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A KALUZA-KLEIN APPROACH
TO HYPERBOLIC THREE-MANIFOLDS

by Peter J. Braam

§ 1. Introduction

In the recent past Thurston has caused a revolution in three-dimensional

topology with the creed: "Every 3-manifold is essentially geometric". In
particular a large class of 3-manifolds with boundary can be supplied
with a hyperbolic structure. This situation is much the same as that for
two-dimensional surfaces, which can also be given hyperbolic structures.

Another even more recent revolution in mathematics came about when

mathematicians started paying close attention to the methods employed in
theoretical physics. In particular S. K. Donaldson found deep applications
of Yang-Mills theory to four-dimensional topology.

On three-dimensional manifolds there exists a set of partial differential

equations, the Bogomol'nyi equations, which describe magnetic monopoles
in M. This equation is closely related to the Yang-Mills equation in
dimension four, and can only be formulated in presence of a Riemannian
metric and orientation on the 3-manifold. In the last three sections of this

paper we shall study some aspects of this equation on hyperbolic 3-manifolds.
Kaluza-Klein theory, another favorite of the physicists, leads to a natural

way to study these equations, thereby circumventing a large amount of
analysis associated with more direct approaches. Basically Kaluza-Klein
theory amounts to studying space through the geometry of a fibre bundle
over space. In our case this fibre bundle over a hyperbolic 3-manifold is

simply the product of the manifold with the circle. The analytical problems
alluded to above are largely due to the fact that a 3-manifold with boundary,
supplied with a hyperbolic metric, is very non-compact as a metric space.
Although this is not changed by taking the product with a circle, it turns
out that this 4-manifold has a natural conformai compactification (yet
another popular ingredient in physical theories).

The upshot is (§ 2) that we canonically associate a conformally flat,
compact 4-manifold (without boundary) with a circle action, to a hyperbolic
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3-manifold (provided some conditions are satisfied see § 2). This provides a

link between conformai geometry in dimension 4, and hyperbolic geometry

in dimension 3. It is very similar to Poincaré's observation in 1883 that

hyperbolic geometry in dimension 3 is related to conformai geometry in

dimension 2, by considering the boundary surfaces of a hyperbolic 3-manifold.

In going over to the 4-manifold, no information is lost. This allows one

to deduce precise facts concerning the 3-manifold from known facts about

conformally flat 4-manifolds; therefore, before we start studying the Bogo-

mol'nyi equation, we study some global differential geometric questions

concerning hyperbolic 3-manifolds in the light of the conformai compacti-

fications.

In particular we can exploit recent work of Schoen and Yau to classify
a family of hyperbolic 3-manifolds (§ 3), namely those which are geometrically
finite without cusps and have a limit set of Hausdorff dimension < 1.

On the analytical side, knowledge about conformally invariant differential

operators in dimension 4 can be exploited to obtain a Hodge theory for
hyperbolic 3-manifolds (§ 4). This answers a question posed by Thurston.
We prove that the L2-cohomology in dimension 1 of the 3-manifold is

equal to the de Rham cohomology with compact supports. On the universal

cover H3, Poisson transformation gives an identification between closed and
co-closed one forms on H3 and closed hyperfunction one forms on 5H3.

Our L2 harmonic forms now correspond to closed, invariant currents on bH3

with support in the limit set. Additionally this theory gives an invariant of
the hyperbolic structure, of a type familiar from algebraic geometry.

After these digressions we start studying magnetic monopoles on the

hyperbolic 3-manifolds by relating them to S1-invariant instantons on the
4-manifolds. Relevant definitions and background can be found in § 5.

The twistor spaces associated to the conformally flat 4-manifolds are
studied in § 6. Not only do these provide a way to study monopoles,
they also encode a wealth of geometrical information belonging to the

3-manifold such as the entire geodesic flow. Finally in § 7, we use the

twistor theory to construct some explicit formulas for monopoles on handle-
bodies. Here we naturally encounter the Eisenstein series associated to the

hyperbolic 3-manifold.
We end this introduction by briefly indicating what kind of future

developments can be expected. The compact 4-manifolds should allow for

easy study of many natural differential operators on the 3-manifold; in
§ 4 it is indicated how. Using generalizations of Poisson transformation to
fields of higher spin, it seems very likely that a wealth of hyperfunction
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objects with support in the limit set can be obtained. The twistor spaces

may provide a natural environment to study theorems about the 3-manifold

which rely on properties of the geodesic flow. In particular one could try
to prove Mostow's theorem (and Thurston's generalisation of it) along the

lines outlined in § 6.

From an analytical study of monopoles it is known that monopoles
exist under reasonable conditions. This shows that there are interesting

holomorphic bundles on twistor space. Understanding the structure of these

will almost certainly reveal a large amount of geometry and analysis
associated to the hyperbolic manifold. Finally, properties of the moduli

spaces of monopoles which are independent of the metric on the 3-manifold

are topological invariants of the 3-manifold. This is related to the work of
Donaldson and Casson.
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discussions with professors David Epstein, Pierre Gaillard, Claude LeBrun,
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Council/Foreign Office Scholarship and leave from Utrecht State University
are gratefully acknowledged. The final stages of this work were partially
supported by a C&C Huygens Fellowship from the Netherlands Organisation
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§ 2. CONFORMAL COMPACTIFICATIONS AND THEIR TOPOLOGY

Let M be an oriented, irreducible, atoroidal, compact, three-dimensional
manifold with non-empty boundary 5M. Atoroidal means that every map
T2 -» M has a kernel on the level of fundamental groups. For simplicity
we shall avoid cusps and thus we assume that :

2.1 either no component of 8M is of genus 1 or M D2 x S1

Thurston's uniformization theorem (see Morgan [29]) asserts that there is
a complete, geometrically finite, hyperbolic structure on M M - SM. This
means that M can be realised as follows (see Bers [7], Maskit [27],
Morgan [29], Beardon [6] for background).

Recall that PSL(2, C) SL(2, C)/{ + 1} is the isometry group of hyperbolic
3-space H3, and that the right action of an isometry on H3 SU(2)\SL(2, C)
extends over the boundary S2 bH3 as an action by a fractional linear
transformation of S2. A Kleinian group F without cusps is a discrete
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subgroup of PSL(2, C) all elements of which are loxodromic (i.e. have

exactly two fixed points in H3 H3 u S2), and which acts freely and

properly on a non-empty open set Q a S2 (Felix Klein, the man of the
dicrete groups, and Oscar Klein, of the Kaluza-Klein theories mentioned in
the introduction, are not the same). Proper means that the map Q x r
-» D x Q : (x, y) -> (xy, x) is proper. Proper actions are well behaved, and a

proper free action has a smooth quotient, see Gleason [14].
There is a preferred region D(r), in which T acts properly. Define the

limit set A(T) of the group Y to be the set of all y e S2 such that there
is a sequence of different elements y} g T and an xeS2 with yj' x -> y.
The region of discontinuity Q(T) is the complement S2 — A(T), and T acts

properly on D(r). The limit set may be quite wild and has Hausdorff
dimension dimHA(r) g [0, 2]. If no confusion is possible we shall denote

D(T) by Q and A(T) by A.
The number of components of D is 1, 2 or infinite, and Q/r is a

collection of N Riemann surfaces Sx,..., SN, where N is the number of
T-orbits in the set of components of Q (N can be infinite). It is well known
that the T-action on H3 is proper and that it extends to a proper action

on H3 — A; therefore (H3 — A)/T is a smooth manifold with boundary
Q/r ujSJ.

In order to ensure that (H3 — A)/Y is compact we introduce another
notion. The group T is said to be geometrically finite iff there is a finitely
sided fundamental polyhedron (Maskit [27]) for the T-action on H3. In this

case the quotient M H3/Y is the interior of a compact, smooth manifold
M (H3 — A)/T which has boundary 8M D/T, now equal to a finite
collection of compact Riemann surfaces without boundary. In this case the

hyperbolic structure on M is said to be geometrically finite. If Y {e}
we have N 1, Sx S2, and if Y is cyclic then N 1, T2 ; in both
of these cases D is connected. In all other cases every Sj is a surface of

genus ^ 2.

The conjugacy class of Y in PSL(2, C) is not uniquely determined by M
as a smooth manifold; in fact continuous deformations of the complete

hyperbolic structure on M can be realized by deforming the embedding
T -> PSL(2, C). Thus the situation is much the same as that for Riemann

surfaces, which also admit families of hyperbolic structure (or equivalently
complex structures).

As a metric space, M endowed with such a hyperbolic structure is

highly non-compact, and the boundary surfaces lie at infinity, i.e. they are the

celestial surfaces in M. Following the physical idea of a Kaluza-Klein theory
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we shall study the fibre bundle M x S1 over M instead of M itself.

Another popular notion in physics is that of a conformai compactification :

M x S1 has a natural conformai compactification X without boundary
(or Xr if we want to indicate the dependence on T), i.e. there is an injective
conformai immersion M x S1 -> X onto a dense subset. To get X we spin M
around 8M, see figure 1, i.e. X is M x S1 with the circles over 5M
identified to a point. This gives a compact 4-manifold X with an S1-action.

The action is free away from the fixed point set, which is isomorphic to the

boundary 5M uj=lrNSj. The normal bundles of the Sj are trivial and of
S1-weight 1. For example take M S x R with S a surface. Then X is

the compactification ofSxRXiS1 Sx C*, that is X S x S2, where S1

acts on S2 by earth rotation and has two fixed surfaces S x {0, oo} in X.

Figure 1.

In order to relate the hyperbolic structure on M to a conformai structure
on X we proceed more formally. Recall that H3 {(x, y, t) e R3 ; t > 0}
with metric ds2 (dx2+ dy2+ dt2)/t2. It follows that:

2.2 i: H3 x S1 (R2©R2) - (R2©0) R4 — R2 S4 — S2 :

((x, y, t),S)-+ (x, y, t cos 9, t sin 9)

is an orientation preserving, conformai diffeomorphism. The map i intertwines
the ^-action on H3 x S1 with rotations in the second summand of R2 © R2.
The ^-action extends to S4 with fixed point set S2 (R2®0) u {oo} c S4.
This fixed point set corresponds to 8H3 x S1 under:
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2.3 f :H3 x S1

the continuous extension of i. To get further we shall show that the

compactification S4 of H3 x S1 is natural enough to transfer group actions
from H3 to S4. The maps i and f are equivariant with respect to the group
S1 x PSL(2, C), which will act on the right on S4 by conformai transformations.

To see this, recall that the PSL(2, C)-action on S4, which is the

quaternionic projective line HP1 H*\(H2 — {0}) (i.e. divide out the left
action of multiplication by invertible quaternions), is by fractional linear
transformations :

As a result a geometrically finite Kleinian group F acts on S4. The

limit set A' of the T-action on S4 equals i'(A x S1), so it is contained in the
S1 -fixed point set S2 a S4. Clearly A' is isomorphic to A, and we shall

simply identity A and A'. The restriction :

is proper, equivariant and surjective. This implies immediately that the

T-action on S4 — A is proper. Since F is geometrically finite the quotient
X (S4-A)/r is compact and without boundary. Finally, the fact that the

T-action is free ensures that X is smooth and inherits a smooth S1-action.

The S1-action is free away from the fixed surfaces Sj9 which correspond
as conformai surfaces to Q./F (bH3 — A)/F i'((bH3 — A)xS1)/F. It is

useful to realise that i and i' induce maps i: M x S1 -> X and i' : M x S1 -> X.
Summarizing we have proved :

Theorem 2.1. Let M be an oriented, geometrically finite, complete

hyperbolic 3-manifold with non-empty boundary 5M u Sj satisfying 2.1.

Then M x S1 has an oriented, smooth conformai compactification X
(without boundary) upon which S1 acts. X is conformally flat and the

S1-action is free away from its fixed surfaces Sj(j= 1,..., N) which correspond

as conformai surfaces to the boundary surfaces of M. The normal bundles

Nj of Sj in X are topologically trivial and of S1 -weight 1. The

hyperbolic structure on M can be reconstructed from X by giving

X — (u Sj) that metric in the conformai class for which the S1-orbits have

length 2n. Then M is the Riemannian quotient of X — (u,- Sj)

2.4

i' : (if3 —A) x S1 -> S4 - A

by S1.
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Remark. It is worth pointing out that if one chooses an equatorial

embedding of S" in Sn + 1 then any conformai transformation of Sn extends

uniquely to a conformai transformation of Sn+1 leaving invariant the

components Sn + 1
— Sn. Thus if T is a group acting on Sn then it also acts

on Sn+1. A Kleinian group can be thought of as a group acting on S3

with limit set in an equatorial S2. Theorem 2.1 now says that if T is

geometrically finite and purely loxodromic then in S4 we have A(T) c S

a S4 and 0(r)/r is a compact 4-manifold.

The existence of a conformai compactification is not automatic. It is

easy to see that R3 x S1 cannot be compactified by adding an S2 at

infinity.
The topology of X is easily described :

Proposition 2.2.

a) nfiX, m) nfiM, m) for meS1 (Sx a fixed or boundary surface).

b) There are natural isomorphisms H2(M, 5M ; Z) —> H3(X ; Z) and

H2(M ; Z) © HfiM, 8M ; Z) - H2(X ; Z)

The two summands of H2(X ; Z) (modulo torsion) are isotropic and dual to

each other under the intersection form Q on H2(X ; Z); consequently the

signature <j(X) 0, and Q n times ^
^

with n rk H2(M ; Z).

c) yfiX) hj%($j) with % denoting the Euler characteristic.

d) Spin structures on X exist and the double cover of S1 acts naturally
and effectively on any spin structure.

Proof, a) Of course this is what one expects to be true: izfM x S1, m)

nx{M, m) x Z, but the Z factor is killed by shrinking the circles to a

point. Formally, remark that a tubular neighbourhood of u Sj looks like

(u Sfi x D2, and apply the Seifert-van Kampen theorem.

b) Define j: M -> X by j(m) i'(m, 1). Up to ^-rotation j is defined

uniquely by the conformai structure of X. This induces a homomorphism
: H2(M ; Z) - H2(X ; Z). Next remark that if c is a chain in Cj (M, 5M ; Z)

then i'^cxS1) is a chain in Cj+1(X; Z), because the circle shrinking to
a point enforces 8z^(c x S1) 0. Taking a careful look at the Mayer-
Vietoris sequence applied to (u Sj) x D2 and M x S1 shows that this
gives natural isomorphisms as indicated in the proposition. The
properties of the intersection form Q follow from the intersection pairing:
H2(M ; Z) x HX{M, ÔM ; Z) -> Z.

c) This is easy, using either a and b, or equivariant Lefschetz formulas.
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d) Every orientable 3-manifold admits a spin structure, see Stiefel [35].
Give S1 the spin structure corresponding to the connected double cover,
which extends to the disc in R2; therefore a product spin structure on
M x S1 extends to X. Clearly every spin structure on X arises in this

way. The double cover of S1 is needed to define an action on the spin
structure of the orbits in X.

The spin bundle of H3 is the Spin (3) S 17(2) bundle SL(2, C) -> H3

SU(2)\SL(2, C); thus a spin structure on X is in fact nothing else but
a lift of the homomorphism r : F -> PSL{2, C) which defines M, to a homo-

morphism r' : T SL(2, C).

If N denotes the number of boundary components of M (as before)
then it follows from the exact sequence of the pair (M, 8M) that :

2.5 rk H2(X ; Z) 2 • rk HfM, 8M ; Z) ^ 2 • (N-1)

Another useful fact to keep in in mind is :

2.6 rk {ker (HfSM ; Z) HX(M ; Z))} f • rk H±{bM ; Z),

which can easily be deduced from Alexander duality and the exact sequence
of the pair (M, 5M).

VX 0 1
Examples 23. 1) If T is the cyclic group generated by 1

with
0 A

kC* then the limit set equals {0, oo} in the coordinates on SET3 supplied

by the upper half space model. It is easy to see that M H3/T D2 x S1.

To find X, it is easiest to divide out the T-action on S4 — A C2 — {0}
which is given by (z0, zx) (E2z0, | X | 2z1). As a result J is a Hopf surface

diffeomorphic to S3 x S1. The S1-action is given by (z0, zx) ^ (z0, e^zf),

so the fixed surface is the two-torus C*/ < X2k >.
2) If T is Fuchsian, i.e. T c= PSL(2, R), then H2/T is a compact Riemann

surface without boundary S of genus ^ 2 with metric ds2. The 3-manifold M
is diffeomorphic to R x S with metric given by dl2 + cosh2/ • ds2. Clearly it
follows that X must be diffeomorphic to S2 x S. A little computation
shows that X is even conformally equivalent to S2 x S. Thus X is con-

formally equivalent to the Kähler surface CP1 x S.

From the point of view of Kleinian groups, we remark that Q, is the

union of two round discs which are both invariant under T. The limit
set is a smooth circle.

3) A Kleinian group T which is not itself Fuchsian, but which contains

a Fuchsian subgroup F0 of index two is said to be an extended Fuchsian
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group. For details see Maskit [28]. The limit sets A(r0) and A(T) are equal,

and any y e T — T0 swaps the two components of Q. Such an element y
also gives rise to a fixed-point-free, orientation reversing involution a of S

(compare 2), and one deduces from this that M H3/T is a nontrivial
R-bundle over S/a. Remark that 8M S.

A standard way to get more interesting 3-manifolds is through the

Klein-Maskit combination theorems (Maskit [27], Morgan [29]). We shall

explain how the simplest of these relates to the 4-manifolds involved.
Let T0 and T1 be geometrically finite groups without cusps and Mj H3/Tj.
Every pair of points Xj e bMj has neighbourhoods Kj in Mj isometric to a

hyperbolic half space i.e. to a component of H3 — H2. The H2 5Kj — 3Mj
are embedded in Mj and SHjnMj Hjn 5Mj are circles which bound
discs in 8My. Define M M0 # M1 to be M0\K0 up Mf\Kl9 where p is

an isometry SK0 SKX. The metric structure of M M0 # M ± depends

on p, the choice of Xj and the choice of the half spaces Kj. M is called a

boundary connected sum of M0 and M1.
The first combination theorem expresses the fact that M H3/T with

F a Kleinian group which is isomorphic to the free product of T0 and
T1. In PSL(2, C) the v group T is generated by T0 and gT1g~1 for a
suitable g e PSL(2, C). It is easy to verify this.

Reverting to The 4-manifolds, we see that we are identifying, by S^-equi-
variant conformai maps, balls Bj around the points Xj in the fixed surfaces.
Thus XT equals XTo jf XFl with / now denoting a conformai connected
sum. Summarizing we get:

Proposition 2.4. If T is the Kleinian group corresponding to a boundary
connected sum of H3/T0 and H3/T1 then F is a Kleinian group such
that Xr is the S1 -equivariant conformai connected sum of XTo and XTl
at points in the fixed surfaces.

Example 2.5. A classical Schottky group T of genus g is a free product
of g cyclic groups (compare example 2.3 (1)), formed as in the gluing
construction described before proposition 2.4. The 3-manifold Mr is a handle-
body of genus g, and by proposition 2.4, XT equals the connected sum
(.S x S1)#9. In fact if F is any geometrically finite free Kleinian group without
cusps, then H3/T is a handlebody; this follows from standard results in
3-manifold topology (see Hempel [17]). We shall refer to such free groups as
Schottky groups.

L
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§ 3. Classification of F with dim#A(F) ^ 1

In the previous section we constructed a compact, oriented, conformally
flat 4-manifold X starting from a suitable (see § 2) hyperbolic 3-manifold.

By Schoen's solution of the Yamabe problem [33] there is a metric in the

conformai class of X, for which the scalar curvature is a constant. The

sign of this constant —, 0 or + is called the type of X. A lot is known
about X of non-negative type, and we shall classify 3-manifolds M which
give rise to X of non-negative type.

In a different direction Schoen and Yau [34] proved that if X is

the quotient of S4 — A by a discrete group of conformai transformations,
then X is of type +, 0, — if and only if the Hausdorff dimension of A satisfies

that dim# A — 1 is negative, zero, positive respectively. Hence our classification

is that of M for which dim# A ^ 1. The classification for

dim# A 1 seems to be new, for < 1 the result was known.

Up to now, the only Kleinian groups to have been classified are the

so called function groups, those Kleinian groups which leave a component
of Q, S2 — A invariant. This has been done by Maskit. A special case

of this, which we shall use repeatedly below, occurs when £2 is connected.

In this case the Kleinian group is Schottky (see example 2.5).

Theorem 3.1.

a) If the type of X is + then M is a handlebody equal to H3/F
with T a Schottky group.

b) If the type of X is 0 then one of the following holds :

1) M equals R x S H3/F with T Fuchsian and S a compact
surface.

2) M equals H3/T with F extended Fuchsian (see example 2.3 (3)).

3) M is a handlebody as in a).

Proof, a) R > 0 implies dim#A < 1, see the proof of proposition 3.3

of Schoen and Yau [34]. This implies that Q(T) is connected, because a set

of Hausdorff dimension smaller than 1 cannot disconnect S2. By Maskit's
classification theorems (see Maskit [27]) it follows that F is Schottky.

b) First assume H2(X, R) / 0 and give X sl metric of zero scalar

curvature in the conformai class. From proposition 2.2 we see that the

intersection form is indefinite, so there is a self-dual harmonic 2-form co
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on X. A Weitzenbock formula asserts that on 2-forms (d + d*)2 V*V with V

the total covariant derivative. It follows that go is covariantly constant, and a

multiple of co serves as Kähler form for an integrable complex structure

on X : compare LeBrun [24]. LeBrun proceeds to classify these as (1)

a K3 surface, (2) a four dimensional torus modulo a finite group and (3)

a flat CP1 bundle with the local product metric, over a Riemann surface S

which carries a metric of curvature — 1. From proposition 2.2 we see that

only (3) is possible in our case because (1) has the wrong Euler characteristic,
and (2) with Euler characteristic 0 should have had H2(X;R) 0.

The Kähler form of X is the unique self-dual harmonic 2-form on X.
This is preserved by the conformai S1-action, thus the action is a holomorphic
action on X. As a result the vector field v induced by the S1-action on X
is holomorphic. The fibration n:X CP1 helps us further: we get a map

TX -> 7i*TS and n^v is a section of n*TS. Such a section is constant
on fibres, so it is a pull-back of a section of TS. The only holomorphic
section of TS is 0; so v is a vertical vector field.

From theorem 2.1 we see that zeroes of v must be simple, hence two
per fibre. One of these is a sink, the other a source of i • v so we get
two sections S -> X. This proves that X is the projectivization of a direct
sum of holomorphic line bundles, say X The next step is to
remember that the circle bundle X — [P{L0)vP(L1)'] over H3/T may have no
monodromy. Infinitesimally this implies that L0 ® L f is a trivial line bundle.
So X S x CP1 and consequently T must be Fuchsian.

Next we come to the case H2(X, R) 0. If S2 — A has only one
component then we can apply Maskits classification theorem as in a), and
conclude that F is Schottky; therefore we shall concentrate on the case
that Q has at least two components.

If £20 is one of these components then the stabilizer ro c= T of Q0
is a geometrically finite Kleinian group, and has Q0 as a component, see
Marden [26] corollary 6.5 (it should be remarked that subgroups are not
automatically geometrically finite). As S2 - Q0 is T-invariant and has

non-empty interior, it follows that H3/T0 must have at least two ends. By
formula 2.5 and the fact that dimHA(ro) ^ dimHA(r) ^ 1, the above implies
that r0 is Fuchsian. Thus every component of Q is a round disc.

Before we proceed let us briefly recall what effect a conformai rescaling
of the metric has on the scalar curvature. If on the 4-manifold X one has

9i u2 • g0 then - • u3 • R(ôq) (d*du + — R(g0)u), where J* is taken with

respect to g0. Since here metrics of zero scalar curvature are involved, this
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equation loses its nonlinear character. An immediate consequence is that
metrics of zero scalar curvature are unique up to constants multiples and
hence S1-invariant.

We have the hyperbolic covering H3/T0 -> H3/T, and on the 4-manifolds

corresponding to each of these there exists an S1-invariant metric of zero
scalar curvature. Denote these by g0 and g, and denote the hyperbolic

metric on the 3-manifolds by gh. Then we have positive functions

u0 : H3/T0 - R>0 and u: H3/T R>0 such that g0 u§ • gh and g u2 • gh.

By the above u0 and u are in the kernel of (d*d— 1) on H3/T0 and

H3/T respectively (here d* is w.r.t. the hyperbolic metric).
Results of Sullivan [36] imply that positive solutions of d*d — 1 on

H3/T0 are unique (up to positive scalar factors) as dim#A(r0) — 1. Therefore
the pullback of u equals u0, and hence the cover XTo — (S,1UiS2) -> Xr — S1

is an isometry (St are the fixed surfaces). The map can readily be extended

to an isometry XTo — S2 XT and then extends to a double cover
XTo -> XT. It follows that T is extended Fuchsian as claimed.

Reformulating in terms of Kleinian groups gives :

Corollary 3.2. Let T be a geometrically finite Kleinian group without

cusps. If dimiîA(r) < 1, then T is Schottky. If dimHA(T) 1 then T
is Schottky, Fuchsian or extended Fuchsian.

Proof. We shall see in section 7 that dim#A(r) < 1 implies that the type
of A is +, which is essentially an old observation due to Poincaré.

Together with the results of Schoen and Yau mentioned in the proof above,
the corollary is now obvious.

Remark. 1) Existence of Schottky groups with limit set of any dimension
smaller than 2 has been proved (Thurston [37]).

2) In Schoen & Yau [38] and Gromov & Lawson [15] the conclusion
is drawn that for so-called classical Schottky groups T the manifold XT
admits a metric of positive constant scalar curvature.

4) R. Bowen [9] has proved that any quasifuchsian group with
dim#A 1 is Fuchsian. Of course this is a special case of theorem 3.1.

It will be interesting to see if further developments in the theory of

compact, 4-dimensional, conformally flat manifolds are going to have similar

applications to Kleinian groups. On the other hand it seems likely that a

purely 3-dimensional proof of theorem 3.1 could be found as well. The crucial
element seems to be to exploit the existence of a harmonic two form, in
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the way Lebrun did. LeBrun arrives at his flat CP1 bundle through a

foliation argument which presumably can be mimicked in the 3-manifold.

§ 4. Hodge theory for hyperbolic 3-manifolds

Apart from the topological and geometrical applications which we

discussed in § 3, our Kaluza-Klein approach also has some more analytical

applications.
Recall that the Hodge-star * ; Qn(7) -> Qw( Y), on a 2n-dimensional oriented

Riemannian manifold Y, depends only on the conformai structure underlying
the metric. This has two consequences :

1) The L2-norm || co ||
2 j co A *©, of co g QW(Y), is conformally

invariant.

2) The harmonic n-forms, i.e. the co g Q"(Y) s.t. d(ù d*co — 0, depend

only on the conformai structure of Y.

Of course conformai rescaling lies at the heart of our construction
in § 2, and we shall now show how the above applies to this situation. Let X
be the conformai compactification of M x S1 as in § 2. Harmonic 2-forms

on X are automatically S1-invariant because they are in one-one
correspondence with the elements of H2(X ; R) H2(M ; R) © H1(M, 5M ; R),

see § 2). By restriction to the open subset M x S1 cz X and a conformai
rescaling of the metric on M x S1, 2) above implies that we get S1-invariant
harmonic 2-forms on M x S1 with respect to the product metric.

An S1-invariant form can be written as co p*a + p*ß A dQ, with
a g Q2(M), ß g QX(M) and p : M x S1 ->• M the projection. A short
computation shows that such S1-invariant forms co are harmonic iff a and ß

are harmonic on M. If co is a harmonic 2-form on M x S1 arising from
a form on X then it follows from proposition 2.2 that a g Q2(M) and
ß g QX(M) are harmonic representatives for the class co g H2(M ; R)
© H1(M, 5M ; R). The forms a and ß have finite L2 -norm on M by 1)

above.

Conversely any S1-invariant, harmonic 2-form rô on M x S1 with finite
L2-norm arises in this way. By 1) above one can always consider co to be

an L2-form co on X because u Sj X\M x S1 has measure 0. Applying
the first order elliptic operator d©d*toco gives a distributional form in
^ - i(A*(20) of distributional order < 1, which has support in the co-
dimension 2 manifold u jSjczX. The following lemma shows that this
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implies that (d®d*)co 0, which proves that 0 is a smooth harmonic
form on X, as we claimed.

Lemma 4.1. Let \x be a distribution of order ^ 1 in Ll1(R"). If
supp p is contained in R" ~2 then p 0.

Proof Without loss of generality assume that p is compactly supported.
The structure theorem for distributions carried by submanifolds (see Hör-
mander [21] theorem 2.3.5) asserts that p is a finite linear combination
of distributions v of the form <v, /> <r|, 8R„-2 • DJ • f >, where r| is a

compactly supported distribution on R"-2, 8R„-2 is restriction to R"~2 and
D* is a k-th derivative (0^/c^l) in a direction n normal to R"-2.

The Fourier transform p(u, x, y) is a smooth function on R"~2 ® R ® R
of the form f0(u) + j\(u) • x + f2{u) • y. It is easy to see from this that the

L2^-norm cannot be finite, unless p 0.

Denote by Jfl(M) the vectorspace of harmonic (i.e. closed and coclosed)
z-forms on M with finite L2-norm. Summarizing the above we have proved:

Theorem 4.2. The natural maps -> H1(M, 5M ;R) and Jf2(M)
H2(M ; R) are isomorphisms.

On the universal cover, Poisson transformation gives a one-one
correspondence between closed and co-closed 1-forms on H3 and exact one
forms with hyperfunction coefficients on SH3, and this is what we shall

exploit next. If the hyperfunction one form is continuous then it is the

boundary value of the one form on H3 in the classical sense, this is

special for hyperbolic space. Thus in this case Poisson transformation is

solving a Dirichlet boundary value problem on (if3, 8/f3). The Poisson

transform #(cj)) of a continuous function <\> on 5H3 is defined as (see

e.g. Gaillard [13]):

&{§) (h) Js2 P(h, b) • c|)(b) with P(h, b) n~1(h3/\h-b\2)2db1Adb2

where h (h1, h2, h3) e R 3 H3, h3 > 0 and b (b1, b2, 0) e R2 c= 8FT3.

For exact one-forms a ~ d<$> we define ^(a) d&*($). As &>(<$) is harmonic,

^(a) is closed and co-closed. Using this, we can identify our L2 cohomology
as follows :

Theorem 4.3. Poisson transformation induces an isomorphism from F-
invariant closed one-forms with hyperfunction coefficients on 8ff3 with support
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in the limit set to closed and co-closed one forms on H3/T with finite
L2 norm. Such hyperfunction one-forms are one-currents.

Proof An L2 harmonic 1-form on M lifts to an invariant 1-form co

on H3. From Gaillard [13] we know that co is the Poisson transform of

a unique closed 1-form a on S2 bH3 with hyperfunction coefficients.

From theorem 4.2 it follows that co is bounded on a fundamental domain,

so it is of slow growth and therefore a is a current. Now write

a d(\>, co d\|/ for a distribution cj) and a function \J/. It follows that

\|/ is the Poisson transform of cj) (after adding a constant). From theorem 4.2

it follows that the one form co extends smoothly to a one form on

(H3ubH3) — A, zero on the boundary bH3 — A. This implies that v|/ is

smooth on (H3ubH3) — A. In Schlichtkrull [32], chapter 4, it is proved
that under these conditions \|/ converges uniformly to cj). But then (j) must
be constant on components of bH3 — A and therefore the support of a

is contained in A.

Conversely let a be a closed 1-form with hyperfunction coefficients in
S2 with support in A, and let co be its Poisson transform. We shall

prove that co, which is automatically closed and co-closed, has finite L2

norm. As above let co chj/ and a d§, then cj) is constant on components
of bH3 — A. Apart from the boundary value § there is another "boundary
value" cj)', just as in the classical case there is the von Neumann boundary
value problem next to the Dirichlet boundary value problem. In further
analogy with the classical case the global boundary value cj)' can be obtained
from (j) by applying a pseudo-differential operator on S2 to it, which has a
real analytic integral kernel, see Schiffmann [31]. So, § and cj)' are real
analytic in bH3 — A.

Oshima [30] theorem 5.3 shows then that locally in bH3 — A we have:

v|f(h1, h2, h3) c1(h1, h2, h3) + c2(h1 ,h2,h3)'h3- q{log h3),

with (hl, h2, h3) upper half space coordinates, q a polynomial in one
variable and c1(h1 ,h2, 0) c\>(h1, h2). c2(h1 ,h2,0) (\>\h1, h2). From this it
follows that co has an expansion locally bounded by est • h3 • g(log h3).

Recall that a fundamental domain for the T-action on H3 intersects
bH3 in a compact fundamental domain for the T-action in bH3 — A. This
together with our estimate implies readily that the L2 norm of co restricted
to a fundamental domain is finite.

A few remarks are in order. First of all it should be possible to give
• an effective bound on the distributional order of the currents a on S2,

I
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and also if a d<\> it should be possible to determine if the function cj)

(constant on components of 8if3 — A) is locally integrable. Also it should be

noted that ce>Ad9 is a solution on A of a p.d.e with real analytic coefficients,
i.e. it is real analytic. This shows inmedeately that co has an expansion as

in the proof of theorem 4.3, without logaritmic terms.
Next we can use the above to define a simple invariant of the hyperbolic

structure on M. The Hodge star of the hyperbolic 3-manifold M gives an

isomorphism *3 : -> JT2(M). Both and JT2(M) contain an

integral lattice of maximal rank coming from integral cohomology. These

lattices do not generally coincide under *3; in fact their intersection is empty
unless the 4-manifold carries a self-dual harmonic form which represents an

integral cohomology class. The relative position of the two lattices in
H2(M ; R) is described by :

4.1 h(M) e GL(H2{M ; R))/GL(H2(M ; Z) <g> Z),

which is an invariant of the hyperbolic structure of M. Similar invariants
are very popular in algebraic geometry. There discrete lattices in a complex
vector space give rise to invariants associated to the complex structure of
manifolds.

We proceed to sketch how the above theory relating solutions of
elliptic p.d.e. on M to invariant solutions on X generalizes. Suppose
D : T(E) T(F) is a conformally invariant first order (possibly over-
determined) elliptic operator acting on sections of the vector bundle E

over X. This class of operators was studied in detail by Hitchin [18],
and comprises, among others, Dirac and twistor operators on X and the

operator d + d* on 2-forms which we studied above. Again restriction of
S1-invariant solutions on X to M x S1 gives solutions to a closely related

geometric p.d.e. on M.
Conversely we can start with a solution on M and require that it

has a finite L2-norm on X\(uSj). In general this is not the same as

having a finite L2-norm on M, but it is the same as having a finite

weighted L2-norm on M. The weighting function is a suitable power of
the function on M which conformally rescales the hyperbolic metric on

M to à metric on X. Such a function is determined up to multiplication
by functions <|\>:M - R>0 which are bounded above and below. The exact

value of the power needed is an inhomogeneous linear function of the

conformai weight of E. The extension over the fixed surfaces Sj goes now
as in lemma 4.1. We shall not make use of this in the sequel and

therefore leave the details to the reader.
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Remarks. 1) It would be interesting to see what kind of harmonic

representatives for classes in H1(M ; R) can be found.

2) Theorem 4.2 generalizes to identify elements of Hj(M, 5M;R) with
L2 harmonic forms for any oriented n-dimensional Riemannian manifold M
for which a conformai compactification of M x Sk exists, for all k, provided

j < n/2.

§ 5. Monopoles and Instantons

Our goal is now to exploit the compactification X of M x S1 (see § 2)

to get monopoles on M from ^-invariant instantons on X. We shall also

relate the instanton number on X to various topological invariants of the

monopoles on M. General background for this section can be found in
Freed-Uhlenbeck [12] and Jaffe-Taubes [22]. More specifically our approach
here is very similar to the one taken in Atiyah [2].

Let P be a principal S£/(2)-bundle over X, with c2(P) k ^ 0. Recall
that X comes naturally with a conformai structure. This enables us to talk
about instantons or anti-self-dual connections A on P. These are defined to
be the solutions of the and-self-duality equation :

5.1 fa — *4 Fa (*4 the Hodge star on A2(X)).

Here FA is the curvature of A, a section of A2{X) ® gP with gP P x Adsu{2).
The instantons are the absolute minima of the Yang-Mills functional:

5.2 YM(A) (16712)-1 \X<FA A *FA>

where <a, ß> =» - 2-fr (aß) is an invariant inner product on su(2). For
an instanton YM(A) k.

Next assume that the double cover S1 of S1 acts on P by bundle
automorphisms, covering the action on X ; the double cover will be needed
in order to include the spin bundles of X. Our interest will now lie in
iS-invariant instantons on P. To relate these to objects on M introduce
the map :

j: M -» X : m -> f(m, 1) (compare 2.2),

which is a diffeomorphism onto its image. Let v be the vectorfield on P
induced by the ^-action. If we interprète an ^-invariant connection A
as a 1-form on P, then define the Higgs-field O to be the su(2)-valued
function j*A(%v) on ;'*P. It is easy to see that O is a section of j*gP.
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Further A3 j*A defines a connection on the bundle j*P over M. A little
computation shows that the 51-invariant connection A is anti-self-dual iff
(A3, ®) satisfy the so called BogomoTnyi equation on M :

5.3 dAs<D — *3F^3.

As 5.3 is the standard equation describing magnetic monopoles on three

dimensional manifolds, this leads to the definition.

Definition 5.1. A monopole on P is an ^-invariant instanton on P.

Normally one defines a monopole by imposing certain asymptotic
conditions rather than requiring it to extend over a compact manifold. In
Braam [10] it is explained that results of the Sibners imply that this

amounts to the same. We shall see below that the boundary data are the

same.

If GA(P) denotes the group of S-invariant gauge transformations on P,
then GA(P) leaves the set of monopoles invariant. Just as for instantons

one can therefore define a monopole moduli space, equal to :

5.4 {solutions of 5.3}/GA(P)

In Braam [10] is shown that under some assumptions these moduli spaces

are non-empty finite dimensional manifolds.
We shall now return to our 5x-equivariant bundle P and relate topological

invariants of the action to asymptotic invariants of (A3, O) on M. Restricted

to one of the fixed surfaces Sj, S1 acts by gauge transformations on P. The
fibres of E P x SU{2)

C2 over S
y decompose into eigenspaces for the S1

action. Denote by my e Z^0 the S^weight which is non-negative.
If my > 0 then :

5.5 EjSj Lj ® Lf
where Ly is the complex line bundle in E of weight my and Lf that
of weight — m7-; because cfiE\Sj) 0, Lf is also the dual of Ly. In order

to define the first Chern classes of Ly it is convenient to have an orientation
of S). Recall that X is oriented and that a neighbourhood of S

y in X
looks like Sy x R2. The R2 is oriented by the S1-action, and this induces an

orientation of Sy. Now write cfiLy) — ky • Xy with ky e Z and Xy the positive

generator of H2(Sy; Z). If my 0 then is trivial as an 51-equivariant

vector bundle. We shall leave ky undefined in this case.

There is one important constraint on the my. This becomes clear by
remarking that — 1 e S1 acts as a gauge transformation on all of E, i.e. as
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+ 1 or as - 1. This implies that either all m} are even or they are all odd.

In Braam [10] we have shown that any set of invariants satisfying

this constraint arises from a suitable S'-equivariant bundle, and that the

S1-isomorphism class is determined by (rrij,

Definition 5.2. The moduli space of monopoles on a principal S 1/(2)-

bundle P with invariants (mj, kf) will be denoted by kj).

Having defined the relevant invariants of P, the question now arises

what they amount to in terms of asymptotic conditions for a pair (/f3, <D)

on M. The vector field vonPturnsvertical over This shows that :

5.6 I <!>(}') I -* mj if -> ÔM.

This is the Prasad-Sommerfeld boundary condition used in physics and the

numbers are called the masses of the monopole.
The solutions of the Bogomol'nyi equation 5.3 are minima of the energy

functional :

5.7 E(A3, ®) (8jt)"1 SMIfA312+ I ® 12

If the pair (A3, ®) arises from an invariant connection A on P then

E(A3, ®) YM(A). If we assume that (A3, >) satisfies 5.4, then:

I dA30 I
2 dV3 \FA3\2 dV3 <FA3 A dÄ3Q» d<FA3 • 0>

by the Bianchi identity. It follows that :

E(A39<S>) - 2 £.(871)"1. lSj <FA3.

The minus sign appears because the boundary orientation of Sj does not

agree with orientation we have given it above. A moments reflection shows

that 2 • (87c)"1 • Js <FA3 • <D> — mj - kj. Putting things together we get:

5.7 YPj ' kJ E(As ' YM(A) k

This is essentially the localization formula in equivariant cohomology applied
to the equivariant c2(P), see Atiyah [2].

Exactly what the physical symmetry breaking would lead one to expect
does indeed happen: far away in M, that is near an Sj with mj ^ 0,

the connection almost becomes a l/(l)-connection on Ly, the bundle of
eigenvectors of ® of eigenvalue j- rrij. The charges kj appear as first Chern
classes of these line bundles on the boundary surfaces. This is of course
nothing but the quantized charge of a U(l)-monopole, a so called Dirac
monopole, on Ly. Dirac monopoles have singularities, but the genuine non-
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Abelian character of St/pj-monopoles in the core of M allows for non-singular
solutions.

From 5.7 we see that Yß1} ' ^ 0 is necessary for the existence of

monopoles, however this is by no means sufficient as we shall see below

(also compare Braam [10]).
We shall end this section by giving some simple examples of monopoles.

Examples 5.3. 1) Monopoles with all raj 0. For these monopoles
YM(A) 0, so we are dealing with flat connections. The Higgs field 0
vanishes, this follows from the BogomoFnyi equation. It is not hard to see

that the moduli space Jl{0,0) equals the space of all representations

n^X) SU(2) modulo conjugacy: one assign to a flat connection its

holonomy representation. This space can be very non-trivial ; e.g. if M H3/
Fuchsian group S x R, with S a surface, then Ji{0, 0) is the space of
representations of %(£) -> SU(2) modulo conjugacy. By the theorem of
Narasimham-Seshadri this is the same as the moduli space of semi-stable

SL{2, C)-bundles on S, for any complex structure on S. The topology of this
3, 0) was investigated by Atiyah-Bott [4].

2) Next keep kj 0 but take at least one raj to be nonzero. The
connections are still flat so ® is covariantly constant. This shows that

0) 0 unless all raj are equal. Further

Jt(m9 o) Repr(7i1(M), S1) - Repr (H^M ; Z), S1)

#i(A;Z)tor x {H^XiRVH^XiZ)}.

3) For M H3 all monopoles were determined by Atiyah [2]. The

moduli space Ji{m, k) equals {(j> : S2 -> S2 ; c|) rational, degree k,

4>(oo) 0}, modulo multiplication by complex scalars of length L The

monopole associated to the rational function ^ exp (/ocj) • Xj/(z — aj) with
7.J e R> o, <3j e C, represents k lumps, centered at approximately (aj, Xj)
e R + H3, with relative phase factors exp (i(oijl — oqj).

4) Monopoles arising from Riemannian curvature. If A is a oriented

Riemannian 4-manifold then one can write the curvature tensor R : A2 -* A2

+ (RJ3) B

B* W_ + (RJ3)_
© Al, in which B equals the Ricci curvature and W± the Weyl tensor.

If X is a conformally flat spin manifold with a metric of zero scalar curvature
-0 B

B* 0

as

then this curvature tensor equals

relative to the decomposition A2 A2

It follows that the connection
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ôn the spin bundle S + is anti-self-dual. Recall (see § 3) that for Y Fuchsian,
extended Fuchsian or a suitable Schottky group XY admits such a metric.

The connection on 5+ is a monopole because the metrics are 51-invariant.
The mass(es) is (are) 1 by proposition 2.2, and the charges kj equal g — 1,

where g is the genus of the fixed surface(s). Choosing a different spin
structure amounts to tensoring the bundle with a 2-torsion element in
Repr (7ü1(M), S1), compare 2).

In section 7 we shall come to grips with explicit formulae for nontrivial
monopoles on certain handlebodies. In Braam-Hurtubise [11] the moduli
spaces of monopoles on a solid torus are investigated in considerable detail.
A general existence theory for monopoles on hyperbolic manifolds has been

developed in Braam [10].

§ 6. Twistor spaces

To a conformally flat oriented 4-manifold A there are naturally associated
two complex manifolds Z+ and Z_, the twistor spaces of X. Applying our
construction of § 2 we thus get twistor spaces for hyperbolic 3-manifolds.
It will be shown here that these carry a lot of geometric information
associated to the 3-manifold M, such as the complete geodesic flow. Also they
allow for a description of monopoles through holomorphic geometry. For the
rest of this section let X be the conformai compactification of M x S1,
with M a hyperbolic 3-manifold H3/Y as in §2. We shall state those
properties of Z± that we will need, and refer to Atiyah [1] and Atiyah-
Hitchin-Singer [5] for proofs and more details. The general line of thought
in this section is very similar to that of Hitchin [20] and Atiyah [2].

If S + (S_) is the spin bundle of positive (negative) chirality on X,
then Z+(Z_) can be realised as the CP1-bundles over X:

P{S+) X (P(S_}->X),

where P( denotes projectivization of vectorbundles. A remarkable fact is
that Z+ and Z_ are complex manifolds with a complex structure encoded in
the conformai structure of X. However, the twistor spaces are only Kähler
if X S4 or X CP2, which in our case results in Y {e} (see
Hitchin [19]). There is an orientation reversing isometry of X arising from
conjugation of the circles. This interchanges the two spin bundles and makes
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Z+ holomorphically equivalent to Z_ Henceforth we shall only consider Z+
and denote it by Z.

Z carries an anti-holomorphic involution :

a:Z^Z, a2 1.

This involution is a bundle map, inducing the identity on the base X,
and is equal to the antipodal map upon restriction to the fibres. The

complex structure on Z is such that (orientation preserving) conformai
transformations on X lift to holomorphic transformations of Z. So our
-S1-action on X lifts to an action on Z by holomorphic transformations
and complexifies to a holomorphic C*-action on Z. We shall show that
this C*-action is essentially the geodesic flow in H3/F (as one would expect
from Hitchin [20]).

The naturality with respect to conformai transformations has one further
important application.

Recall (see Atiyah [1]) that the twistor space of S4 is CP3 with
projection and real structure :

7i: CP3 -> S4 HP1: [_z0, zl9 zl9 z3~\ -+ [z0 + z1 •j,z2 + z3 -j]
a: CP3 -> CP3: [z0, zl9 z2, z3] -> [-zl9z0r -z3,z2]

As X (S4 — A)/r it follows that the twistor space of X is the quotient:

Z [CP3 —7r_1(A)]/r

To study Z it will be useful to know how C* and PSL(2, C) act on CP3.

The C* action is described by [z0 9zl9z29z3'] -> [z0, X • z-±, z2, X • z3], and

the right PSL(2, C)-action by mapping
a c

b d
to

a 0 c 0

0 ä 0 c

b 0 d 0

.0 b 0 dJ
e PSL(4, C)

which acts naturally on CP3, compare 2.3. Clearly the 51-action fixes

precisely two lines in CP3 namely :

6.1 Pi+ - {[Zo,0,Z2,0]ECP3}

P~i {[0, z1, 0, z3] e CP3}

and

These lines are also invariant under the hyperbolic isometries. The

projections to the fixed point set S2 c= S4 are the orientation
preserving map P £ -> S2 : [z0, z2] -> [z0, z2] and the orientation reversing map
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P~ -+ s2: Oi, z3] |>l5 z3] respectively. Here we have used homogeneous

quaternionic coordinates on S4 HP1. The real structure maps P± to Px

and vice versa.

Non-trivial C*-orbits in CP3 are in one-one correspondence with a pair

of begin- and end-points (z, w)ePf x Pf. Upon projecting the orbit 0

corresponding to (z, w) down to H3 :

(9 c= CP3 - tu(0) c S4 H3 x S1 gr(0) c= H3

one easily sees that g((9) is an oriented geodesic in H3 from z e S2 8173

to we S2. The constant geodesies at infinity are included. Further for

pe(9 <= CP3 and XeC* we have that the distance of n(p) and n(Xp) on

g((9) equals log \X\. As the C*-action commutes with the T-action, this

shows that the C*-action is essentially geodesic flow in M. More precisely

consider a copy of M i(Mx{1}) in X. Then Z,M is the projectivized

spin bundle of M which is canonically isomorphic to the unit tangent
sphere bundle of M. Further the action of R>0 c= C* preserves Z|M and is

exactly the geodesic flow.

It is now possible to describe Z in detail. First of all the fixed points
of the C*-action on Z are surfaces S/, S J, which project down to Sj cz X.
The surfaces Sy Sj~ equal the components of [P^— A]/r and [Py—A]/r
respectively. The real structure maps S to Sj~.

The nontrivial C*-orbits in Z come in three types. Good orbits emanate
from a plus surface, say 5/, and end on a minus surface, say S[ The
closure of one of these orbits in Z is a CP1. Note that these orbits are
not determined by their two "endpoints". This corresponds precisely to the
fact that two geodesies in M may have the same two endpoints, but in
between one of them may run through different loops than the other.
Denote by Q/ (Q]~) the pre-image in P y (P y) of 5/ (S]~) under the quotient
map. From the above we get the following

Proposition 6.1. The good orbits from S/ to Sf are in one-one
correspondence with oriented geodesies in M H3/T, which go from Sj
to Sk. These have the complex analytic parameter space [Q7 xQy]/T,
which is a holomorphic fIf bundle over Sf or equivalently an Qf
bundle over Sk

Considering all good orbits emanating from S/ and ending on some
$k one gets that these are holomorphically parametrized by a uflf

k

P Ï-A bundle over S y Indeed, all orbits emanating from S/ have a
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nice algebraic parameter space, which is equal to the projectivized holomorphic
normal bundle P(TV/) of Sj in Z. This is a CP1-bundle over S/. The
bad orbits correspond to geodesies in M which, in the universal cover,
start in Qj and end in A. Of course similar statements hold concerning
arriving geodesies and the projectivized normal bundle of Sf. Concerning
the normal bundles we have the following

Proposition 6.2. There are injective, open, locally biholomorphic maps

\|/jr : TV/ -» Z, where TV/ is the holomorphic normal bundle of Sf
in Z. The C*-multiplication on the bundle TV/ is intertwined with the

C*-action on Z by \|//, whereas \|// intertwines multiplication by the

inverse with the C*-action on Z. The projectivized normal bundles

P(TV/) (P(TV/)) are an algebraic parameter space for all geodesies in M
going out from (arriving at) Sj.

Proof This is easy for the normal bundles of P^ and Pfi in CP3.

Because the T action is linear and commutes with the C*-action the result
also holds in Z.

Remark 6.3. 1) The relation of the normal bundles with Eichler's
modules. If Jf -> CP1 is the positive Hopf bundle, then H°(CP1, Jf") n„
is an SL(2, C)-module, called an Eichler module, see Bers [7]. Hence after
choice of a spin structure T -> SL(2, C) a T-module (compare the discussion

after proposition 2.2). A short computation shows that the normal bundle
of Sf in Z is isomorphic to:

TV/ (O/xrfij® V+J9

where V + J is the positive spin bundle of 5/
2) In general for complex submanifolds V c= W there are obstructions

for locally embedding the normal bundle in a holomorphic way, see

Kodaira [23].

3) It may be possible to derive the geometry of the ends of the

hyperbolic manifold M from the holomorphic structure of a normal bundle

of a fixed surface. It would be interesting to have a formula for the

metric on an end, giving the end as a foliation by surfaces such that the

foliation is invariant under geodesic flow.

Finally there are very bad orbits, corresponding to geodesies going from
A to A in the universal cover. In M they keep spiralling around, and

never find and endpoint in either direction. For example closed geodesies

are among these, in fact points in non-trivial orbits have a non-trivial
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stabilizer iff the orbit corresponds to a closed geodesic. The C*-orbits in Z

corresponding to closed geodesies are compact holomorphically embedded

elliptic curves in Z. The set of very bad orbits is closed in Z, is disjoint

from the Sj9 and lies in the closure of the set of very good orbits. In

figure 2 we have sketched the orbit situation.

The next objective of this section is to give a holomorphic description
of monopoles. The relation between twistor spaces and anti-self-dual
connections lies in the Atiyah-Ward correspondence (see Atiyah-Hitchin-Singer
[5], for the instanton case) :

Theorem 6.4. Let P -> X be an S^-^quivariant SU(2)-bundle, and A a

monopole on P. Put E P x Sl7(2)C2. Then n*A induces a C^-invariant
holomorphic structure on F «= n*E such that:

1) F is trivial on the fibres of n.

2) The natural antiholomorphic antilinear bundle map a: F -> F*, covering

(j on Z, induces an S1-invariant Hermitian metric on the vector spaces

H0{n-\x),F).
3) A2F is holomorphically trivial

Conversely a C*-invariant holomorphic C2-bundle F over Z, with a real
structure a: F -> F* satisfying 1, 2 and 3 arises from a unique monopole
on P -> X.

Real structures on indecomposable holomorphic bundles F over twistor
space are unique. Hence all the information is encoded in the holomorphic
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structure. However, existence of real structures is not automatic. The gauge
equivalence relation for monopoles on P -» X is the same as holomorphic
C*-equivariant equivalence, preserving real structures, for the holomorphic
bundles F on Z.

Let i be a monopole on P -» X, with all rrij ^ 0 and even, for
simplicity. In this case we need not consider double coverings of groups
and we shall denote the weights of S1 by pj rrij. Denote by
F n*(P x SU{2)C2) the holomorphic bundle over Z, with real structure a.

By theorem 6.4 the holomorphic structure on F is C*-invariant. An important
aspect of monopole geometry of R3 and H3 is to consider the quotient
bundle F/C* on Z/C* as far as this makes sense. On Z/C*, will
be an extension of certain standard line bundles, and this has been put to
constructive use in the R3 case, see Hitchin [20]. It will be shown that a

more complicated but essentially similar picture persists in our more general

case. As yet, the constructive power seems to be rather limited.

Restricting F to Sf it splits holomorphically, since the C* action is fibre-
wise, with nonzero weights + pj :

6.2 F|s+ L/ © (L/)*

F\S7 Lj © (LJ)*

Here Lj has C*-weight pj and c^L/) — kj, as in §5. For LJ we
have C*-weight — pj and cJLJ) — kj. The real structure gives an
anti-linear isomorphism Lj -> LJ

Proposition 6.5. On Nj c=Z(iV7"c=Z) there are line bundles Kj(KJ),
extending the Lf of 6.2 (which were defined on the zero sections S J
of Nf)y such that on the Nj the bundle F is an extension :

0 KJ - F]nJ (Kjr "> 0

0 -, KJ ^ FlNr - (KJ)* - 0

The real structure interchanges these two extensions.

Proof. Recall that sections of P(F) correspond to line sub-bundles of F.

We shall look at the C*-action on P(F) restricted to the fibres (Nj)z
with zeSj. Over (Nj)z we have two fixed points in P(F) namely

[(L/)J and [(L/)*], lying in the fibre above 0 e(Nj)z. At / [(L/)J
the weights of the infinitesimal C*-action on TfP(F) are (+1, +1, —pj.
This means that most of the C*-orbits will actually flow to [(L/)*],
compare figure 3.
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stable manifold

Figure 3.

By the stable manifold theorem with holomorphic parameter z e Sf,
we get a C*-invariant, codimc 1, complex submanifold [L/] of P(F),

consisting of precisely those orbits that flow into Lf. For the stable

manifold theorem see Hadamard [16]. On Nf the situation is of course
similar.

In the case of monopoles on H3 these extensions extend as bundle maps
from Nf CP3 — Pï to CP3 (also for Nf) but in our more general
situations there can be obstructions to this.

The extensions of proposition 6.5 descend to the quotient P(N f), and we

proceed by identifying them there. Holomorphic line bundles on the ruled
surfaces are of the form :

p*L ® 0(n)

where p : P(Nf) -> Sf is the projection, L a line bundle on Sf, and
0(n) the n-th power of the positive Hopf bundle on P(Nwhich has

fibre (Cu)* at the point [i;] g P(Nf). On the fibres of Nf the structure
of the bundle follows from :

Lemma 6.6. Let C* act on C2 by scalar multiplication. A C*-
equivariant C2-bundle E -> C2 is equivariantly isomorphic to E0 x C2

with E0 the representation of C* on the fibre over 0 g C2.

Proof (see Atiyah [2]). On C2\{0} a C*-equivariant bundle is the same
as a bundle on CP1, i.e. a sum of powers of the Hopf bundle. This
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establishes the given isomorphism on C2\{0}. By Hartog's theorem it
extends to C2.

The point of the lemma is that it identifies Kf as the pull back of

Lf under the projection TVf -> Sf, with C* acting on it by a character
of weight + pj. Now one concludes readily that the extension on P(TV/)
reads :

6.3 0 -> if/ (if/)* - 0 with

P*L/ ® °(Pj) and & C^|n/\{0}]/C* •

Similarly on P(Nf) we get:

6.4 0 -+ if/ -> (if/)* 0 with

^7 p*l7 ® °(Pj) and & [^iiv/\{O}]/C*

This results in :

Theorem 6.7. The monopole A defines extensions of ^ on P(Nfi)
and P(NJ) for j i,..., N as in 6.3 and 6.4. These extensions are
interchanged by the real structure.

In the case of monopoles on H3 these restrictions are essentially all the
data one obtains about the quotient bundles and the monopole is determined

by the extensions and the real structure: see Atiyah [2]. In our case the
intersection of TV/ with TV/ will generally have many components and we

get extra data in the form of a set of invariant holomorphic identifications :

6.5 g if. TV/ n TV/ Horn (F{Nf ifyr).
Conjecture. Under general conditions on the hyperbolic structure on M

bundles F arising from irreducible monopoles are determined by the
extensions 6.3, 6.4 and the real structure on these.

One can almost certainly prove that if F0 and F1 are two holomorphic
bundles on Z such that upon restriction to u/TV/uTV/) they become

isomorphic, then they are isomorphic on Z. In order to prove the conjecture
it remains to show that for irreducible monopoles no information is contained
in the g^. Evidence for this conjecture comes from Thurston's version of
Mostow's theorem (see Morgan [29]). This theorem implies that the flat
PSL(2, C)-bundles encoding the holonomy of the hyperbolic structure are
determined by their restriction to the fixed surfaces, despite the fact that the

fundamental group of Z is not necessarily generated by that of the fixed
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surfaces. In fact one may hope to reverse this procedure: a proof of the

conjecture would be a good first step towards a proof of Mostow's theorem.

It might be a good point to stress that although Z is not Kähler,
suddenly algebraic objects such as elements of Picard groups and ruled
surfaces have appeared. This makes algebraic geometry enter the picture,
perhaps somewhat unexpectedly.

Next we shall consider spectral curves, of which we shall obtain a whole
bunch instead of just a single one, as obtained in the case of R3 and H3

(see Hitchin [20] and Atiyah [2]). Just as in the R3 and H3

case we should compare two extensions. On P(NfniVf) we have:

6.6 0 if/ (if/)* -> 0 and

0 - & (j£7)* 0

Definition 6.8. The spectral curve

Cjk <= P(N/ nNk) (fl/ X Qk-)/r j, k l,..., n

is the zero set of the canonical map

if/ (if,-)*

arising from 6.6.

Hence for a manifold with N ends, we get N2 spectral curves. However,
the real structure clearly interchanges Cjk with Ckj, so effectively we are
left with (N2 + N)/2 spectral curves, N of which, namely the Cjj9 have to
satisfy reality constraints. The curves can be interpreted geometrically as
follows :

Proposition 6.9. The following three are equivalent :

1) A C* orbit 0e(fl/xflk-)/r lies in Cjk.

2) The bundle F restricted to Q P1 a Z is isomorphic to (9(pj + pk)
© (9{~Pj~pk). (For other good orbits it will be isomorphic to ®(pj-pk)
0 ®(-Pj+Pk)-)

3) The Hitchin equation (compare Hitchin [20]J:

ds
— + At'S + iQ.s 0, s:g{(9) -+ C2

on the corresponding geodesic g{&) cHThas a bounded solution.
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Proof. To see the equivalence of 1) and 2) we first digress on bundles on
CP1. The result of lemma 6.6 also holds if one replaces C2 by C; this
follows by using an arbitrary projection C2 -> C and pulling back. Thus

E\q trivializes in a C*-equivariant way as :

Lj © (L/)* on § — {oo}

LJ © {LjY on § - {0}

form and thus form a Borel subgroup of GL(2, C). The

The C*-equivariant automorphisms of E^_{oo} are easily seen to be of the
"a b • z2pf

_0 c

situation is the same at infinity, and from this it follows that isomorphism
classes of C*-equivariant holomorphic bundles on CP1 are given by the set

of two elements B\GL(2, C)/B. The exceptional case is that in which the

transition function maps Lf to Lj i.e. (9 e Cjk. Then equals (9(pj + pk

© (9{ — Pj — pk\ otherwise it is isomorphic to (9(pj — pk) © (9{pk — pj).
To prove the equivalence of 2) and 3), we first remark that has a

bounded C*-invariant holomorphic nonzero section, iff F$ &(Pj+pk)
© (9{ — Pj — pk). This follows from the standard description of sections of line
bundles over CP1 as homogeneous polynomials and from the fact that the

weights of the action are is pj at 0 and — pk at oo. The Hitchin equation
is nothing but the Cauchy-Riemann equation for invariant sections, see

Hitchin [20]. Therefore the proposition follows.

Remark 6.10. 1) One expects that the spectral curves will generally not
be compact and more or less resemble a curve of infinite genus. This is

because on the universal cover H3 we are dealing with a monopole of
infinite charge.

2) It should also be remarked that the complex manifolds (Qf xQ[)/T
in which the spectral curves lie are far from nice generally. In the case of
cyclic groups they are a C*-bundle over a torus and for quasi-Fuchsian

groups they are disc bundles over a Riemann surface of genus ^ 2.

Generally they will be Q/ bundles over Sk and the fibre will have

infinitely many components ; see § 2 where we discussed Kleinian groups.

As remarked in the introduction, it should be very interesting to find
constructions for monopole bundles on these twistor spaces. It seems however

that methods previously employed for CP3 fail, mainly due to the fact

that the twistor spaces are not Kähler.
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§ 7. ATIYAH-WARD ANSATZES, SUMMING 'T HOOFT SOLUTIONS

and Eisenstein series

In this section we shall derive some explicit formulae for monopoles on

handlebodies, using the complex geometry of their twistor spaces. A detailed

study of the moduli spaces of monopoles on a solid torus has been made in

Braam-Hurtubise [11].

From the description of Z as P(S+), it follows that on Z there exists

a tautological line bundle L, which upon restriction to the fibre over

xeX, equals the negative Hopf bundle on P(S+ X). It turns out that L
is naturally holomorphic, and to tie in with the (CP3, S4) case we shall

denote the — q)-th power of L by (9(q).

If F -> CP3 is an instanton bundle on the twistor space of S4 then

Atiyah-Worà ansatzes, that is an explicit formula for the instanton on S4,

arise from a suitable description of F as holomorphic bundle. Let s

be a section of F ® (9(q) F(q). Generically 5 will be nonzero away
from a complex curve Cs <= Z and give rise to an extension class

es e H1(Z — Cs, @{ — 2q)). Elements of such sheaf cohomology groups
correspond to solutions (j>s of linear p.d.e. on open sets of S4: this is the

celebrated Penrose correspondence. Explicit formulas for the instanton, such

as those of 't Hooft, can be constructed in terms of this c|)s. Every
instanton on S4 can theoretically be computed in this way. For background
see Atiyah [1].

We shall see that on our manifolds X (S4 — A)/F, for F ^ {e}, the
situation is rather different, but that nevertheless in some cases explicit
constructions can be made again. As before attention will only be paid to
SMnvariant instantons, i.e. monopoles. In those cases which we treat in
detail, it will appear that we are essentially summing together a monopole,
much in the same way as automorphic forms are constructed by summing
kernels. It is however quite remarkable that "summing" of solutions is

possible for the non-linear anti-self-duality equations, and may be these
summation procedures are best thought of as a kind of Backlund
transformations.

Recall from § 2 and § 3, that X comes with a natural conformai structure,
and that X can be given a metric in the conformai class with constant
scalar curvature Rx. We proved that the majority of X's give rise to
negative Rx. Assume a spin structure on X has been fixed, then the line
bundle (9(q) above is well defined.
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Proposition 7.1. If Rx < 0, then no monopole on X arises from an

Atiyah-Ward construction, since H°(Z, F(q)) 0 for all q e Z\{0}.

Proof For q < 0 any section would vanish on the fibres 7r-1(x), and
hence be zero; this is independent of the sign of Rx. For q > 0, we know
from Hitchin [18], that elements of H°(Z, F(q)) are in one-one
correspondence with solutions of the twistor equation on X with coefficients in
E P x su{2)E2 •

Dqs 0

Dq 0>oVA:r(Sq(S+)®E)->r(S'1 + 1(S+)®S„®E),

with Sq the q-th symmetric product, FP\ A1 ® Sq(S+) -> Sq+1(S+) (g) the

projection, and A the anti-self-dual ,SC/(2)-connection on E -> X. For these

equations we have a vanishing theorem of Weizenbock type in the case of
negative scalar curvature, see Besse [8].

Hence attention here needs only be paid to the Rx ^ 0 manifolds,
which were classified in theorem 3.1. But even here there is a very
fundamental difference between the case X S4, i.e. T {e}, and the cases

of non-trivial T.

On X S4, Z CP3, the dimensions of H°(Z, (9(q)) (and also of the

invariant part H°(Z, (9{q))sl) increase with q. Tracing through the (equivariant)
Riemann-Roch formula (as in Hitchin [19]), one learns that the increasing
character is due to the fact that for the fixed point sets S+ Pf,
S~ P± cz Z CP3 we have %(S±) > 0. For F ^ {e} these Euler
characteristics satisfy xiS^ < 0. This leads one to suspect that it may not always
be possible to find sections of F(q), which would be needed to obtain

Atiyah-Ward ansatzes in general.

After all these negative remarks, let us proceed to show that, at least

in some cases, the construction works satisfactorily. To simplify things even

further, we shall assume that A is a manifold with Rx > 0; by theorem 3.1,

X arises from a Schottky group. Consider on X the conformally invariant

Laplacian D0 acting on densities of conformai weight 1, with values in
densities of weight 3, which equals

Dq d*d + — • Rx
6

Since Rx > 0, we get ker D0 0, and hence unique fundamental solutions cj)x

exist satisfying
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xe X

Through the twistor correspondence (see Atiyah [3], [1], and Hitchin [18])

§x corresponds to a cohomology class :

(px e H1(Z—n~1(x), -2)),

and hence <t>x gives rise to a vector bundle on Z — 7i_1(x), which is an

extension :

0 -> 0(— 1) F 0(1) 0.

In fact one can show (Atiyah [3]) that the bundle F extends to a bundle

F on Z, such that F( 1) has a holomorphic section vanishing precisely

on 7i-1(x). The maximum principle applied to D0 ensures that cj>x(y) > 0,

for all y e X, and this implies that F is trivial on the real lines 7i_1(x). Since

$x is real, F gets a real structure. Thus F is an instanton bundle.

To get a monopole rather than just an instanton we have to assume

x e S jl the fixed surface in X. The weight m1 of a monopole constructed
in this way equals 1, because the Hopf bundle $(1) is of weight 1. The

charge also equals 1.

Obviously the process can be generalized by using a positive linear
combination of k fundamental solutions :

<p EX/pXj Xj>0 ; 1,k
which is called an '£ Hooft potential If the Xj lie in SL c X, then the
't Hooft potential will be invariant, and it follows that we have created a

monopole of mass 1 and charge k. All positive scalar multiples of c|> give
the same instanton, so the number of parameters in the solutions is 3k — 1 :

we have 2 for every xjeS1, and 1 for every Xj. These solutions therefore
don't give an open set in the 4k - j • %(S) dimensional moduli space.

We proceed to identify these potentials cjx In the course of this, explicit
formulas for the connection A will also be given. Besides, a slight generalization

of the Atiyah-Ward construction will emerge.
Pulling back to S4 — A, under the quotient map, one gets a generalized

function §x on 54 — A satisfying :

D0<i>x Z sïy
yer

with y£ S4-A mapping to x Of course the next step is to try to reverse
this and to put :
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11 9* Z tyyy
yeT

where \|ty is, a fundamental solution on S4 of D0 at y. In the flat metric
on R4 a S4, fundamental solutions are equal to :

7.2 \|jy(r) (ln\\y-r\\y2
Since the flat metric is not T-invariant, conformai weight factors will occur
in 7.1. It is easier to see what happens if one uses the T-invariant metric
on H3 x Sx:

t~2{dx\ + dx\ + dt2) + d02 (x1? x2, t, 0) e H3 x S1

Under conformai rescaling, 7.2 transforms to the 0-independent summation
kernel of the Eisenstein series on H3 (compare Mandouvalos [25]) :

E(y,h) r/[(x1-y1)2 + (x2->'2)2 + t2] yeR2 <= S2

Summing, we get for 7.1 :

7.3 Er{y,h) Y,E{y,yh),
yeT

which is the Eisenstein series for T, see Mandouvalos [25]. As settled by
Poincaré already, 7.3 is convergent if 8(r) < 1, where 5(r) is the Hausdorff
dimension of the limit set A(F) of V. The groups T for which this holds

are the cyclic groups and classical Schottky groups (with their defining
circles wide apart, compare Bers [7]). In passing by we note that 8(T) < 1

implies that X is of positive type because the Eisenstein series is a strictly

positive Green's function for d*d + - • Rsc : the maximum principle implies
6

Rsc > o.

To compute the gauge potentials, it is easiest to go back to the flat
metric on R4. The more general potentials there look like

7.4 <KM) E Xi-r^EjiXith),
i= 1

and the formulas of't Hooft give for the connection (see Atiyah-Hitchin-
Singer [5])

A ^P+i-1/2 dlogyAe,) ® eteriR4, AI&A1),
i

with et an orthonormal, covariantly constant framing of T*R4 and A2
identified with su(2). To see what this looks like, assume that T is cyclic,
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generated by
X~2

1

X.-2-
XeR>0. Then

7.5 cp(r) - £ z
XnX: X~%

II Wr - yt II
2

|| r - X~nyt
+ 1 I\r - yt

with yi g R2 c: S2 and r e S4\A R4\{0}

So we see that for X » Xt and 1 ^ || r J, || y || ^ X, the second term

dominates strongly and the monopole will look much like a "grafted

S4-monopole". On making X smaller, nearby nonlinear interaction makes the

monopole look more complicated.

Finally we discuss a modification of this construction which supplies a few

more solutions. Suppose we put k 1 and consider the harmonic function :

Z„ez^(1+a)'"-|l ^-yir2,
which converges for — 1 < a < 1. Then c\>JXr) X~a~1 • cj>a(r), so the

instanton is invariant. This results in a 3-parameter family of monopoles.
Now c|)a describes a fundamental solution of the Laplacian acting on

sections of a flat real line bundle with monodromy Xa along the non-trivial
loop in H3/T, so we have constructed a bundle F on twistor space, which
is an extension of L(l) by L*(—1), where L is a real flat line bundle in

the Picard group of Z with monodromy ^2 *a.

The same procedure can be used for Schottky groups T of genus g, by
twisting the sum with a character T R>0 close to 1. This gives a

3k — j - x(S) parameter family of monopoles. This too doesn't give an open
set in the moduli spaces and it appears that the construction of the general
solution is not yet clear, even in these simple cases.

Possibly this can be remedied by going over to the next Atiyah-Ward
ansatz, which exploits the self-dual Maxwell equations on X. Here the
vanishing sets could be choosen to be elliptic curves corresponding to closed
geodesies in M.
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