Zeitschrift: La Croix-Rouge suisse Herausgeber: La Croix-Rouge suisse

Band: 65 (1956)

Heft: 3

Artikel: Des automates peuvent-ils "penser"?

Autor: Cramer, Marc

DOI: https://doi.org/10.5169/seals-682983

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

DES AUTOMATES PEUVENT-ILS «PENSER»?

par Marc Cramer

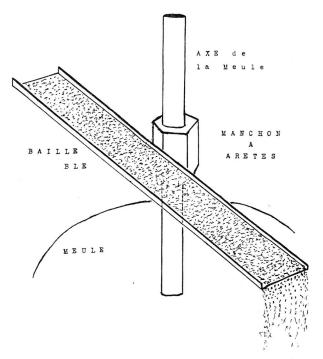
Nous avons, il y a quelques semaines, entretenu nos lecteurs des progrès récents de l'étude des virus ¹. Venons-en aujourd'hui à la cybernétique ². Il n'est plus question, ici, de produire la vie sous une forme quelconque, primitive ou évoluée. Il s'agit seulement de construire des appareils qui reproduisent d'aussi près que possible les apparences de la vie: mouvements conscients ou, même, pensée et réflexion. On pourra alors comparer le mécanisme inanimé et le mécanisme de l'être vivant. Peut-être sera-t-il possible de se rendre compte de ce que la physiologie, voire même la thérapeutique, peuvent éventuellement tirer de cette comparaison.

Du canard de Vaucanson aux tortues de Grey Walter et aux renards de Ducrocq

Le premier essai, semble-t-il, de reproduire les apparences de la vie et les fonctions vitales remonte à l'habile mécanicien que fut, au XVIII^e siècle, Vaucanson.

Vaucanson avait construit un *canard* qui agitait les ailes (il ne volait pas, il est vrai), qui nageait, qui absorbait des boulettes de nourriture et qui ne les restituait, quelque temps après, par les voies naturelles. Par malheur, le canard a disparu; les plans qui nous en restent sont trop fragmentaires et trop sommaires pour qu'il nous soit possible de nous rendre compte de la construction de l'automate.

Venons donc immédiatement aux « animaux mécaniques » de Grey Walter et de Ducrocq. Qu'il s'agisse des *tortues* du premier ou des *re*-


¹ La Croix-Rouge suisse, 1er mars 1956, Les virus et la vie. — On nous permettra de rétablir un passage de cet article, tombé par une inadvertance matérielle dont nous nous excusons. Nous avions dit qu'un virus avait été « synthétisé » par Stanley, qui a réussi à associer, de la manière qu'il fallait, protéine et acide nucléique. Il faut ajouter que ni l'un ni l'autre des composants n'a été, lui, obtenu par synthèse directe, mais prélevé sur des organismes vivants. Cela ne diminue en rien d'ailleurs l'appréciation que l'on doit porter sur le magnifique travail de Stanley: organisme vivant ou simple produit chimique, un virus a été fabriqué artificiellement; la synthèse n'est pas totale, comme disent les chimistes, voilà tout. (M. C.)

² Cybernétique, du grec kubernétés, pilote, kubernétikos, qui concerne le pilote, l'art du pilotage. Littré cite déjà le mot « cybernétique » utilisé dans un sens figuré, « partie de la politique qui s'occupe des moyens de gouverner ». La physique moderne s'est bornée à redonner son sens propre original à ce mot. Le mot français « gouvernail », celui de « gouvernement » ont la même étymologie que le terme savant « cybernétique ».

nards du second, tous sont bâtis, à quelques perfectionnements près, sur le même modèle.

La tortue de Grey Walter est attirée par une lumière faible, mais elle est repoussée par une lumière forte; au moment où ses accumulateurs sont près d'être déchargés, ces tropismes s'inversent, elle est alors, au contraire, attirée par une lumière forte; enfin, elle est munie d'un dispositif qui, en quelque sorte, fait pare-choc. Ainsi montée, la tortue est capable de mouvements qui « miment certains traits élémentaires du comportement animal ».

Si l'on interpose entre la lumière et la tortue, un obstacle (insuffisamment haut pour masquer la lumière), la tortue vient s'y heurter, recule, dévie à droite ou à gauche, revient se heurter, et ainsi de suite jusqu'au moment où elle a contourné l'obstacle et où elle peut se diriger directement vers la lumière. Qu'on l'éclaire au con-

L'ancêtre de la cybernétique contemporaine, le baille-blé. Ce dispositif, qui date du XVIe siècle, régle automatiquement la quantité de grain projetée dans la meule. Le grain est amené par une gouttière de bois en pente très faible; les secousses imprimées à la gouttière sont nécessaires pour faire tomber le grain. Ces secousses sont provoquées par l'axe de la meule sur lequel on a fixé, à la hauteur de la gouttière, un manchon à arêtes. Chaque fois qu'une arête heurte le baille-blé, elle fait tomber une certaine quantité de grain. Plus la rotation est rapide, plus les secousses sont fréquentes. Si le grain est plus dur, il offre une résistance plus grande à la meule, la vitesse de rotation diminue et le grain vient plus lentement. Si le grain est plus tendre, ou si la force motrice du moulin (eau ou vent) est plus puissante, la vitesse de rotation augmente et le grain vient en plus grande quantité.

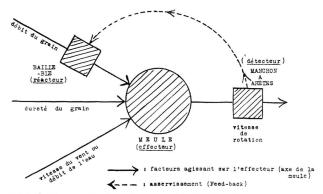


Schéma illustrant le fonctionnement du baille-blé et l'asservissement qui en résulte. Tout se passe comme si le meunier, voyant augmenter ou ralentir la vitesse de rotation, commandait à son aide d'augmenter ou de diminuer proportionnellement le débit du grain. (D'après Cossa, La cybernétique.)

traire, avec un projecteur, elle fuit et va se cacher sous un meuble, n'importe où à l'ombre. Si, au contraire, ses accumulateurs sont près d'être déchargés, elle se précipite vers le projecteur qui, comme par hasard, est placé au-dessus de la prise de courant.

On a longuement épilogué sur ces divers mouvements et, malheureusement, on a voulu les expliquer d'une manière déplorablement anthropomorphique: quand la tortue se précipite vers les projecteurs pour recharger ses accumulateurs, on a voulu voir dans ce fait une manifestation élémentaire d'une sorte d'« instinct alimentaire ». Bien plus, le constructeur se dit incapable de prévoir le comportement de son animal: s'il allume le projecteur, la tortue ira-t-elle se mettre à l'abri, ou se précipitera-t-elle vers la lumière? Butant contre un obstacle, se détournera-t-elle vers la droite, ou vers la gauche? Qui ne voit que le comportement de l'animal dépend uniquement de l'état de charge de ses accumulateurs, de la manière dont il a abordé l'obstacle, ou, encore, d'une différence infime de réglage entre la roue droite et la roue gauche,

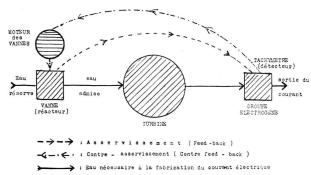


Schéma illustrant le fonctionnement de l'asservissement et du contre-asservissement (on emploie souvent un jargon mi-anglais, mi-français, feed-back, et contre feed-back). Tout se passe comme si le surveillant des génératrices électriques, voyant augmenter la consommation de courant, transmettait au téléphone l'ordre: « Ouvrez les vannes » (asservissement). Le gardien du barrage ouvre les vannes et transmet: « Ordre exécuté », le préposé aux génératrices transmet: « Arrêtez le mouvement » (contre-asservissement). Les mécaniques d'asservissement et de contre-asservissement sont substitués à l'homme et remplissent son rôle. (D'après Cossa.)

toutes choses que l'inventeur ne peut apprécier à distance, mais qu'il ne s'agit aucunement là d'une *initiative* prise par l'animal. La chose est trop évidente pour que l'on insiste, seule la rédaction enthousiaste de certains articles de revues est, ici, en cause.

Des machines autogouvernées et leur emploi pratique

Tentons, maintenant de déterminer ce que ces machines peuvent nous apprendre, par analogie, sur le mécanisme animal, et ce que, en dernière analyse, la physiologie pourra peut-être, tirer de cette étude.

Commençons par expliquer ce qu'elles ont de particulier: elles sont « autogouvernées »; pour mieux comprendre, choisissons quelques exemples anciens:

Dans les moulins à vent, ou à eau, de nos grands-parents, figurait un organe spécial, le « baille blé » qui était chargé de modifier l'alimentation du moulin en fonction de sa production.

Le dessin que nous donnons ci-contre explique bien la manière dont il fonctionnait: au moment où le blé devenait plus dur, ou au moment où l'alimentation était trop grande, le moulin marchait plus lentement, l'axe de la meule tournait plus lentement, secouait moins fort la trémie d'alimentation, qui déversait moins de blé; le contraire se passait au moment où le grain n'arrivait plus en quantité suffisante sous la meule qui se mettait à tourner plus vite, et à secouer plus fréquemment la trémie chargée de l'alimenter.

Autre exemple: le régulateur à boules de Watt; quand la machine à vapeur venait à s'emballer, les boules, tournant plus vite, s'écartaient de l'axe et, par un jeu de leviers, tendaient à diminuer l'arrivée de vapeur en fermant plus ou moins le registre d'admission.

Troisième exemple: dans les grands navires modernes, la force d'un homme serait tout à fait insuffisante à faire mouvoir l'énorme gouvernail. Les choses sont alors arrangées de telle manière que l'homme de barre n'agit plus directement sur le safran, mais bien sur un moteur; d'autre part, un dispositif spécial arrête le gouvernail au moment où il a atteint la position commandée.

Dans ces trois exemples, nous voyons la machine s'informer en quelque sorte elle-même (il est bien entendu, encore une fois, que le langage anthropomorphique n'est employé que pour simplifier l'exposé et que nous n'attribuons à la machine aucune faculté de raisonnement); examiner les résultats de son travail, et intervenir pour remettre les choses en place après un incident quelconque.

Autre conséquence: dans le régulateur de Watt, si la machine tourne trop vite, le régulateur diminue l'admission de la vapeur, mais en vertu de l'inertie des pièces mécaniques, elle la diminue trop, pour, ensuite, la rouvrir un peu trop et l'équilibre n'est obtenu qu'après une suite d'oscillations.

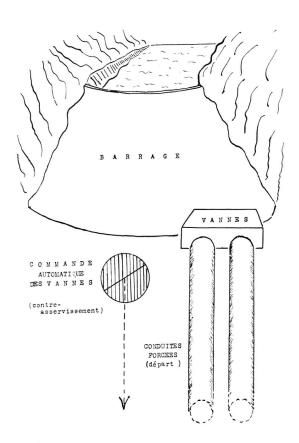
Le mécanisme-animal et le mécanisme-machine

Comparons tout ceci avec les mécanismes animaux: Je vois, sur une table, un objet que je veux prendre: informés par la vue, mes muscles sont mis en branle pour effectuer l'acte désiré, mais l'information visuelle doit être continue. Il suffit de vouloir prendre l'objet en fermant les yeux (après en avoir repéré la place), je sais bien que, dans ce cas, je serai obligé de tâtonner plus ou moins longtemps.

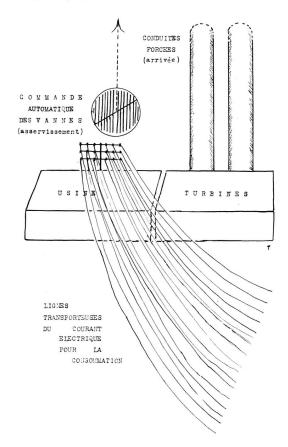
Il existe un système de neurones et de voies nerveuses qui permet l'acte sans hésitation: le cervelet, constamment renseigné par la vue, contrôle et, s'il le faut, corrige au fur et à mesure l'exécution de l'acte.

Le simple fait, pour un homme, de rester debout, implique un jeu compliqué des muscles, jeu entièrement automatique, mais commandé par le cervelet, qui, lui, est averti par la vue, par les organes de l'équilibre, etc.

On voit facilement l'analogie entre le mécanisme-machine et le mécanisme-animal; faut-il donc admettre que, dans l'animal, existent deux circuits, l'un allant du muscle au cervelet (analogie du baille blé, ou du régulateur à boules), l'autre allant du cervelet au muscle et corrigeant à mesure les indications du premier (analogie du système correcteur ajouté aux servo-mécanismes précédents)? Les histologistes ont identifié le premier, mettra-t-on en évidence le second? Nous en sommes encore ici au domaine de la conjecture.


Toujours est-il que les animaux mécaniques dont nous avons parlé plus haut ont les deux circuits: circuit dit d'asservissement (du muscle au cerveau, lequel, dans la machine, est représenté par l'organe moteur central) et circuit de contre-asservissement inverse. L'intérêt de ces détails consiste surtout en ceci: en mettant hors service le second circuit, il a été possible (comme nous le montrions plus haut sur le régulateur à boules) de reproduire des hésitations, des tremblements, tout à fait analogues, en apparence, à ceux du tabés ou de la paralysie agitante.

La physiologie pourra-t-elle tirer parti de cette analogie ou s'agit-il d'une ressemblance purement formelle?


Machines à calculer, possibilités et limites

Il nous faut, enfin, parler des machines à calculer, des machines à penser et, là encore, tenter de mettre au point bien des exagérations.

Voyons d'abord les *machines à calculer* et donnons un exemple pour montrer de quoi elles

L'autorégulation par asservissement et contre-asservissement permet de régler l'admission de l'eau dans les conduites alimentant les turbines des usines électriques proportionnellement à la consommation de courant. Dessin du haut, le barrage retenant la réserve d'eau accumulée dans la montagne, avec les vannes commandant le débit des conduites forcées. Dessin du bas, l'usine fabriquant le courant et l'envoyant aux consommateurs dans la plaine jusqu'à des centaines de kilomètres.

sont capables : une machine de l'I. B. M. ³ a recalculé les coordonnées des cinq planètes supérieures de façon qu'il est possible de savoir exactement où se trouvait et ou se trouvera chacune d'elles tous les 40 jours, cela depuis l'an 1653 jusqu'à l'an 2060. Cela peut ne pas dire grandchose à l'imagination; soulignons que, pour arriver à ce résultat — obtenu en quelques heures — la machine a dû effectuer 12 millions d'opérations...

La machine, dans le domaine quantitatif, est donc, infiniment supérieure à l'homme: où trouver des calculateurs capables de faire, vingt-quatre heures sur vingt-quatre, 16 000 additions ou 4000 multiplications par seconde! C'est dans ce sens (mais dans ce sens, seulement) que l'on a pu dire que la machine était capable de travaux dont l'homme était incapable. De là à imaginer l'homme construisant une machine qui le réduirait en esclavage et, comme des auteurs des romans de science fiction se sont plu à le décrire, un âge de la machine où l'homme ne serait plus que l'humble servant d'une machine qui raisonnerait et déciderait pour lui, il y a de la marge.

En effet, la machine est incapable d'imaginer, de prendre une initiative, elle n'agit que d'après un programme tracé préalablement par l'homme qui s'en sert.

La « mémoire » d'une machine et celle d'un animal

Voyons, en revanche, les facultés humaines dont certains prétendent les machines dotées. La machine est douée de mémoire, nous dit-on; est-ce vrai? Oui et non.

Il y a en effet plusieurs espèces de mémoire; ainsi, il y a une mémoire que l'on pourrait appeler instantanée. Si nous faisons une addition, nous sommes capables, depuis l'école primaire, de dire par exemple: Je pose 2 et je retiens 3; puis de *garder* ce chiffre 3 dans l'esprit jusqu'au moment où nous aurons à nous en servir. Il est bien clair, au contraire, qu'une fois

QUELQUES UTILISATIONS PRATIQUES DE LA CYBERNETIQUE

L'enclenchement et le déclenchement automatique de notre réservoir d'eau chaude;

le réglage automatique de votre chauffage à mazout;

le pilotage automatique d'un avion;

les installations automatiques assurant la sécurité du transport sur les chemins de fer et commandant les sémaphores, etc. l'addition finie, tous ces chiffres de retenues nous sortiront de l'esprit sans retour. Cette mémoire-là, la machine la possède (c'est d'ailleurs déjà très beau). Mais il y a une autre sorte de mémoire, c'est celle qui nous permet de nous souvenir — parfois même, volontairement, de rappeler le souvenir de faits qui se sont passés il y a longtemps.

Qu'un chat, par exemple, un jeune chaton, se brûle en allongeant sa patte sur une braise, peut-être fera-t-il ce geste une seconde fois, mais, dès lors, il se souvient de s'être brûlé et ne répétera plus l'expérience.

On nous a dit que certains des automates dont nous parlions tout à l'heure sont doués de cette sorte de mémoire, mais il y a une immense différence: le chaton ne se brûlera plus parce qu'il veut subsister et parce qu'il craint la douleur; tandis que la machine ne réssayera pas parce que le constructeur l'a voulu ainsi pour elle, mais elle n'a aucun souci de subsister par elle-même. Ici donc, différence fondamentale entre la machine et l'animal.

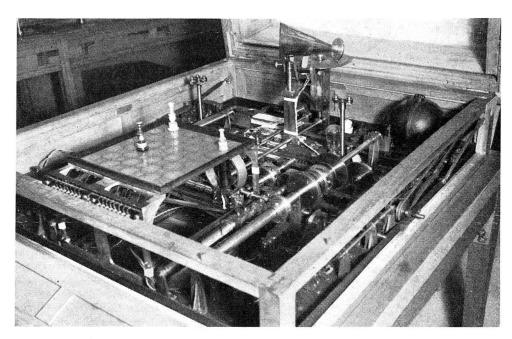
Une machine est-elle capable de raisonnement? Le joueur d'échecs

La machine, a-t-on dit, est capable de raisonner. Voyons, par exemple, le fameux joueur d'échec de Torrès y Quevedo. Il s'agit là d'une fin de partie qui met aux prises un roi et une tour contre un roi tout seul; c'est-à-dire une fin de partie dans laquelle l'automate doit être vainqueur en un maximum de 16 coups (d'après la théorie des échecs). L'automate crie, quand il le faut « Echec au roi » et, à la fin, proclame sa victoire en criant « Echec et mat ». C'est là probablement la plus brillante réussite de l'automatisme électromagnétique, mais le fait ne doit pas nous faire oublier d'examiner jusqu'à quel point cette machine peut être dite intelligente.

Dans cette fin de partie, non seulement la machine est sûre de gagner, mais encore le nombre des combinaisons est limité; il lui suffit d'appliquer « mécaniquement » un procédé de jeu parfaitement déterminé par la théorie. La machine n'a aucune part d'initiative, elle se borne à faire ce que son créateur lui a ordonné de faire, et ce qu'il faut admirer, c'est le talent extraordinaire de l'inventeur, comme mathématicien et comme ingénieur.

Peut-on aller plus loin? Wiener a écrit quelque part qu'à son avis on pourrait construire un joueur d'échec qui jouerait mieux que son créateur... mais il ne l'a pas construit, et il n'y a là qu'une boutade.

« J'ai, parfois, songé à perfectionner la machine de mon père, nous disait Don Gonsalo Torrès; il ne serait pas extrêmement difficile de construire un joueur d'échecs qui jouerait une partie entière, mais cette machine jouerait mal, elle manœuvrerait les pièces correctement d'après


³ I.B.M.: « International Business Machine Corporation », société américaine qui a construit de 1938 à 1942, la première des grandes machines calculatrices modernes, la « Mark 1 ».

les règles du jeu, mais elle les manœuvrerait au hasard.» Rallions-nous à cette opinion autorisée: ia machine ne peut pas inventer, elle ne pourrait former, au jeu d'échec, un plan d'attaque ou de défense, elle ne contient manifestement que ce qu'y a mis son créateur.

Ce qu'il faut penser du «libre-arbitre» d'une machine: Calliope

On a dit encore: la machine peut décider, elle a un certain libre arbitre, elle est capable de répondre logiquement à une question qui lui d'un certain automatisme mental, il est manifeste qu'elle ne peut pas davantage.

L'équipement de la machine en traductrice (pour autant que nous sommes renseignés) a consisté dans l'établissement d'un code numérique correspondant à chaque mot de la langue à traduire et d'un autre code, numérique aussi, correspondant à chaque mot de la langue à obtenir; la machine se charge de passer d'un code à l'autre. En outre, des codes annexes ont été établis qui permettent d'obtenir une correction grammaticale, au moins approximative. Il ne

Le « joueur d'échecs » de Torrès y Quevedo.

est posée. Telles manifestations des machines semblent donner raison, dans une certaine mesure, à cette argumentation. Nous pensons ici à la machine à traduire et à la « poétesse électonique Calliope » qui a été créée par Ducrocq.

Cossa, dans son excellent petit livre ⁴, nous paraît avoir précisé de façon très démonstrative ce qu'est l'automatisme mental et ce que l'on peut attendre, dans cet ordre d'idées, de la machine. Il écrit:

« Au cours d'une discussion animée, on me pose la question: « Etes-vous nègre? » A cette absurdité, je réponds non, consciemment, mais sans réflexion. Ici, la négation traduit une pensée élémentaire, consciente, mais non réfléchie.»

« Je suis Juré de Cour d'Assises. A la question: « L'accusé est-il coupable? » je réponds non. Je le fais après toute la réflexion dont je suis capable. C'est un jugement de valeur mûrement réfléchi. »

Il y a donc des degrés dans la faculté de raisonnement et, si la machine peut être capable

⁴ P. Cossa, La cybernétique, Masson & C^{ie}, éditeur.

s'agit donc ici que de traduire un mot par un mot et nous sommes loin de la traduction idéale qui consiste à traduire une idée par une idée.

La machine ne peut vaincre ni remplacer la primauté de l'esprit

Que tirer de cette trop brève énumération de résultats obtenus? Nous ne pensons pouvoir mieux faire que de reproduire ici les conclusions de l'excellent petit livre de Cossa, déjà cité:

« Il est émouvant que l'inventeur obscur du baille-blé ait autrefois — par quelle intuition d'artisan génial? — retrouvé ce même mécanisme d'action en retour qui régit nos réactions nerveuses et endocrines.

« Il est magnifique, après avoir prolongé l'adresse de sa main par l'outil, la force de sa main par la machine, que l'homme ait pu, par des machines nouvelles, prolonger l'efficience même de son esprit.

« Il est paradoxal que ce triomphe de l'esprit humain ait pu conduire certains, parmi ceux-là même qui y ont participé, à nier la primauté de l'esprit.»