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144 S. A. MITCHELL

and [ is a proper subset of S, then VT/I 1s finite. This is obvious since
the elements of I have a common fixed point (i.e. the intersection of the
correspondmg reflection hyperplanes is nonempty) In Axiom (2.12) we take
A, = G,. We have G B = GC B=B U sB = P,. In particular P,/B

G,/(G,nB) = SU(2)/T = CP!, which also proves Axioms (2.20) and

(2.21). ]

(3.2) CoroLLARY. Q.G is a CW-complex with cells of even dimension,
indexed by Hom (S*, T). The Poincaré series for its integral homology is

alg

ZXGHom(sl T)tZI(X)’ where lb») is the minimal length accuring in AW.

Identifying Hom (S*, T) with WS, the closure relations on the cells are given
by the Bruhat order on W?5. N

Remark. An explicit formula for I[(\) is given in [16], Prop. 1.25:
= (s ol — [ {o > 0:a(d) > 0} .
We will also need the “Iwasawa decomposition” (see [17], [27], [29]):

(3.3) THEOREM. 5C = Q,,G x P. ]

Remark. Note that (3.3) shows that the associated building, which we will
be denoted simply by %4, is a quotient of L,,G/T x A. The equivalence
relation is then (f,T,X) ~ (f,T, X) if Xe A, and f, = f, mod LG n P,.

§4. QUILLEN’S THEOREM FOR Loop GROUPS
In this section we will give Quillen’s proof of the following theorem.

(4.1) THEOREM. Let G be a compact Lie group. Then the inclusion

Q,,G — QG is a homotopy equivalence.

If G is simply connected, let 4 denote the topological building associated
to the algebraic loop group L,,G¢ as in § 2.

(4.2) THEOREM (Quillen). Q,,G acts freely on s, with orbit space G.

Proof of (4.1). It is easy to reduce to the case when G is simply
connected. Since Bg; is contractible by Theorem 2.16, we conclude at once
from Theorem (4.2) that Q,,G — QG is a weak equivalence. Since both
spaces have the homotopy type of a CW-complex, the map is in fact a
homotopy equivalence. N

e
~
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Since G is a product of simple groups (as is Gg¢), it is very easy to
reduce to the case when G is simple. For the rest of this section, then,
we assume G is simple and simply-connected, of rank .

To prove 4.2, we introduce Quillen’s space of special paths & : this
is the space of all paths [0,1] - G of the form f(e*™)exp tX, where
feQ,,G and X eg. & is topologized as a quotient of Q,,G x g. Note
that L,,,G acts on & by h+(f exp tX) = hf exp tXh(1)~'. The following key
lemma, whose proof is deferred, also helps to explain the significance of the
parabolic subgroups P;.

(43) LemMMA. Suppose X e€A,, then the isotropy group of exptX s
Lu,G Py,

(4.4) TueoreM (Quillen). &, is L,,G-equivariantly homeomorphic to the
building % .

Proof. The action map ¢: L,;,G x A - & given by

o(f, X) = fexptX f(1)™*

is surjective by Theorem 1.1. If o(f;, X;) = o(f,, X,), then (evaluating at
=1) exp X, and exp X, are conjugate in G, so X; = X, by Theorem 1.3.
We then have o(f;, X) = ¢(f,, X) if and only if f; = f, mod the isotropy
group of exptX. Hence, by (4.3), ¢ factors through the desired homeo-
morphism %, » S;. O

Remark. Here we have used the Iwasawa decomposition (3.3) to identify
B = (Go/B x A)/~ with (L,,G/T x A)/~.

~

(4.5) Lemma. L,,G n P; is generated by T and the subgroups G;,ie I

Proof. We have P, = BWIB By the Steinberg lemma (2. 9) each
BwB(weWI) has the form XB, where X is a product of the G Since
Ly,G n XB = XT, the lemma follows. O

Proof of 4.2. The action of Q.,G on F; is clearly free. By (4. 4), the
same is true for %;. Now consider the orbit space %/Q,,G. Since

= (LagG/T x A)/~ = (Q,,G x G/T x A)/ ~, the orbit space is a quotient of
G/ T x A. The equivalence relation is given by (9,T, X) ~ (9,T, X) if X € A,
and g, = fg, p with f€Q.,G, peP;. In fact pe LG n P,. Now let
G, = = ¢(LGNP)), where e is evaluation at z = 1. Then 91T, X) ~ (g,T, X)
if and only if g, = g, mod G,. For if g2 = f g, p as above, then
G, = e(L,,GNP;), where e is evaluation at z = 1. Then 9.7, X) ~ (g,T, X)
if and only if g, = g, mod G,. For if g, = fgyp as above, then
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g, = f gy p(l), and conversely if g, = g, p(1), then g, = f g, p, where
f =g,p tgrt. But by (45), G, = G, (see § 1). In other words, the equi-
valence relation here coincides with the classical relation of Theorem 1.5,
which has quotient G. ]

Proof of 4.3. Fix X € A,. We first show that L,,G n P; fixes exp tX in
Z - By (4.5) it is enough to show that each G,(iel) fixes

exp tX: f(e*™exptX f(1)™! = exp tX.

If i #0, G~,- = (; 1s a subgroup of the constant loops, so f is a constant
g € G;. The desired equation is then equivalent to g+ X = X (recall that
g+ X = Ad(g)X). But since i # 0, o;(X) = 0, so this is true by definition.
Now suppose i = 0, so that X lies on the outer wall: ay(X) = 1. Then

1
X =

5 oy + Y, where o = 20,/% * %o 18 the coroot of o, and ay(Y) = O.

The equation we want can be written (f e@o):
f(e®™) = exptX f(1)exp —tX

Since f(1) e Gy, f(1)- Y = Y, and our equation simplifies to
2mit 1 * 1 %k
f(e™) = exp 5“0 f(Wexp| — imo

Note this is now an equation in the path space of G,. Identifying G,
with SU(2), it can be written

a be2nit 3 enit O a b e~ nit 0
ce” 2nit d - 0 e—nit c d 0 enit

Where <a

b
d>ESU(2)' This last equation is obviously correct, and we
g

conclude that L,,G n P; fixes exp tX.

Conversely, suppose

fexptXf(1) ™ =exptX, or f =expiX f(1)exp(—tX).

Then f(1)e C;exp X = Gy, and hence f(1) = h(1) for some he L,,G N P;.
But then h = exp tXh(l)exp —tX = f.

A useful fact that follows from all this 1s:
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(4.6) THEOREM. Evaluation at 1 induces an isomorphism L,,G N Py = Gy.
In particular, L,,G n Py is a compact Lie group.

Proof. We have seen that e maps L,,G n P; onto G;. The kernel is
G n P;. But Q,,G acts freely on &;, and L,,G n P, fixes A;, so
G M PI = {1}.

Q
Q

alg

alg

Remark. As always, I is a proper subset of S in (4.6). Of course (4.6)
also depends on our assumption that G is simple. Its discrete analogue is the
fact that W, is finite if W is irreducible. (It may be helpful to consider
the “discrete” versions of all the results of this section. For example, the
discrete version of “Q, G acts freely on Bg” is “the coroot lattice
Hom (S*, T) acts freely on t (the foundation of #;)”; of course the latter
assertion is trivial).

Note that we have shown that &;/Q,,G = G, and in fact the orbit
map < — G 1s given by evaluation at t+ = 1. This can also be proved

directly. It reduces to the following interesting theorem, also observed by
Quillen.

(4.7) THEOREM. Suppose X,Yeqg and expX = exp Y. Then exptX
= f(e>™ exptY for some [ eQ,,G. - O

It is not hard to prove this directly—for example, it is enough to prove
it for G = U(n). Not surprisingly, however, it is also implicit in what we
have already one. First, one can reduce to the case when G is-simple and
simply-connected. Using (1.3), one can easily reduce further to the case
Xeld,, Yy = g+ Xforsomege G. Thenge Cszexp X = G;,s0g = h(l) with
heLyGn Pr.Leth = exptX gexp —tX; then he L,,G and f = hh(1)~*
i1s the desired loop.

§5. THE LoOPs ON A SYMMETRIC SPACE

We assume throughout this section that G is simple and simply—connected.
If ¢ is an involution on G with fixed group K, as usual, then K is
connected and G/K is simply—connected. The notations and conventions of
§ 1 and § 3 remain in force.

The loop space Q(G/K) is homotopy equivalent to the space of paths
in G that start at the identity and end in K. Now consider the involution
v on QG given by ©(f)(z) = o(f(z)). The fixed group (QG) is clearly
homeomorphic to our space of paths, since f €(QG) implies f(—1)e K.
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