
§2. Topological Buildings

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 34 (1988)

Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am: 22.04.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch



134 S.A.MITCHELL

y si sk(sieS) an<i x has a reduced decomposition obtained by deleting
some subset of the sf's occuring in y. (For a very nice account of these

related matters, see [14]). If W is finite, W has a unique element w0

of maximal length, we define the length of W to be l(w0).

§ 2. Topological Buildings

A Tits system (G,B,N,S) consists of a group G, subgroups B and N,
and a set S, which satisfy the following axioms :

(2.1) B n N is normal in N, and 5 is a set of involutions generating
~ W N/B n N,

(2.2) B and A generate G,

(2.3) If s e S, sBs ^ b,

(2.4) if s e S, w e W, then s£w ^ BwB u BswB.

(The use of expressions such as sBw is a standard abuse of notation).

Example. Let G be a reductive algebraic group over an algebraically
closed field (e.g., GL(n, C)), let B be a Borel subgroup (e.g. upper triangular
matrices), and let N be the normalizer of a maximal torus (that lies in B).

This data determines a set S of simple reflections generating the Weyl

group W (e.g., the usual generators s1,..., sn _ x of SJ. Then one of the main
results in the structure theory of reductive groups is that (G, £, N, S) is a

Tits system (see for example [15]).

Throughout this paper we will assume that the set S is finite; its

cardinality I is the rank of the system.
We next list some of the important properties of a Tits system.

(2.5) (Bruhat Decomposition) G =11weWBwB (disjoint union),

(2.6) (W, S) is a Coxeter system.

A subgroup P of G is parabolic if it contains a conjugate of B. In
particular if I £ S, the subgroup Pj generated by B and I is parabolic.

(2.7) (a) The parabolic subgroups containing B are precisely the P7, / c S.

No two of these are conjugate; in particular there are exactly 2l such

subgroups, which form a lattice isomorphic to the lattice of subsets of S.

(b) Pj BWjB

(c) Every parabolic P is self-normalizing : NGP P.
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(2.8) (Bruhat decomposition, general version) G =ULweWAWfWj PiwPj
(disjoint union).

The next result, which we will refer to as the Steinberg Lemma, is somewhat

technical; however it is not hard to prove and is extremely useful. It is a

mild generalization of Theorem 15 of [32] and Proposition 3.1 of [19].

(2.9) Let I ç S and suppose w is the unique element of minimal length

of wWj. Suppose w Wi w^ where l(w) l(wx) + + l(wk). Then

(a) If Yi is any subset of BwtB such that Yt -> BwtB/B is bijective

(resp. surjective) (l^i^/c), then Yx x Y2 x Yh-^BwPI/PI is bijective

(resp. surjective).

(b) Suppose Wj- g S, 1 < i ^ k i.e., wx wk is a reduced decomposition

of w). Let Zi5 1 ^ i ^ k, be any subset containing 1 of PWi

such that Zt PWJB is surjective. Then the image of Zx x ••• Zk -> G/Pj
isllx^w BxPj/Pj.

The maps in (a), (b) are the obvious multiplication/projection maps.
Part b refers to the Bruhat order on W1.

(2.10) Remark. The Tits system of a reductive algebraic group has several

additional features: B HU, where H is a maximal torus and U is a

normal unipotent subgroup, U in turn is described in terms of its root
subgroups, and there is an "opposite" Borel subgroup B~ such that
B n B~ H. This additional structure can also be axiomatized in an

elegant way, leading to the "refined" Tits system of Kac and Peterson [19].
One then obtains, for example, the Birkhoff decomposition G =HwewB wB
as a consequence of the axioms.

We now define a topological Tits system to be a Tits system such that G

is a topological group, B and N are closed subgroups, and W is discrete
(i.e. NnB is an open subgroup of N). We will usually also assume (for
reasons which will be apparent shortly) :

(2.11) Axiom. If I is a proper subset of S, Wj is finite.

This axiom is satisfied if W is an irreducible affine Weyl group, or finite.
To get any interesting results some further axiom seems necessary. One
direction is considered in [11], where the groups in question are algebraic
groups over local fields, with the valuation topology. Here, with loop groups
in mind, the following axiom seems efficient :

(2.12) Axiom. For each se S there is a subset As of Ps such that
(a) ASB PS9 (b) As is compact and contains 1, and (c) As As n BsB.
This axiom is motivated by Steinberg's approach [32].
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(2.13) Proposition. Let (G, B, N, S) be a topological Tits system satisfying
(2.12). Then

(a) BwB =JJLx^wBxB(wgW). More generally if I < S, and wg W1,

BwPj =]Ax^wBxPj (here xgW1

(b) B-orbits in G/Pj are locally closed,

(c) If W satisfies (2.11 parabolic subgroups are closed.

Proof. First we show Ps BsB. Since Ps — ASB, with As compact and

B closed, Ps is closed, so Ps ^ BsB. But also B c= Ps — ASB c: BsB, which

proves our claim. Part (a) now follows easily from the Steinberg lemma :

Let Mw =LL, wBxPIy and let w s1-sk be a reduced decomposition.

Then M, A1- AkP, and hence is closed. Next, suppose x ^ w; we must

show BxB s£ BwB. It is enough to consider the case when X has a reduced

decomposition x s1 — s; ••• sk (omit s;). Then

BxPj A \ — A'i-i A'i+1 —A'kP,sS BwP,

(since led.,), where A\AtnBs,B. This proves (a). Part (b) is immediate

since the complement of BwPk in its closure is a finite union of sets

of the form Mx, hence is closed. Since P, BW,B. (c) is also immediate

from (a) if W, is finite.

From now on we will assume 2.11 and 2.12. The homogeneous spaces

G/Pj will be called flag spaces. The B-orbits Ew BwPj/Pj are Schubert

strata and the~ compact subspaces Ew are Schubert subspaces.

We next consider the building (%G associated to a topological Tits system
(G, B, N, S). (The notation is ambiguous—indeed in the case of loop groups,
G will support two natural but totally different Tits system. Fiowever the

system we have in mind will be clear from the context.) In the discrete

case, is usually defined as the following simplicial complex. The vertices

are the maximal (proper) parabolics, and Px — Pk span a simplex if
k

P|. i Pt contains a conjugate of B. In general it is convenient to reinterpret

this definition as follows: first of all, by definition every parabolic P is

conjugate to a unique P7; we say that P has type /. Thus the maximal
parabolics are the parabolics of type [s], where [5] S — {5}. More
generally the /c-simplices correspond to the parabolics of type /, where
I / I l — k — L Thus the simplices all have dimension ^ f — 1, with the
I — 1 simplices corresponding to the conjugates of B. Furthermore, in view
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of 2.7 (c), the set of parabolics of type I is canonically identified with

G/Pj — xPj corresponding to xPjX 1. One can easily check that with this

interpretation, a simplex xPj is a face of a simplex yPj if and only if

I ZD J and xPI yP/. In particular, every simplex is a face of some I — 1

simplex. Hence, as a set, BG can be identified with G/B x A/~, where A

is the l-l simplex with vertex set S, and (g^, XJ ~ (g2B, X2) if

X1 X I2,IeAj, and g.Pj g2Pj. (Here A, is the face of A

corresponding to I < S.) We will therefore define the building 0$G associated to the

topological Tits system (G, B, N, S) to be G/B x A modulo this equivalence

relation, with the quotient topology.

Remark. Another way of expressing this is as follows: Let C be the

category defined by the poset of proper subsets of S (including the empty set).

We have a functor from C to topological spaces given by /1—> G/Pj •

Then 0$G is precisely the homotopy colimit of this diagram of spaces, in

the sense of [8], p. 327 ff.

(2.14) Proposition. The equivalence relation on G/B x A1 1 is generated

by the relations (g^B, X) ~ (g2B, X) if X lies on the wall As and

9iPs 92 ps-

Proof. In the usual language, (2.14) is the assertion that any two chambers

are linked by a "gallery". (See e.g. [11], appendix.) Since the action of G

on G/B induces a well defined action on 0$G, we are reduced to showing
that if (B, X) - (gB, X)—i.e. XeAj and g e Pj—then (.B, X) and (gB, X)
are linked by a sequence of relations of the stated type. But gB bwB

with w g Wj ; hence if w s1 — sk is a reduced decomposition, the elements

(£, X), (bSiB, X), (bs1s2B, X),... (bwB, X) provide the desired sequence.

Note that the set A is a fundamental domain for the action of G on
0$G. On the other hand, it is easy to check that the closed subspace 0$w

consisting of the pairs (wB, X), w e W, is a fundamental domain for the
B action. (The point is that if bw^j w2P/5 then nqPj w2Pj, by the
Bruhat decomposition.) This space 0ßw, which we will call the foundation
of the building, is a simplicial complex since W is discrete. Since it will turn
out that 0$G is in a sense a "thickening" of the foundation, the following well
known description of 03w may be of interest.
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(2.15) Proposition. Suppose <P is an irreducible root system in the

Euclidean space V. Then

(a) If W is the affine Weyl group associated to <D, then is

isomorphic as a simplicial W-complex to V (triangulated by the hyperplanes

of d>).

(b) If W is the Weyl group of is isomorphic as simplicial
W-complex to the unit sphere of V, triangulated by the Weyl chambers.

More precisely, can be identified with the W orbit of the outer wall

of the Cartan simplex.

Proof. For (a), map W x À V by identifying A with the Cartan

simplex in V and using the action map. Then (p is onto (1.1) and furthermore

cp(wl5x) (p(w2,X2) if and only if X1 X X2, X e Aj, and

wI w2 modulo the isotropy group of X. But this isotropy group is

precisely Wj (1.2), so cp factors through the desired isomorphism <%w V.

The proof of (b) is similar.

We now come to the main result of this section. Filter G/B by
Fk(G/B) =H,(W)^EW. Similarly, 38 G is filtered by Fk(ßG) Fk(G/B) x A/~.

(2.16) Theorem. Let (G, B, N, S) be a topological Tits system which either
is discrete or satisfies (2.11) and (2.12). Assume also that the inclusions

FiJ(Bg) œ Fk + i(BG) are cofibrations. Then

(a) If W is infinite, PßG is contractible.

(b) If W is finite of length r, is homotopy equivalent to the

(I—1) st suspension S1'1 A (Fr(G/B))/Fr- fG/B)).

Remark. If G is discrete, Fk&G is a subcomplex of the simplicial
complex G, so the cofibration hypothesis is automatically satisfied. Furthermore

if W is finite the smash product in (b) is just a wedge of | FrG/B
— Fr_xG/B I (/— l)-spheres. This case is due to Solomon and Tits; cf. [11].

Proof of (2.16). Let Xk denote Fk^G/Fk_1 <%G, and let X'k =* Fk(G/B)/
Fk_1(G/B). Then we will show

(2.17) If k is less than the length of W, Xk is contractible. If k r
length of W, Xk is homeomorphic to (Fr(G/B)/Fr_fG/B) AS1'1).

If W is infinite, it follows that Fk (%G is contractible for all k, and hence

G is contractible. If W is finite, part (b) of the theorem is also immediate.

To prove 2.17, first consider the quotient map n: Fk(G/B) x A -> Xk.
In fact 7i is merely collapsing a subspace to a point :
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(2.18) Let A, (b.w^X,), A2 (b2w2B,X2). If iiAx) ri(A2\ then

either A1 A2 or tc^) « 7z(A2) * (* is the basepoint Fk_^G).

For suppose ti^) ^ *, and Xx Â7. Then /(wj k and vtq e IF7. This

forces X2 and vtq w2 mod PF7; hence wx w2 since l(w2) < k

by assumption. Then b{wxPj b2w1PI. But whenever w e IF7,

b2wPj implies bxwB b2wB (easy exercise).

It now follows that Xk V/(w)=/c2fwl where Xw is the image of Ew x Ä

in Xk, and to prove (2.17) we need only consider a fixed Xw. Let

X'w ËJ(ÉW-EW), and let A' be the subcomplex of A consisting of the

walls As such that l(ws) < l(w). Then (2.18) implies:

(2.19) Xw X^w A (A/A').
For Xw is Ew x A modulo the subspace of points which are equivalent

(in 0&G) to a point of lower filtration, namely, Éw x A' u Ëw — Ew x A.

It remains to identify A;. Since F0^G A is contractible, we may assume

ic ^ 1 ; then A' is nonempty. If k < l(W), then there is at least one

se S such that Z(ws) > Z(w); hence A' is not the entire boundary of A

and A/A' is contractible. If k l(W), then w is unique, A' boundary of
A, and A/A' Si_1. This completes the proof of (2.17), and of the

theorem.

Remark. Our proof of Theorem 2.16 is an adaptation of the standard

(discrete) proof to the topological setting. Much of the proof depends only
on the Weyl group IF, and indeed shows e.g. for IF infinite that the

foundation of the building is contractible. In fact the deformation of
Fk{^w) into Fk^1(^w) has the property that the isotropy group in B of a

point X in is an increasing function of time, and hence extends

uniquely to a B-equivariant deformation of Fk(BG). In the discrete case this
extension is automatically continuous, and shows that Theorem (2.16) holds

B-equivariantly. (This was observed, (not for the first time) in [21], and has

an interesting application concerning the Steinberg representation of a finite
Chevalley group.) However this proof does not work in the topological
case; simple counterexamples show that the extension will be discontinuous.

In many cases the Bruhat decomposition of G/P is in fact a CW
decomposition. The following axioms are convenient in this regard :

(2.20) Axiom. For each s e S, the projection Ps -> PJB has a local section.

(2.21) Axiom. For each s e S, PJB is homeomorphic to a sphere of positive
dimension.

We then have :
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(2.22) Theorem. Let (G, B, N, S) be a topological Tits system satisfying
axioms 2.11, 2.20 and 2.21. Let P Pj be a parabolic subgroup, I ^ S,

and give G/P the compactly generated topology. Then

(a) Axiom 2.12 is satisfied.

(b) The Bruhat decomposition of G/P is a CW decomposition, and the

closure relations on the cells are given by the Bruhat order on W1.

(c) The building &G satisfies the cofibration condition of Theorem 2.16.

Proof. By assumption there are maps Dm(s) ^ PJB such that (pJ1(B)
dDm{s) and Dm{s)/dDm{s) PJB is a homeomorphism. Furthermore cps

lifts to a map (ps:Dm(s) Ps with 1 g (ps(dDm(s)). Thus, in Axiom (2.12) we

may take As Js(Z)m(s)), proving (a). Since P is closed (2.13c), G/P is a

Hausdorff space. If w e W1 has reduced decomposition w sx — sk, the

Steinberg lemma (2.9) shows that the multiplication map Dm{Sl) x ••• x Dm(Sk)

Ew (using cps.) is a characteristic map for the cell Ew. The boundary
of each cell is a finite union of cells of lower dimension by 2.13a, and

G/P has the weak topology by assumption. The closure relations also follow
from (2.13). This proves (b). For (c) we observe that (%G (with the
compactly generated topology) is itself a CW-complex, and the filtrations
Fk^G are subcomplexes: Indeed if we regard G as a quotient space of

S(G/Pj x Aj), it is clear that there is one cell for each I < S and

w eW1.

If G, Pj are as in the above theorem, and w g W1 has reduced
decomposition w sl — sk, let n(w) nisj + — + n(sk). Thus n(w) dim Ew and

so in particular is independent of the choice of reduced decomposition. Now
whenever a space has a locally finite cell decomposition, we have a cell

series afi, where at is the number of cells of dimension i. We then have :

(2.23) Corollary. G/Pj admits a CW—decomposition with cell series

Y tn{w) n2-JweW1 ' L"1

Note also :

(2.24) Corollary. If W is finite with maximal length element w0, &G
is a sphere of dimension n(w0) + 1—1.

We conclude this section with two "classical" examples. Let G be a

semisimple compact Lie group and consider the Tits system (G, B, N, S),

where B is a Borel subgroup, etc. First we claim that this is a topological
Tits system satisfying all four of our axioms. Since W is finite, (2.11) is
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trivially satisfied. In (2.12) we can take As to be the "little )" (or

PSU(2))Gs PshasIwasawa decomposition PS GSB). In any case there is

a commutative diagram

Gs Ps

i 1

CP1 - GJGS n T PJB

which proves (2.20), (2.21), and hence (2.12) simultaneously. The Bruhat

decomposition of Gq/P^Pj parabolic, is then the classical Schubert cell

decomposition of the flag variety Gc/P/. We have n(s) 2 for all s, so

n(w) 21 (w) for all weW1. In particular the associated building is

a sphere of dimension 2Z(w0) + 1-1 (since l(w)0 is the number of positive

roots, this is exactly dim G — 1).

The second example (which is a generalization of the first) involves

symmetric spaces G/K and the associated semisimple real Lie group GR

as in § 1. Thus GR is the fixed group of the involution a on Gc. Now a
need not preserve the Borel subgroup B of Gc, but it does preserve the

parabolic Q associated to the black nodes of the Satake diagram. We will
write BR,NR,WR, Sr for Qf NKtm, WG/K, SGIK, respectively.

(2.25) Theorem. (Gr, Br, Nr, Sr) is a topological Tits system satisfying
the four axioms.

A proof that this is a Tits system can be found in [33]. The parabolic
subgroups of Gr are related in an obvious way to those of Gc: Given

/ c 5r, let T be the corresponding set in S (see § 1). We denote by
the parabolic in GR generated by BR and I. Then (9j (iY)°. (*R

is usually called a "minimal parabolic", but this terminology conflicts with
our use of the term. From the point of view of Tits systems, it is precisely
analogous to the Borel subgroup of Gc—although in general it is neither
solvable nor connected.) The rest of the theorem is also easily deduced
from [33] ; the details will be omitted, but see § 5. The main point is that
for the minimal parabolics (9t, (9JBR is a sphere of dimension n{.

As for the building, one can deduce from (2.24) that it is a sphere whose
dimension is dim G/K — 1. However it is an interesting fact, that does not
seem to appear in the literature, that the building can be canonically
identified with the "tangent cut locus" of G/K: first recall (cf. [10], [20])
«hat if M is a compact Riemannian manifold and p is a fixed point of M, a point
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x is a cut point (with respect to p) if there is a geodesic from p to x
that minimizes arc length up to x but no further. The cut locus is the set

of cut points. Similarly a vector X in the tangent space Tp is a tangent
cut point if exppX is a cut point along the geodesic oxpftX). The tangent
cut locus is the set of all such points in Tp, and is homeomorphic to the
unit sphere in Tp. When M G/K we take p — 1.

(2.26) Theorem. Let G/K be a simply-connected symmetric space, with G

simple. Then the tangent cut locus is precisely the K-orbit in m of the outer
wall of the Cartan simplex Am. It is therefore canonically identified with the

topological building of the associated real form GR.

As usual, the assumption G simple is just for convenience. We sketch
the proof: the first assertion is a fairly easy consequence of Theorem (1.8),

and is left to the reader. Now consider the building &Gr- It *s a quotient
space of GR/BR x à0 K/CKtm x A0, where A0 is a simplex of dimension
(rank G/K)-1; we take A0 to be the outer wall of Am. For each

I ^ SG/K, let À7 temporarily denote the corresponding face of A0; i.e.

{X e A0 : a,(x) ~ 0 V i e I}. Then the K-orbit of A0 in m, KA0, is also a

quotient of K/CKtm x A0. The relations are (/qX) ~ (k2X) if X e kI and

k1 k2 mod Kj. But Kj K n (9j, so these relations are identical to the

ones that define the building.

§ 3. Loop Groups

Let LG, LGC denote the free loop spaces. Let Gc denote the group
of loops which are restrictions of regular maps C* -> Gc, and let LalgG

LalgGc n LG. Thus if we fix an embedding Gc c= GL(n, C), LalgG consists
of the loops / in LG admitting a finite Laurent expansion f(z)
whereas LalgGc consists of the loops / in LGC such that both / and

/-1 admit finite Laurent expansions. We will also write Gc for LalgGc.
In fact Gc is the group of points over C[z, z_1] of the algebraic group
Gc. Its Lie algebra is the loop algebra gc of regular maps C* -> gc. The

integer m in the above Laurent expansion defines a filtration of Gc by
finite dimensional subspaces; we give Gc the corresponding weak topology.

Let P denote the subgroup of Gc consisting of regular maps C -> Gc

(i.e. maps with nonnegative Laurent expansion, or GC[z]), and let B denote
the Iwahori subgroup: {/ e P: /(0) e B~}. Finally, let N LalgNc, and recall
that W can be regarded as a "subgroup" of Gc, since R < Hom()S1, T)

^ LalgT. More precisely, we have N/Tc W, and W c W.
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