6	563	34,6	34,3	0,3
67	28,7	33,3	4,6	567	$35,\!5$	34,3	1,2
81	$34,\!5$	34,6	0,1	571	34,1	34,3	0,2
84	29,8	33	3,2	57	34,6	33,3	1,3
99	30,2	33	3,1	58	34,7	34,2	0.5
110	34,3	34,1	+ 0,2	62	35,1	34,4	0,7
112	33,9	34,6	0,7	63	34,2	33,7	0,5
207	31,5	33,8	2,3	68	34	33,9	0,1
522	28	31,2	3,2	73	35.4	35,1	0,3
523	35,1	34,1	+1	79	35,1	34,7	0,4
524	34,5	33,3	+ 1,2	99	34,9	34,2	0,7
525	31,3	32,9	1,6	109	34,7	34,6	0,1
	-			113	35,1	35	0,1
V	ersuchsp	erson: S	. S.	208	34	34	0
Vers. Nr.	Hand	Arm	Diff.				
69	$34,\!2$	32,8	1,4				
72	33,9	32,7	1,2	Ve	rsuchspe	rson: A.	AE.
80	34,8	34,7	0,1	Vers. Nr.	Hand	$\overline{\text{Arm}}$	Diff.
98	33,6	33,7	0,1	558	34,7	34,7	0
207	34,1	32,8	1,3	559	35,5	34,7 $34,4$	1,1
				560	34,7	34	0,7
	-	erson: E		561	35,7	35,6	0,1
Vers. Nr.	Hand	Arm	Diff.	562	35,5	34,9	0,6
74	34,7	33,5	1,2	563	35,3	34,9	0,4
107	34	33,9	0,1	570	34.9	34,4	0,5
	****			531	34,2	33,9	0,3
Versuchsperson: A. SCH.			SCH.	532	34,6	33,5	1,1
Vers. Nr.	Hand	Arm	Diff.	533	35,5	35,2	0,3
567	35,8	34,6	1,2	534	35	34,75	0,2
571	33,8	33,6	$0,\!2$	535	34,4	34,1	0,3

Korrelation zwischen Temperatur und Attraktionsstärke festzustellen, was in einem gewissen Widerspruch zu den Resultaten von Smart & Brown (1956) steht. Diese Autoren machen die erhöhte Temperatur einer Hand für die stärkere Attraktion verantwortlich.

Feuchtigkeitsmessungen.

Die Feuchtigkeitsmessungen an den Versuchspersonen zeigen, daß die Hand viel mehr Feuchtigkeit abgibt als der Arm. Anhand der Messungen kann man feststellen, daß das abgegebene Feuchtigkeitsquantum je nach Meßtag und Stunde bei einer Person ziemlich differieren kann. Nimmt man die Mittelwerte der einzelnen Feuchtigkeitsmessungen, so sind auch Unterschiede zwischen den Personen vorhanden (Tab. 2).

Vergleicht man die Mückenattraktion mit den jeweiligen Feuchtigkeitsquanten, so findet man jedoch keine Korrelation. Beson-

TABELLE 2.
Feuchtigkeitsmessungen.

Versuchsperson: U. R. & Versuchsperson: S. S. Versuchsperson	Versuchsperson: A. SCH.		
Vers. Nr. Hand Arm Vers. Nr. Hand Arm Vers. Nr. Hand	d Arm		
99 21,9 3 98 85 5 363 29,	5,9		
109 27,6 4 207 99,7 1,8 394 25,	7		
117 $30,7$ $2,4$ 249 $122,8$ $1,9$ 397 $23,$			
121 20,9 6,9 255 123,1 9,1 402 41,			
130 45,3 0,8 564 118,5 15 565 24	19		
172 20 2,2 568 72 4,5 567 40	1		
208 19,1 2,3 570 61 5 571 20	6,8		
234 19 0,6 574 113 20 576 50	5		
558 36,5 9 603 79 8,7 577 14	3		
559 34 6,5 763 91,6 15 766 19,	3,7		
560 27 4,5 720 77,2 10,7 753 32	5,6		
545 44 10			
546 40 10 Versuchspers	n: G. S.		
547 32 6 Vers. Nr. Ha			
548 47,5 7 773 41,			
571 36 11,5 Versuchsperson: A. AE. 762 28,			
778 47,3 13,2 Vers. Nr. Hand Arm 766 35,			
790 31 6,9 753 31			
769 39.4 24.8 217 21.4 2.4 756 40	17,4		
757 41,3 14,7 243 16,2 0			
246 18 2,5 254 14.8 0.4 Versuchsperso	n·D W		
Y CM			
10,0 0,0			
107 14,8 1,6 532 19 6,4 110 24,			
250 16,1 1,8 533 19,4 5,7 115 25,			
256 15,4 0 534 35,6 10 121 27,			
421 12 3,2 558 18 9 130 23, 425 12.6 3.7 559 16 9 207 21,			
Vanauahananana E E			
Versuchsperson: E. E. 545 18,5 7 523 26, Vers. Nr. Hand Arm 568 24,5 7 524 20,			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
214 21,7 1,9 577 12,5 11 527 25, 241 23,5 3,2 603 13 10 575 32	5		
247 25,5 5,2 505 15 10 575 52 247 27,5 2,3 721 25,4 7,1 593 25	$_{4,2}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,3		

ders deutlich kommt dies bei Person S S. \mathcal{P} zum Ausdruck, welche sowohl in den Einzel- als auch in den Vergleichsversuchen als mittelstarker Attraktor bezeichnet werden muß, aber die weitaus größte Handfeuchtigkeit aufweist. Der Attraktionsunterschied zwischen Hand und Arm läßt hingegen vermuten, daß die Mücken auf dem einmal gewählten Wirt von feuchteren Hautstellen angelockt werden (siehe Diskussion).

Vorversuche.

In einleitenden Versuchen wurde die Zuverlässigkeit der Testmethode erprobt. In den Käfigen verteilten sich die Mücken relativ gleichmäßig an Seitenwänden und Decke, was besonders für die Vergleichsversuche wichtig war. Um eine ganz sichere zufällige Durchmischung der Population zu bekommen, erwies es sich als zweckmäßig, die Mücken jeweils kurz vor Versuchsbeginn einbis zweimal aufzuscheuchen.

Schon die ersten Versuche bewiesen, daß die Mücken eine ausgesprochene Praeferenz für die Hände der Versuchspersonen zeigten und daß die Armpartie viel weniger angeflogen wurde. Wie aus Tab. 3 ersichtlich ist, war der Prozentsatz der aktiven Mücken recht hoch. Die Totalzahl der «Anflüge» und «Einstiche» beider Versuchspersonen, dividiert durch die 10 Auszählungen, ergibt den Prozentsatz der mit Anflug oder Einstich reagierenden Mükken, da pro Versuch je 100 Aedes verwendet wurden. Es zeigte sich auch, daß die Mücken eine gute Reizquelle relativ rasch wahr-

TABELLE 3.

Prozentsatz der in verschiedenen Vergleichsversuchen aktivierten und attrahierten Mücken.

Vers. Nr.	Personen a+b	«Anflüge» bei a+b	a+b	«Einstiche» bei a+b	% a+b
732	SS $Q + AAE$	3.7 + 6.1	9,8	7.6 + 29.7	37,3
738	$ASCH \ ? + GS$	3 4 + 4,7	8,7	31 + 18	49
753	ASCH $9 + GS$	3,2 + 4,3	7,5	6.5 + 9.6	16,1
754	$UR \delta + OW$	$\stackrel{\bigcirc}{}$ 3,5 $+$ 0,5	4	21 + 0.7	21,7
757	$UR \delta + OW$	9 7.8 + 3.4	11,2	43,4 + 9	52,4
716	SS $Q + AAE$	3.5 + 5.5	9	8,6 + 32,9	41,5
718	ASCH $Q + AAE$	3.9 + 4.1	8	23,4 + 30,9	54,3
721	ASCH $9 + AAE$	3 5,4 ± 5,6	11	22,3 + 34,7	57
722	$UR \delta + GS$	359 + 6.7	12,6	20,4 + 20,6	41
788	SS $Q + ASCH$	9 4.5 + 4.8	9,3	26.3 + 17.3	43,6
789	UR $Q + ASCH$	9 7,8 + 6.3	14,1	21,7 + 22,6	44,3
812	AAE δ + EE	3 4,6 + 3,7	8,3	16,3 + 14,6	30,9

Abb. 3. Attraktion der Mücken während eines Versuches bei verschiedenen Personen.

nehmen und anfliegen. Dies ist unter anderem auch dem Umstand zuzuschreiben, daß durch unsere Versuchsanordnung die aktivierenden und attrahierenden Stoffe vom Testobjekt mit der Wärme durch den Gitterboden hindurch senkrecht nach oben direkt zu den Mücken gelangten. In Testen, bei welchen unser Versuchskäfig um 90 Grad umgelegt wurde, so daß die Reizquelle seitlich lag, reagierten nämlich die Mücken viel schwächer. In Abb. 3 sind auf der Ordinate die Zahl der «Einstiche», auf der Abszisse die Zählungen aufgetragen. Der Verlauf der einzelnen Kurven ergibt, daß bis zur vierten Zählung, d. h. bis 3½ Minuten nach Versuchsbeginn, die Zahl der angelockten Mücken rasch ansteigt und daß sie sich von diesem Zeitpunkt an bis zur 10. Zählung relativ konstant hält. Nach drei bis vier Minuten sind demnach alle aktivierbaren Mücken stimuliert. Auf die Begriffe Aktivierung und Attraktion soll in der Diskussion näher eingegangen werden. In den Versuchen mußte auch ermittelt werden, ob die Reaktion der Aedes-Mücken sich über den ganzen Versuchstag hin gleich verhält, oder ob sie zu bestimmten Tageszeiten mehr oder weniger aktiv sind. An drei verschiedenen Daten wurde jeweils während eines ganzen Tages zirka alle Stunden ein Test mit dem gleichen Objekt durchgeführt (Abb. 4, 5, 6). Es ergaben sich folgende Resultate. 1. «Künstlicher Arm»: Das Tagesmittel der durch die «Hand» attrahierten Mücken schwankt in den drei Versuchen nur wenig. Im Laufe des Versuchstages treten geringe Unregelmäßigkeiten auf, und bei den Versuchen No. 509-516 und 549-556 hat es den Anschein, als ob die Aktivität von Aedes gegen Abend hin zunehme, während beim Versuch No. 536—542 das Aktivitätsminimum um die Mittagszeit liegt. 2. Die Teste mit den Versuchspersonen UR o

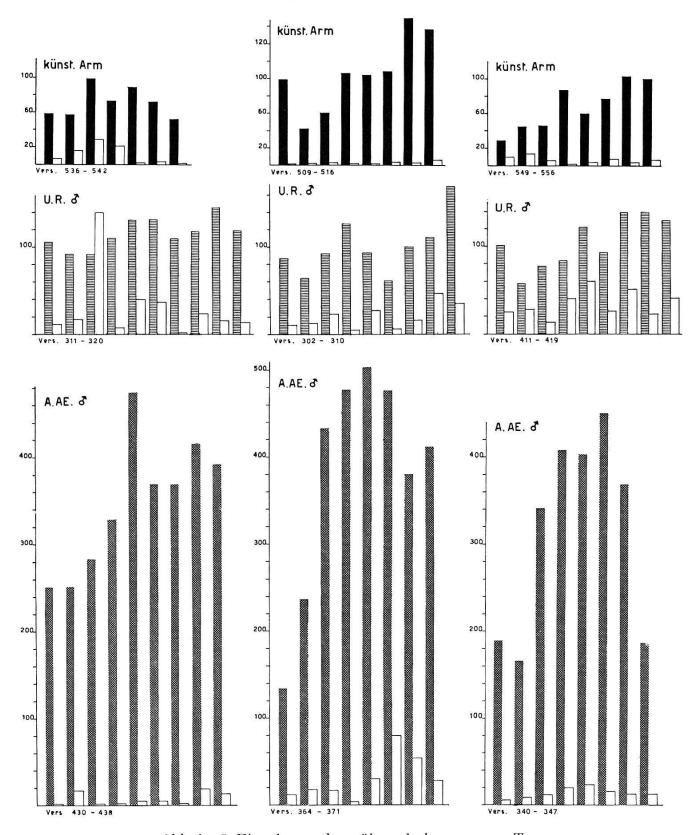


Abb. 4-6. Einzelversuche während eines ganzen Tages.

und AAE ♂ zeigen, daß die Tagesdurchschnitte der mit «Einstich» auf die Hand reagierenden Mücken der drei Versuchstage außerordentlich konstant sind. Die Aedes-Weibchen waren während des ganzen Tages etwa gleich aktiv, wobei allerdings die ersten zwei Versuche schwächer waren als die übrigen.

Auch nach den Beobachtungen von GEIGY & UTZINGER (1953) sind die Aedes-Weibchen von morgens bis abends normalerweise gleich gut aktiv. Um eventuelle Aktivitätsunterschiede der Mükken im Laufe eines Tages bei den Versuchen vernachlässigen zu können, testeten wir die Personen sowohl im Einzel- als auch im Vergleichsversuch bald am Vormittag, bald am Nachmittag und zu möglichst verschiedenen Zeiten. Es hat sich auch gezeigt, daß die Mücken, obwohl wir sie stets unter gleichen Bedingungen hielten, an bestimmten Tagen auf alle Personen sehr stark und an anderen Tagen wiederum relativ schwach reagierten. Dies kann bis zu einem gewissen Grade auf Witterungseinflüsse zurückzuführen sein (vgl. Diskussion).

Einzelteste.

In einer ersten großen Serie wurden die 10 Personen im Einzelversuch auf ihre Attraktivität gegenüber Aedes im Käfigtyp I getestet. Wie bereits erwähnt, wurde am gleichen Tage stets mit mehreren Personen und den gleichen Mücken gearbeitet. Die Versuchspersonen rekrutierten sich aus Mitarbeitern des Tropeninstitutes und hielten sich jeweils nach Möglichkeit vor Beginn des Testes einige Zeit im Versuchsraume auf (siehe Diskussion). Die Totalzahl der bei 10 Zählungen auf der Hand «stechenden» Mükken ist in der graphischen Darstellung für jede Person mit einem anderen Muster aufgezeichnet, die «Einstiche» auf dem Arm sind bei allen Personen durch eine weiße Säule wiedergegeben (Abb. 7, 8, 9). Betrachtet man die Resultate einer Person, so findet man zum Teil relativ große Unterschiede, auf deren mögliche Ursachen wir in der Diskussion zu sprechen kommen werden. In Abb. 10 sind die Durchschnittszahlen für die einzelnen Versuchspersonen geordnet zusammengestellt. Ein Attraktivitätsunterschied ist deutlich festzustellen, und die 10 Personen lassen sich in drei Kategorien einteilen:

Diese Reihenfolge basiert auf den Einstichzahlen der Hand. Es geht aus der Darstellung hervor, daß sich für die Einstiche auf den Arm eine etwas andere Reihenfolge innerhalb der Kategorien ergäbe. Bereits aus den Vorversuchen ist zu ersehen, daß z. B. AAE of die Mücken viel stärker anlockt als UR of, was diese Versuche hier bestätigen. Eine gute Bestätigung der Einzeltest-Resultate für AAE of ergibt sich auch durch die Zahlen der Abb. 6 der

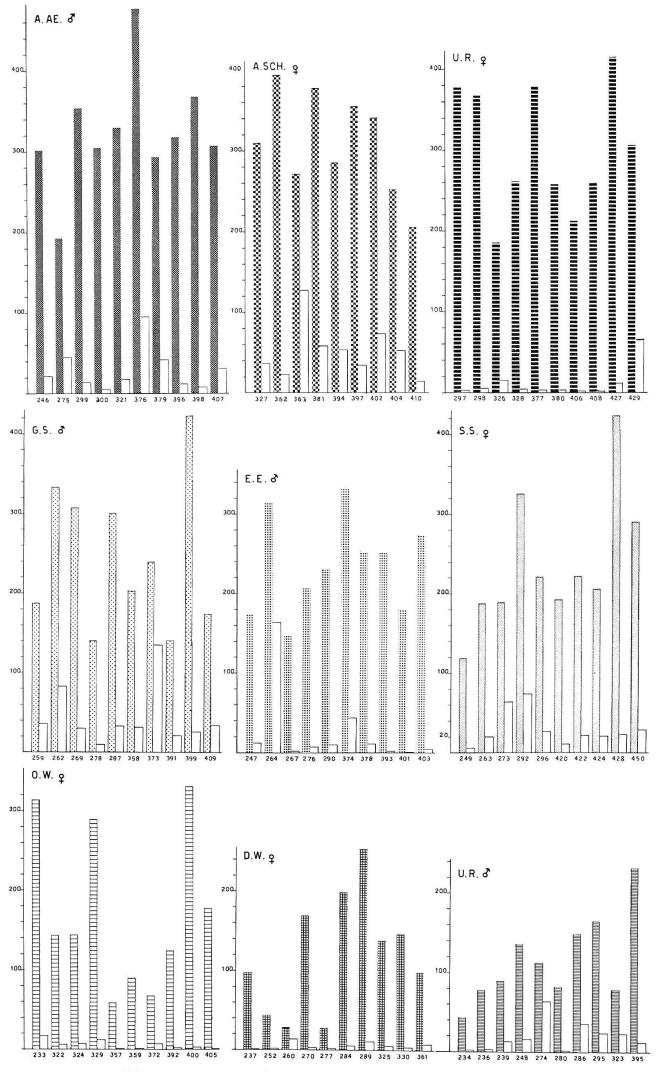


Abb. 7—9. Einzelteste (Versuch H. ST. ist hier nicht aufgeführt).

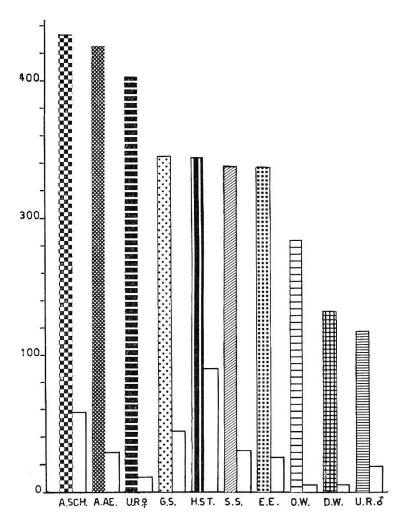


Abb. 10. Zusammenfassung der Einzeltest-Resultate.

Vorversuche. Der Durchschnittswert dieser während eines ganzen Tages ausgeführten Teste stimmt sehr gut mit demjenigen der Einzelversuche überein.

Vergleichsversuche.

Nachdem durch die Einzelteste die Attraktivität der Personen ermittelt worden war, wurden diese unter Verwendung des Käfigtyps II (Abb. 1) paarweise getestet. Die Tabellen 4 geben die Zahl der total pro Versuch bei 10 Zählungen attrahierten Mücken, die Durchschnittswerte und den erhaltenen t-Wert nach Student (LINDER 1951) wieder. In den graphischen Darstellungen (Abb. 11 u. 12) wurden die Werte von Hand und Arm der Versuche nach der Formel $\left(\frac{N}{H_1+A_1+H_2+A_2}\right)$ in Prozent umgerechnet, wobei N die Totalzahl der attrahierten Mücken bedeutet, $H_1+A_1=$ Hand und Arm der ersten Versuchsperson, $H_2+A_2=$ Hand und Arm der zweiten Versuchsperson. Aus den Testen geht hervor, daß in den Vergleichsversuchen zwischen männlichen und weiblichen Perso-

TABELLE 4.
Resultate der Vergleichsversuche.

	E.	E. ð	A. S	сн. ♀		A. A	E. 8	D. W	7.♀
Vers. Nr.	Hand	Arm	Hand	Arm	Vers. Nr.	Hand	Arm	Hand	Arm
793	149	5	24	6	449	272	133	41	1
795	143	35	166	16	452	310	55	133	10
798	157	2	78	1	456	323	45	37	1
800	98	16	54	8	459	174	8	66	2
807	216	2	78	2	461	327	24	11	3
811	202	1	44	2	217	245	45	73	15
Durchschn.:	161	10	74	6	Durchschn.:	275	51	60	5
t-Wert: 3,37	101		•		t-Wert: 7,1		-		
					*				
	U. I		O. W				R. ð	U. I	
Vers. Nr.	Hand		Hand		Vers. Nr.	Hand	Arm	Hand	
754	138	73	8	2	750	200	92	186	6
757	342	93	88	4	764	374	194	203	11
761	333	27	25	2	776	94	16	36	1
770	326	144	150	4	778	135	79	97	2
772	304	132	19	2	784	104	14	13	1
775	280	80	54	2	790	127	67	172	21
Durchschn:	287	91	57	3	Durchschn.:	172	77	118	7
t-Wert: 7,08		0.2	0.		t-Wert: 1,56		5.05		₹.
. ,, ., ., .,					1 0 10 170				
	A. A	E. 8	S. S.	. 9		U. I	R. 3	A. S(СН. ♀
Vers. Nr.	Hand	Arm	Hand	Arm	Vers. Nr.	Hand	Arm	Hand	Arm
564	283	56	66	8	565	167	77	117	19
568	211	44	104	32	567	279	83	104	76
570	294	58	150	20	571	360	66	68	11
600	212	2	2	2	576	221	123	75	17
603	107	14	126	36	581	157	10	128	58
716	304	26	74	14	584	242	51	114	29
720	288	49	71	36	588	261	96	83	17
732	244	53	46	32	595	191	64	167	17
Durchschn.:	243	38	80	22	Durchschn.:	235	71	107	30
t-Wert: 6,28	-10	00	00		t-Wert: 5,1	200		101	90
0,20					. ,, ,,,				
G. S. ♂		A. SCH. ♀			U. F	₹. ♂	D. W	7.♀	
Vers. Nr.	Hand	Arm	Hand	Arm	Vers. Nr.	Hand	Arm	Hand	Arm
724	149	20	43	2	594	106	91	63	7
729	283	54	145	25	464	166	27	75	4
734	71	99	177	24	462	92	16	36	1
738	232	78	162	18	458	251	50	95	23
748	120	104	89	7	455	137	29	61	7
751	255	93	242	41	454	208	31	61	3
753	84	12	60	5	99	203	18	25	1
756	287	77	179	15	83	91	7	49	3
762	271	26	220	20	465	119	20	108	5
766	188	102	262	27	601	135	21	153	6
Durchschn.:	195	66	158	18	Durchschn.:	153	32	68	6
t-Wert: 2,36					t-Wert: 4,3				
-									

TABELLE 4 (Fortsetzung).
Resultate der Vergleichsversuche.

	U.]	R. ð	S.	S.♀		A. A	E. 8	A. S	сн. ♀
Vers. Nr.	Hand	Arm	Hand		Vers. Nr.		Arm	Hand	Arm
574	238	54	144	44	572	260	34	72	18
582	185	32	131	18	577	156	18	54	7
723	190	27	19	0	578	141	9	34	2
728	263	53	221	10	579	279	16	5	9
735	197	67	184	28	580	343	10	102	21
774	251	57	209	11	718	279	30	178	56
69	116	6	24	1	721	305	42	172	52
208	64	8	16	4	725	188	2	85	3
210	181	29	45	9	737	172	12	298	162
Durchschn.:	187	37	110	14	749	114	10	88	7
t-Wert: 2,39					730	147	21	248	87
					Durchschn.:	217	18	121	38
	U. I		H. S		t-Wert: 1,54				
Vers. Nr.	Hand	Arm	Hand						
726	185	24	11	10		U.	R. 👌	A. A	E. 👌
727	233	69	178	56	Vers. Nr.	Hand	Arm	Hand	Arm
731	222	66	172	12	451	147	43	92	4
733	309	35	57	18	453	134	27	96	11
736	194	40	302	61	457	241	141	104	27
747	110	20	20	16	463	56	11	89	4
755	221	39	34	4	509	36	4	126	10
758	265	120	190	48	511	16	1	113	3
759	255	49	19	8	517	218	10	288	17
79	92	21	51	1	Durchschn.:	121	32	130	11
109	67	10	32	21	t-Wert: 0,27	121	04	100	11
Durchschn.:	196	45	97	23					
t-Wert: 2,6						A. A	Æ. δ	E. I	E. 8
					Vers. Nr.	Hand	Arm	Hand	Arm
	U. 1	R. ð	G. S	. 8	794	264	17	12	1
Vers. Nr.	Hand	Arm	Hand		797	37	6	274	46
717	253	55	27	9	805	129	13	150	1
722	163	42	142	64	812	163	5	146	1
769	354	93	78	8	813	260	17	174	1
773	183	85	51	12	817	63	3	192	35
779	118	27	98	14	Durchschn.:	153	10	158	14
Durchschn.:	214	60	79	21	t-Wert: 0,17	100	20	100	
t-Wert: 2,95									
						A. SC	СН. ♀	S. S	5.♀
	A. S	СН. ♀	U. F	₹. ♀	Vers. Nr.	Hand	Arm	Hand	Arm
Vers. Nr.		Arm	Hand		760	270	51	188	8
765	280	42	297	8	763	165	30	232	124
777	169	19	27	2	768	107	6	310	34
785	81	1	24	1	771	204	56	229	72
789	204	24	214	3	780	129	5	272	25
808	106	$\overline{12}$	216	2	788	170	3	262	$\frac{1}{2}$
810	220	12	35	$\overline{2}$	791	154	16	107	10
Durchschn.:	177	18	135	3	Durchschn.:	171	24	229	39
t-Wert: 0,91	411	10	100	J	t-Wert: 2,03	111	41	440	อฮ
L YYULL. U.D.					1- W CII. 4,00				

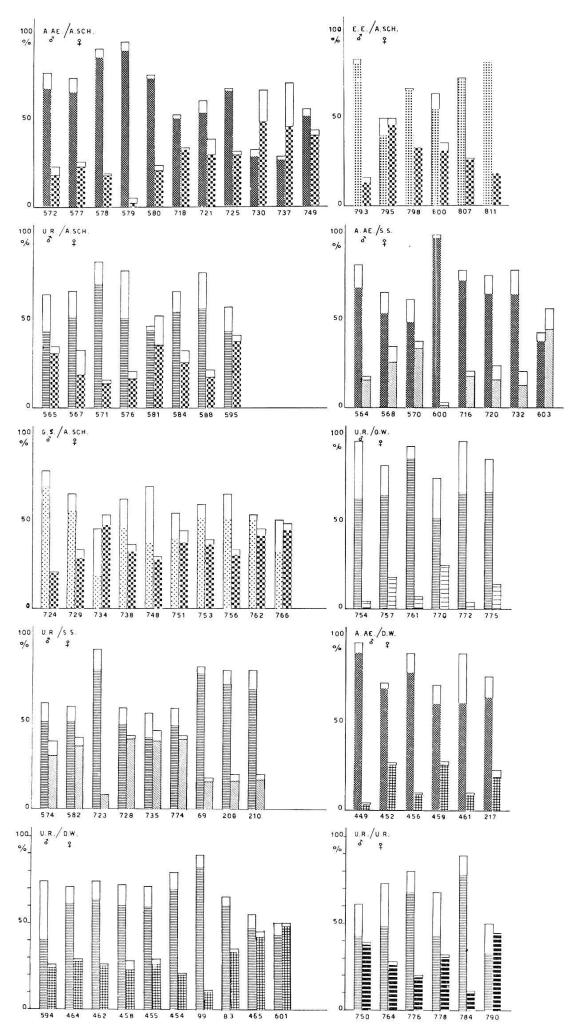


Abb. 11. Vergleichsteste zwischen männlichen und weiblichen Personen.

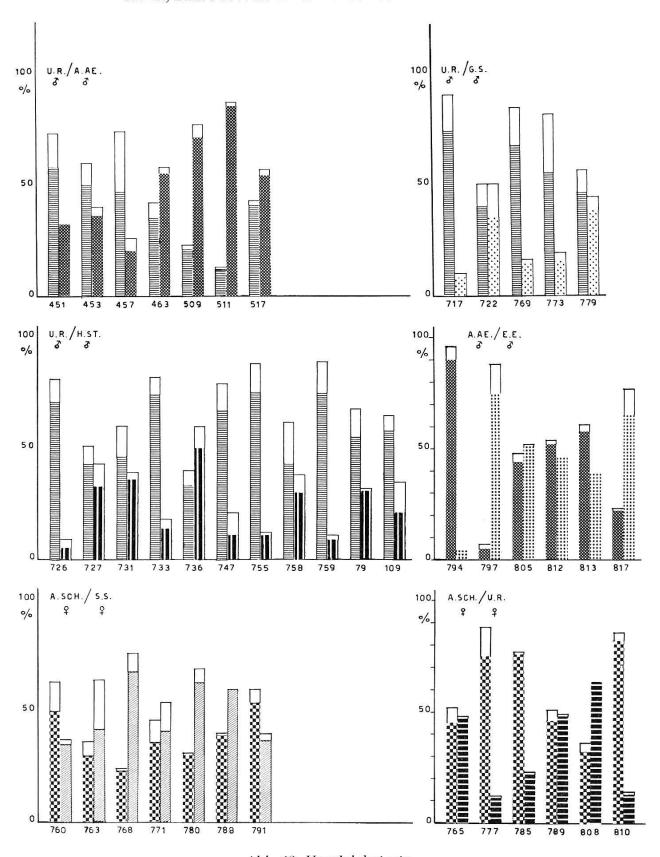


Abb. 12. Vergleichsteste.

nen die männlichen stärker attraktiv sind als die weiblichen. Der t-Test ergab eine gute Signifikanz, außer bei A. SCH ? mit A. AE \checkmark und U. R. \checkmark und U. R. ?. In den 11 Vergleichen der Personen A. SCH ? / A. AE \checkmark war A. SCH ? in zwei Testen stärker als

A. AE ♂. In den Versuchen von U. R. ♂ / U. R. ♀ sind die Werte bei U.R. of sehr unterschiedlich, auch dürfte die Versuchsserie etwas zu klein sein. In den meisten dieser Vergleichsteste zwischen beiden Geschlechtern befand sich unter den Versuchen ein Ergebnis, bei welchem die weibliche Person gleich stark oder stärker attraktiv war als die männliche. Die Vergleiche zwischen gleichgeschlechtlichen Personen sind dagegen sehr unregelmäßig ausgefallen. Diese zeigen, daß für solche und ähnliche Versuche unbedingt mehrere Teste notwendig sind und daß nur anhand der Durchschnittswerte eine Interpretation möglich ist. Vor allem fällt auf, daß hier die Ergebnisse von Versuch zu Versuch ziemlich divergieren. Leider konnten die Versuchspersonen aus praktischen Gründen nur insofern unter gleichen Bedingungen gehalten werden, als sie sich alle im Institut unter den gleichen Wärmeverhältnissen aufhielten. Eventuelle Faktoren, welche die Personen beeinflussen können, werden im nächsten Kapitel diskutiert. Die Untersuchungen von Thomson Muirhead- (1951) an Familien in Jamaica und Trinidad ergaben, daß Erwachsene weit mehr Mükken anlockten als Kinder und daß die Väter stärker attraktiv waren als die Mütter. RIBBANDS (1949), der drei Eingeborene in Westafrika auf ihre Attraktionsstärke prüfte, fand, daß die totale Attraktionszahl für alle drei Schwarzen (Männer) zirka gleich groß war, jedoch variierte die zeitliche Verteilung der Attraktionsstärke der einzelnen Individuen.

Wie die Resultate von Abb. 4 zeigen, reagieren die Mücken ganz allgemein schwächer auf den künstlichen Arm als auf den menschlichen. Es stellte sich außerdem heraus, daß die warme feuchte Flasche weit mehr Mücken anlockt als die warme trokkene. Dieser Befund deckt sich mit den Resultaten von Brown (1952), CHRISTOPHERS (1947), DE LONG (1945), PARKER (1949) und Van Thiel & Laarman (1954), die zeigen konnten, daß Wärme in Kombination mit Feuchtigkeit viel attraktiver ist als die beiden Komponenten isoliert. Schon aus den Vorversuchen ist zu ersehen (Abb. 4, 5, 6), daß im Einzelversuch der künstliche Arm die Mücken etwas weniger anlockt als eine schwach attraktive Person und daß eine stark positive Person die Aedes-Weibchen bedeutend mehr anzieht als der künstliche Arm. In Vergleichsversuchen zwischen dem künstlichen Arm und Personen wurde mit dem Käfigtyp II zugleich auch der Einfluß des Abstandes vom Arm zu den Mücken untersucht, indem durch ein besonderes Dispositiv das Zwischengitter mit dem oberen Mückenabteil 25, 50 oder 75 cm vom Testarm entfernt werden konnte. Die Resultate zeigen, daß Versuchsperson A. AE of erwartungsgemäß auch im Vergleich zum künstlichen Arm als sehr guter Mückenattraktor

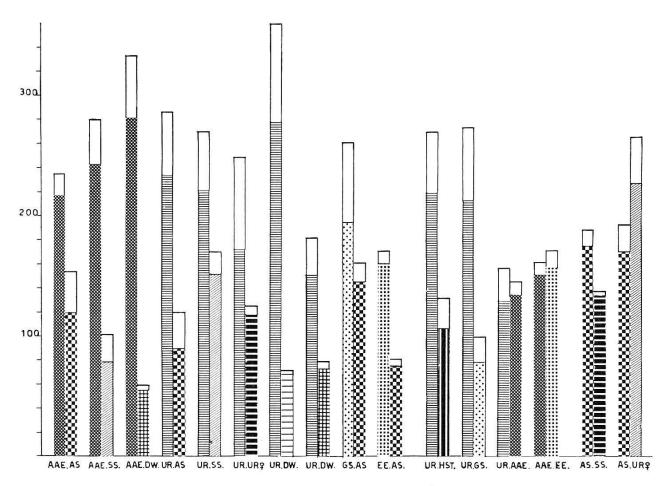


Abb. 13. Zusammenfassung der Vergleichsversuche.

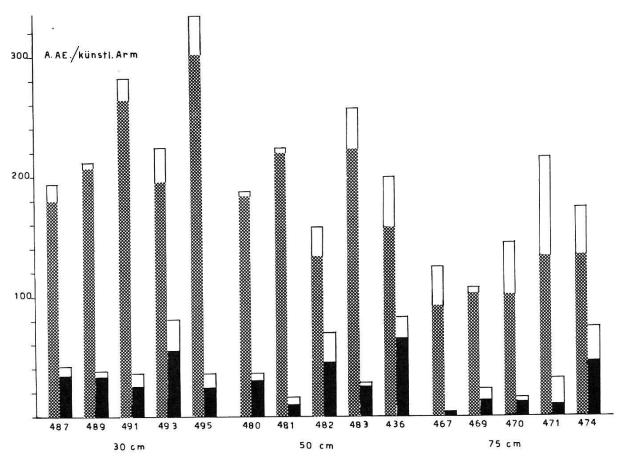


Abb. 14. Vergleich zwischen AAE und künstlichem Arm in verschiedenen Abständen.

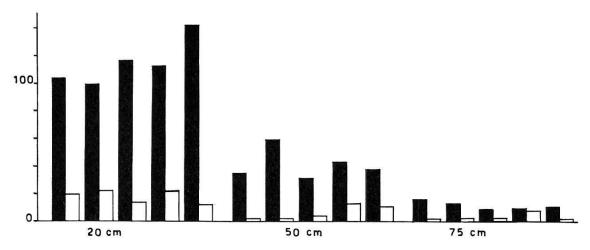


Abb. 15. Attraktion des künstlichen Armes in verschiedenen Abständen.

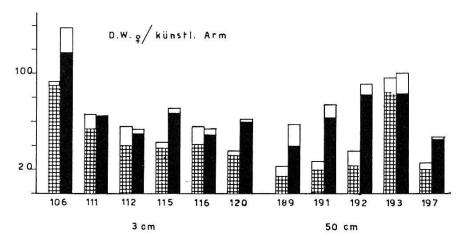


Abb. 16. Vergleichsversuch D. W., ♀ zu künstlichem Arm in 3 cm und 50 cm Abstand zu den Mücken.

zu bezeichnen ist. Die Attraktionsstärke nimmt mit wachsendem Abstand ab, wobei der künstliche Arm bei 25 und 50 cm noch gleich stark wirkt und sein Einfluß erst bei 75 cm abnimmt. Bei A. AE ♂ nimmt die Attraktion bei 50 und 75 cm ab (Abb. 14). Wenn der künstliche Arm allein mit diesen Abständen getestet wird, ergibt sich eine deutlichere Attraktionsabnahme bei zunehmender Entfernung als im Vergleich (Abb. 15). Versuchsperson U. R. of ist im Vergleichsversuch mit dem künstlichen Arm viel attraktiver als allein, was mit den übrigen Versuchen gut übereinstimmt. Interessant sind die Vergleichsresultate von D. W. Qund dem künstlichen Arm, die zeigen, daß diese Person auch neben dieser Reizquelle sehr schwach attraktiv ist und vom künstlichen Arm sogar leicht übertroffen wird (Abb. 16). PARKER (1949) erhielt beim Vergleich einer Hand zu Feuchtigkeit \pm Wärme eine annähernd gleiche Attraktion. Dies ist wohl darauf zurückzuführen, daß seine Reizquellen seitlich am Gazegitter einer Teströhre lagen und nicht wie bei unseren Versuchen unter dem Mückenabteil. Da in unseren Vergleichen die Personen A. AE of und U. R. of eindeutig positiver waren als der künstliche Arm, können wir annehmen, daß von gewissen Menschen zusätzlich wirksame Stoffe abgegeben werden, die wohl keine unwesentliche Bedeutung haben (Abb. 16). Zu ähnlichen Schlüssen ist auch Laarman (1956) bei seinen Versuchen mit Anopheles gekommen.

Diskussion.

Zu den Attraktivitätsschwankungen der einzelnen Personen im Laufe sogar eines Tages kann zusätzlich folgendes bemerkt werden. Es besteht die Möglichkeit, daß entweder die Stechlust der Mücken von Versuch zu Versuch gewissen Variationen unterworfen ist, oder aber daß sich der Allgemeinzustand einer Versuchsperson während eines Tages (oder einer Woche) ändert. Nun treten in Versuchen mit dem künstlichen Arm, d. h. mit einem sich immer gleich verhaltenden Versuchsobjekt, ebenfalls leichte Schwankungen auf. Solche können aber nur durch einen Aktivitätswechsel bei den Versuchsmücken erklärt werden. Haufe (1954) hat in einer Arbeit nachgewiesen, daß die Aktivität von Aedes durch Luftdruckschwankungen erhöht oder vermindert werden kann. So wirkt z. B. über 735 mm Hg ein fallender Druck, unter 735 mm Hg ein steigender Druck stärker stimulierend. Daß hohe Zahlenwerte gelegentlich durch eine extrem starke Mückenaktivität bedingt sind, zeigen auch unsere Versuche No. 374-377 an vier verschiedenen Personen, die am gleichen Tage hintereinander getestet wurden. Diese Zahlen fallen auch in der graphischen Darstellung sofort als Extreme auf. Auch die Werte der Versuche No. 425—428 sind offenbar einer erhöhten Mückenaktivität zuzuschreiben. Auf diese Einflüsse soll in dieser Arbeit nicht näher eingegangen werden. Sie sind jedoch Gegenstand besonderer Beachtung; u. a. veranlaßten sie uns, unsere Resultate mit den entsprechenden Barometerschwankungen zu vergleichen und Versuche mit einer Druckkammer durchzuführen, über die später berichtet werden soll. Was nun den jeweiligen Allgemeinzustand der Versuchspersonen anbetrifft, so fällt er zweifellos ebenfalls ins Gewicht. Es wurde deshalb z. B. darauf geachtet, daß die Leute vor den Versuchen keine körperlichen Anstrengungen ausführten. Wir konnten die Beobachtung machen, daß angestrengtes Radfahren im Sommer oder ein längerer Aufenthalt in unseren Zuchträumen mit Tropenklima die Attraktivität erhöhte. Auch der Genuß von heißem Kaffee kurz vor einem Versuch und Indisposition mit erhöhter Körpertemperatur wirkten sich bei den Personen durch gesteigerte Attraktivität aus. Besonders die «Einstiche» auf der Armpartie waren unter solchen Umständen viel häufiger als normalerweise. Während der Wintermonate war es augenfällig, daß am Morgen die kalten Hände der Personen sich ungünstig auf die Versuchsergebnisse auswirkten, was jedoch durch die erwähnten Vorkehrungen (S. 329) ausgeschaltet werden konnte. Ferner ist auch bekannt, daß schwefelreiche Nahrung (Montgommery 1932, De Meillon 1935) und Vitamin B₁ die Attraktivität eines Menschen verändern. Ein weiterer, irgendwie entscheidender Einfluß der verschiedenen Jahreszeiten konnte jedoch in unseren über ein Jahr dauernden Versuchen nicht festgestellt werden.

Ganz allgemein darf im Vergleich zu anderen Arbeiten auf diesem Gebiet auf die große Zahl der Teste, über 800, und Versuchsserien hingewiesen werden, die nach derselben Methode durchgeführt wurden und eine Deutung der Resultate zulassen. Wie in der Einleitung ausgeführt wurde, können Temperatur, Feuchtigkeit, CO₂, Bewegung, Farbe, Schweiß, Duftstoffe etc. bei der Stimulation und Attraktion der Mücken eine Rolle spielen. Bewegung und Farbe fallen bei unseren Versuchen außer Betracht als mögliche stimulierende Faktoren. Des weiteren lassen die eigenen Versuche und gewisse Befunde anderer Autoren den Schluß zu, daß auch das CO2 keine wesentliche Rolle spielen kann. Dagegen zeigen unsere Teste sowie Angaben in der Literatur eindeutig, daß Feuchtigkeit und Temperatur eine Rolle spielen und daß diese beiden Faktoren kombiniert besser wirken als isoliert. Der Unterschied zwischen Hand und Arm des künstlichen Armes und die deutlich höheren Feuchtigkeitswerte der Hände der Versuchspersonen lassen vermuten, daß die Feuchtigkeit mit berücksichtigt werden muß. Folgender Versuch, den wir hier erwähnen möchten, weist ebenfalls darauf hin. Wir benetzten in einigen Versuchen (Abb. 17 a ± b) bei den Personen U. R. ♂ und D. W. ♀ den einen Unterarm während der Versuchsdauer künstlich mit Wasser. Die Person hielt dann gleichzeitig den benetzten und den normalen Arm in den Versuchskäfig. Die Benetzung hatte zur Folge, daß der nasse Arm augenblicklich mehr Mücken anlockte als der normale.

Was in unseren Versuchen noch nicht direkt erfaßt und gemessen wurde, sind der Schweiß (zusätzlich zu seinem Wassergehalt) und andere durch Hand und Arm abgegebene Duftstoffe. Die Vergleiche zwischen Personen und künstlichem Arm lassen aber eindeutig erkennen, daß beim Menschen zusätzlich noch andere flüchtige Agenzien vorhanden sein müssen, die, nach den Ergebnissen zu schließen, einen wesentlichen Anteil an der Attraktionsstärke der Personen haben. Besonders aus den Distanzversuchen geht dies deutlich hervor. Die Verbreitung solcher volatiler Stoffe wird durch die Strahlungswärme begünstigt, und es ist an-

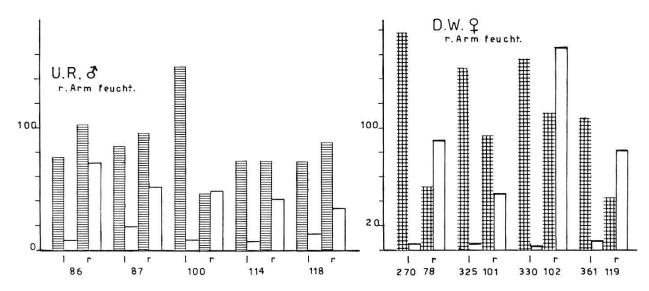


Abb. 17a und 17b. Vergleich eines benetzten (r) mit einem normalen (l) Arm.

zunehmen, daß kalte Hände z. B. auch in viel geringerem Maße flüchtige Duftstoffe abgeben. Vorversuche lassen bereits vermuten, daß Schweißlösungen die Attraktionsstärke nur leicht beeinflussen, während die Duftstoffe stärkere Wirkung haben. Wahrscheinlich sind es vor allem die Duftstoffe, die mit der Temperatur aktivierend und richtunggebend das Insekt beeinflussen. Daneben käme der Schweißlösung oder ganz allgemein dem Wasser eine Nahwirkung zu, indem eine Hautfläche, über der die Luft mit Feuchtigkeit geschwängert ist, eher zum Absitzen ausgewählt wird als eine andere.

Literatur.

Brown, A. W. A. (1952). Studies on the responses of the female Aedes mosquito. IV. Field experiments on Canadian species. — Bull. Ent. Res. 42, 575-582.

Brown, A. W. A. (1954). Studies on the responses of the female Aedes mosquito. VI. The attractiveness of coloured cloths to Canadian species. — Bull. Ent. Res. 45, 67-78.

Brown, A. W. A. (1955). Effect of clothing color on mosquito attack on exposed skin. — J. Econ. Ent. 48, 130.

Brown, A. W. A. (1956). Factors which attract Aedes mosquitoes to humans. — Abstr. 10th Congr. Entom. Montreal, Canada, 1956.

Brown, A. W. A., Sarkaria, D. S. & Thompson, R. P. (1951). Studies of the responses of the female Aedes mosquito. I. The search for attractant vapours. — Bull. Ent. Res. 42, 105-114.

Bull, C. G. & Reynolds, B. D. (1924). Preferential feeding experiments with Anopheline mosquitoes. II. — Am. J. Hyg. 4, 109-118.

CHRISTOPHERS, S. R. (1947). Zitiert in Parker (1948).

CRUMB, S. E. (1922). A Mosquito Attractant. — Science 55, 446-447.

GANDER, R. (1951). Experimentelle und oekologische Untersuchungen über das Schlüpfvermögen von Aedes aegypti. — Rev. Suisse Zool. 58, 215-278.

Geigy, R. & Herbig, A. (1955). Erreger und Überträger tropischer Krankheiten.
— Acta Tropica, Suppl. 6.

- GEIGY, R. & UTZINGER, G. E. (1953). Konstitution und insektenabhaltende Wirkung neuer Amide und die verwendeten Testmethoden. Acta Tropica 10, 349-360.
- GJULLIN, C. M. (1947). Effect of clothing color on the rate of attack of Aedes mosquitoes. J. Econ. Ent. 40, 326-327.
- HAUFE, W. O. (1954). The effect of atmospheric pressure on the flight responses of *Aedes aegypti*. Bull. Ent. Res. 45, 507-526.
- HERTER, K. (1953). Der Temperatursinn der Insekten. Berlin.
- HOWLETT, F. M. (1910). The Influence of temperature upon the biting of mosquitoes. Parasitology 3, 479-484.
- Kennedy, J. S. (1939). The visual responses of flying mosquitoes. Proc. Zool. Soc., London 109, 221-242.
- Krogh. (1908). On microanalysis of gases. Scand. Arch. Physiol. 20.
- Laarman, J. J. (1955). The host-seeking behaviour of the malaria mosquito Anopheles maculipennis atroparvus. Diss. in Acta Leidensia 25, 1-144.
- LINDER, A. (1951). Statistische Methoden für Naturwissenschafter, Mediziner und Ingenieure. 2. Aufl., Basel.
- MER, G., BIRNBAUM, D. & AIOUB, A. (1947). The attraction of mosquitoes by human beings. Parasitology 38, 1-9.
- OPPENHEIMER, C. (1910). Handbuch der Biochemie des Menschen und der Tiere. Bd. 2.
- PARKER, A. H. (1948). Stimuli involved in the attraction of *Acdes aegypti* to man. Bull. Ent. Res. 39, 387-397.
- PARKER, A. D. (1952). The effect of a difference in temperature and humidity on certain reactions of female *Aedes aegypti*. Bull. Ent. Res. 43, 221-229.
- Peterson, D. G. & Brown, A. W. A. (1951). Studies of the responses of the female Aedes mosquito. III. The responses of *Aedes aegypti* to a warm body and its radiation. Bull. Ent. Res. 42, 535-541.
- REEVES, W. C. (1953). Quantitative field studies on a carbon dioxide chemotropism of mosquitoes. Am. J. Trop. Med. & Hyg. 2, 325-353.
- Reuter, J. (1936). Orienterend onderzoek naar de oorzaak van het gedrag van Anopheles maculipennis Meigen bij de voedselkeuze. Acad. Proefschr., Leiden.
- Rudolfs, W. (1922). Chemotropism of mosquitees. Bull. New Jersey Agric. Exp. Stat. 367.
- Schaerffenberg, B. & Kupka, E. (1951). Untersuchungen über die geruchliche Orientierung blutsaugender Insekten. I. Über die Wirkung eines Blutduftstoffes auf Stomoxys und Culex. Österreich. Zool. Zschr. 3, 410-424.
- SMART, M. R. & BROWN, A. W. A. (1956). Studies on the responses of the female Aedes mosquito. VII. The effect of skin temperature, hue and moisture on the attractiveness of the human hand. Bull. Ent. Res. 47, 89-100.
- VAN THIEL, P. H. (1937). Quelles sont les excitations incitant l'Anopheles maculipennis atroparvus à visiter et à piquer l'homme ou le bétail? Bull. Soc. Path. Exot. 30, 193-203.
- VAN THIEL, P. H. & LAARMAN, J. J. (1954). What are the reactions by which the female Anopheles finds its blood supplier? Acta Leidensia 24, 180-187.
- Thompson, R. P. & Brown, A. W. A. (1955). The attractiveness of human sweat to mosquitoes and the role of CO₂. Mosquito News 15, 80-87.
- Thomson, R. C. Muirhead. (1938). The reactions of mosquitoes to temperature and humidity. Bull. Ent. Res. 29, 125-140.
- Thomson, R. C. Muirhead. (1951). The distribution of Anopheline mosquito bites among different age groups. Brit. Med. J. 1114-1117.
- Weathersbee, A. A. (1944). Observations on the relative attractiveness of man

- and horse for Anopheles albimanus Weideman. Am. J. Trop. Med. 24, 25-28.
- Wiesinger, D. (1956). Die Bedeutung der Umweltfaktoren für den Saugakt von *Triatoma infestans.* Acta Tropica 13, 97-141.
- Willis, E. R. & Roth, L. M. (1952). Reactions of Aedes aegypti to carbon dioxyde. J. Exp. Zool. 121, 149-179.

Résumé.

- 1º On décrit une méthode et une technique qui permettent de comparer l'attractivité exercée par la main et le bras humains sur Aëdes aegypti. 5 hommes et 5 femmes de race blanche entre 20 et 30 ans ont servi dans ces tests.
- 2º On a compté séparément le nombre de moustiques attirés par la main et par le bras, et on a pu constater chez toutes les personnes testées que les mains étaient beaucoup plus attractives.
- 3º Des tests effectués du matin au soir avec une seule personne ont montré que l'activité des Aëdes est à peu près pareille pendant toute la journée.
- 4º Les tests appliqués individuellement ont permis de distinguer parmi les 10 personnes trois catégories, à savoir des attracteurs forts, moyens et faibles.
- 5^{0} Des tests comparatifs entre hommes/femmes ont prouvé que les hommes étaient nettement plus attractifs. Le t-test de Student avec un P=0.05 est concluant à ce sujet. Les différences entre homme/homme et femme/femme, par contre, ne sont pas toujours significatives et varient selon les essais.
- 6º Des expériences comparatives entre une personne et un bras artificiel ont démontré que les gens présentant une attractivité forte ou moyenne attirent les moustiques davantage que ne le fait le bras artificiel et que, par contre, celui-ci est plus fort qu'une personne peu attractive.
- 7° La température sur la main est légèrement plus élevée que sur le bras (0.5°C) .
- 8º La main émet beaucoup plus d'humidité que le bras.
- 9º Le degré d'attractivité ne s'identifie cependant pas complètement avec les différents degrés d'humidité et de température.
- 10º Lorsqu'on humecte le bras, son attractivité augmente.
- 11º Une augmentation de la distance entre l'objet et les moustiques est suivie d'une diminution de l'attractivité, surtout en ce qui concerne le bras artificiel.
- 12º On a pu confirmer par des méthodes qui diffèrent de celles d'autres auteurs que le CO₂ émis par la peau humaine ne peut pas jouer un rôle déterminant dans l'attractivité.
- 13º Toutes ces constatations mènent à la conclusion qu'à part la chaleur et l'humidité, d'autres facteurs doivent être en jeu. Des essais préliminaires semblent montrer que ce sont certaines substances volatiles exsudées par la peau qui ont leur importance et qui peuvent peut-être expliquer la variabilité individuelle de l'attractivité.

Summary.

- 1. A method and a technique are described which make possible a comparison of the attractiveness of a white man's hand and arm for *Aedes aegypti*. Five men and 5 women, aged 20 to 30 years, were used for the experiments.
- 2. The number of mosquitoes attracted by the hand and of those attracted

- by the arm were counted separately. It was found that the hands of all the test persons were far more attractive to Aedes than the arms.
- 3. Day long tests with only one person demonstrated that the activity of Aedes was nearly the same through the day.
- 4. Individual tests resolved the 10 persons into three different groups: those having a very strong, a medium and a very weak attraction.
- 5. Comparative tests of men and women show that men are definitely more attractive than women. The Student 1-test with a P=0.05 was highly significant. Differences between man/man and woman/woman did not always give significant results, and the attractiveness varied from experiment to experiment.
- 6. Comparative experiments with persons and an artificial arm showed that persons with a strong or medium attraction attract more mosquitoes than the artificial arm; the latter, however, is stronger than that of a person with weak attractiveness.
- 7. The temperature on the hand is slightly higher than that on the arm $(0.5\,^{\circ}\mathrm{C})$.
- 8. The hand emits much more humidity than the arm.
- 9. The degree of attractiveness is, however, not entirely identical with that of humidity and temperature.
- 10. Moistening of the arm increases its attractiveness.
- 11. By increasing the distance between the object and the mosquitoes the attractiveness of the object is diminished, especially that of the artificial arm.
- 12. Methods differing from those used by other authors confirm that CO₂, emitted by the human skin, does not determine the attractiveness.
- 13. All these findings lead to the conclusion that besides heat and humidity other factors are involved too. Preliminary tests seem to show that certain volatile substances, exuded by the skin, are important as well and may explain the difference of attractiveness of the various individuals.