Erfahrungen mit der Vorpasteurisierung von Klärschlamm in der ARA Steckborn

Autor(en): Clements, Robert

Objekttyp: Article

Zeitschrift: Schweizer Ingenieur und Architekt

Band (Jahr): 99 (1981)

Heft 4

PDF erstellt am: 21.09.2024

Persistenter Link: https://doi.org/10.5169/seals-74417

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Erfahrungen mit der Vorpasteurisierung von Klärschlamm in der ARA Steckborn

Von Robert Clements, Winterthur

Rückblick

Aufgrund der Vorschriften des Milchlieferungsregulativs aus dem Jahre 1971 [1] begann man schweizerische Kläranlagen in Gebieten mit Nassschlammverwertung auf Weide- und Futterflächen nach und nach mit Pasteurisierungsanlagen auszurüsten. Anfang 1977 waren bereits in etwa 65 Kläranlagen entsprechende Einrichtungen eingebaut.

Die Pasteurisierung erfolgte in der Regel nach der Schlammstabilisierung, vorwiegend nach einer Schlammfaulungsstufe. Zur Erfüllung der techni-Pasteurisierungsbedingungen müssten lediglich die Parameter von Temperatur und Zeit eingehalten werden, d. h. Erhitzung des Schlammes auf 70 °C und Aufrechterhalten dieser Temperatur während mindestens einer halben Stunde (Einwirkzeit). Bis zur Abgabe an die Landwirtschaft wurde der pasteurisierte Schlamm meist in offenen Behältern ohne besondere Vorkehrungen gestapelt.

Der allmählich aufkommende Verdacht, dass diese Einrichtungen die vorgesehene Aufgabe nicht zu erfüllen vermochten, veranlasste bereits im Jahre 1976 das Bundesamt für Umweltschutz bei einer Reihe dieser (Nach-)Pasteurisierungsanlagen eine Überprüfung der Wirksamkeit einzuleiten. Neuere Erkenntnisse hatten nämlich darauf hingewiesen, dass durch eine Hitzebehandlung die Struktur von Klärschlamm in einer Weise verändert wird, dass damit ein günstiges Milieu für die Vermehrung von nachträglich eindringenden pathogenen Keimen bzw. übertragbaren Krankheitserregern geschaffen wird [2]. Untersuchungen und Messungen durch das Veterinär-Bakteriologische Institut der Universität Zürich (heute das Institut für Veterinär-Hygiene) bestätigten, dass es in praktisch allen Fällen zu einer Rekontamination des hygienisierten Schlammes entweder innerhalb der Pasteurisierungsanlagen selbst oder - und auch vor allem - in den nachgeschalteten Stapelbehältern kam [3, 4]. Unkenntnisse der kausalen Zusammenhänge sowie fehlende praktische Erfahrungen hatten zu Fehlüberlegungen sowohl beim Konzept als auch bei dem Betrieb der Pasteurisierung geführt.

Im April 1977 wurde den Kantonen vom Bund mitgeteilt, dass aufgrund der neuesten Erhebungen die bestehenden Pasteurisierungsanlagen ausser Betrieb genommen werden können und mit dem Bau neuer Anlagen zugewartet werden soll. Seit dem Frühjahr 1977 ruhen nun die Schlammpasteurisierungsanlagen in schweizerischen Kläranla-

Die Entwicklung der Vorpasteurisierung

Es wurde erkannt, dass bei einer sorgfältigen und sachgemässen Auslegung und Bedienung der Pasteurisierungsanlage der geforderte Hygienisierungseffekt wohl zu erfüllen wäre. Dem Problem der Stapelung bzw. dem Aufrechterhalten der Hygiene wäre dagegen nur mit einer grundlegenden Systemänderung beizukommen. Dies führte zum Schluss, dass die bisherige Schlammbehandlungsfolge: Stabilisierung bzw. Faulung - Pasteurisierung - Stapelung, d. h. die sogenannte Nach-Pasteurisierung, nicht die geeignete Basis für die Verwirklichung einer zuverlässigen Schlammhygienisierung darstelle.

Frühere Untersuchungen über das Verhalten pathogener Keime unter aeroben und anaeroben Bedingungen lieferten Hinweise, dass die Vermehrung pathogener Keime in einem anaeroben Milieu bzw. in Gegenwart von methanbildenden Bakterien nahezu vollständig unterbunden wird, bzw. die Keime zahlenmässig eine stetige Abnahme erfahren [5]. In einem aeroben Milieu dagegen, wird die Wiederverkeimung bzw. die Vermehrung von pathogenen Keimen stark begünstigt. Es wurde gefoldass einmal hygienisierter Schlamm durch anschliessende anaerobe Aufbewahrung - zum Beispiel in einem Faulraum, wirkungsvoll gegen eine Wiederverkeimung geschützt wäre. Eine allfällige Re-Infektion wäre an einer Ausbreitung verhindert. Diese (im Gegensatz zur konventionellen Sequenz) umgekehrte Behandlungsfolge wird als Vorpasteurisierung bezeichnet.

Auch Erfahrungen in der Bundesrepublik Deutschland mit der Erhitzung von Frischschlamm zur Intensivierung der

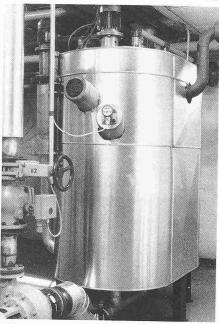


Bild 1. Sulzer Schlamm/Schlamm-Wärmetauscher

Faulung gaben zusätzlich Anlass zu der Hoffnung, neben hygienischen Vorteilen auch noch wirtschaftlichen Nutzen bei einer Vorpasteurisierung herbeizuführen [6].

Bald konnte gezeigt werden, dass das Prinzip der Vorpasteurisierung mit relativ grosser Sicherheit eine unkontrollierbare Rekontamination des Schlammes durch Krankheitserreger während des nachfolgenden Faulungsprozesses zu verhindern vermag [4]. Die Versuchsreihe warf aber einige verfahrenstechnische und wirtschaftliche Probleme und Fragen auf. In erster Linie wurde erkannt, dass ohne einige umfangreiche technische Konzeptänderungen die bestehenden Nachpasteurisierungsanlagen nicht für eine Vorpasteurisierungsaufgabe eingesetzt werden könnten. Auch im wirtschaftlichen Bereich müsste eine neue Basis gefunden werden, um den Energieaufwand für die Schlammbehandlung nicht noch höher steigen zu lassen. Anders als bei der Nachpasteurisierung setzt Vorpasteurisierung eine ganzjährige, kontinuierliche Pasteurisierung des gesamten Frischschlammanfalls voraus, was andere Dimensionen setzt bzw. andere Bedingungen stellt im Vergleich zu der bisherigen, praktisch nur während der Vegetationszeit ausgeübten Chargen-Pasteurisierung von bereits stabilisiertem Schlamm. Die Einführung eines Wärmerückgewinnungssystems wurde unerlässlich.

Man stellte sich nun vor, dass der bei etwa 65-70 °C pasteurisierte Schlamm zur direkten Vorwärmung des Frischschlammes verwendet und selber damit etwa auf Faulraumtemperatur (35 °C-40 °C) abgekühlt werden könnte. Dies würde (im optimalen Fall) den Betrieb des Faulraumes nahezu ohne zusätzli-

che separate Wärmezufuhr ermöglichen, d. h. die Abstrahlungsverluste des Faulraumes könnten durch die Zufuhr noch warmen Schlammes theoretisch gedeckt werden. Die direkte Vorwärmung des Frischschlammes durch den bereits pasteurisierten Schlamm ohne grössere Wärmeverluste setzte aber ein geeignetes, leistungsfähiges Wärmerückgewinnungs- bzw. Wärmetauschersystem voraus [7].

die Vorpasteurisierung und Faulung im Rahmen der Kosten des bisherigen Betriebs der Faulung ohne Pasteurisierung zu halten. Es wurde beschlossen, den Frischschlamm vor der Pasteurisierung möglichst stark einzudicken, um so wenig Ballastwasser wie möglich zu erhitzen. Zwei vorhandene, kleinere Eindikker mit Rührwerk, konnten für die Voreindickung in Tandemanordnung benützt werden.

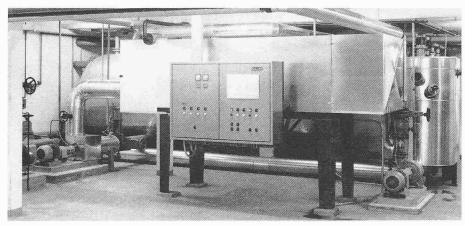


Bild 2. Umgebaute Vorpasteurisierungsanlage mit Wärmerückgewinnung

Die Vorpasteurisierungsanlage Steckborn

Während mehrjähriger Entwicklungsarbeit auf dem Gebiet der Wärmerückgewinnung hat unsere Firma einen für schlämmige Suspensionen entsprechenden Wärmetauscher entwickelt. Dieses Aggregat hat sich bereits bewährt bei der Wärmerückgewinnung in einem anderen Klärschlammbehandlungssystem (aerob-thermophile Stabilisierung und Hygienisierung).

Als Kernstück eines neuen Konzeptes der Frischschlammpasteurisierung wurde dieser spezielle Schlamm/Schlamm-Wärmetauscher (ohne zusätzliches Wärmeträgermedium) beim Umbau der alten Nachpasteurisierungsanlage in der Abwasser-Reinigungsanlage (ARA) Steckborn (TG) auf Vorpasteurisierung eingesetzt (Bild 1).

Die etwa zehn Jahre alte Kläranlage mit zwei Faulräumen zu je 550 m³ Inhalt und mit Gasgewinnung - verfügte über eine Nachpasteurisierungsanlage mit Schlammerwärmung und -wiederabkühlung mit heissem bzw. kaltem Wasser. Der Frischschlammanfall betrug durchschnittlich etwa 12 m³/Tag, Trockenrückstandgehalt mit einem (TR) von zwischen 2,5-3,5 Prozent bzw. etwa 300-400 kg TR/Tag.

Ausser der Erfüllung der hygienischen Forderungen, wurde als Ziel gesetzt, den Betriebs- bzw. Energieaufwand für Für die Verwirklichung des Projektes konnten von der bestehenden Pasteurisierungsanlage der ehemalige Einwirkbehälter, die Schlammerwärmungsund die Schlammabkühlungs-Austauscher sowie einige Pumpen verwertet werden. Neu dazu kamen der Wärmerückgewinnungsanteil in Form des erwähnten speziellen Schlamm/ Schlamm-Wärmetauschers, einige zusätzliche Pumpen sowie eine vollständige neue, vollautomatische Steuerung für den Pasteurisierungsprozess. Es wurde auch ein Schlammzerkleinerer zwischen die beiden Eindicker plaziert [8]. Im Umbaus musste Zuge des Schlammerwärmungsanlage modifiziert und das Leitungssystem zum Teil erneuert werden. Die mit warmem Schlamm in Kontakt kommenden Anlageteile und Leitungen wurden zusätzlich isoliert. Die Pasteurisierungsanlage war im Blick auf Schwankungen in der Frischschlammenge und auf den beabsichtigten Anschluss an die Abwasser-Reinigungsanlage von dem Zwei- bis Dreifachen des heutigen Einwohnergleichwertes flexibel für einen Durchsatz zwischen etwa 4 und 22 m³ Schlamm im Tag mit einem TR-Gehalt bis 10 Prozent ausgelegt worden (Bild 2).

Im heutigen Betrieb der Anlage werden täglich etwa 10-14 m³ Frischschlamm vom Absetzbecken dem Eindicker I zugeleitet und voreingedickt. Der abgesetzte Schlamm wird über den Zerkleinerer dem Eindicker II zugeführt. Der zweite Eindicker wird als Pufferbehälter direkt vor der Pasteurisierungsanlage benutzt. Der TR-Gehalt des voreingedickten Schlammes bewegt sich in der Regel um 5 Prozent, entsprechend 6-8 m³ Schlamm/Tag.

Nach einem gesteuerten Taktsystem wird nun Frischschlamm aus dem Eindicker II (bei etwa 13° im Winter bis etwa 19 °C im Sommer) dem Schlamm/ Schlamm-Wärmetauscher zugeführt und dort durch eine direkt aus dem Einwirkbehälter abgehende, gleiche Menge bereits pasteurisierten Schlammes (bei 65 °C) vorgewärmt. (Die ausgetauschte Schlammenge beträgt dabei jeweils nur einen kleineren Teil des Inhalts des Einwirkbehälters). Der auf 40-45 °C gekühlte, pasteurisierte Schlamm wird anschliessend direkt dem Faulraum I zugeführt.

Der auf etwa 35-38 °C vorgewärmte Frischschlamm gelangt darauf zum Einwirkbehälter. Über ein getrenntes Leitungssystem wird der Schlamm aus dem Einwirkbehälter im Kreislauf über den Schlammerwärmer gepumpt, bis die auf 65 bis 70 °C eingestellte Pasteurisierungstemperatur wieder erreicht ist.

Nach Einhalten der vorgeschriebenen Mindesteinwirkzeit, bzw. entsprechend der eingestellten Taktzeit beginnt die Sequenz von neuem. Die Anlage läuft in Abhängigkeit der jeweils eingestell-Taktzeit entsprechend Schlammanfall vollautomatisch 24-Stunden-Betrieb.

Betriebsergebnisse

Hygiene

Es wurden von dem Institut für Veterinär-Hygiene der Universität Zürich laufend Hygienisierungsmessungen anhand der Enterobakterienzahl durchgeführt, und zwar im Frischschlamm, im pasteurisierten Schlamm nach der Wärmerückgewinnung, im Faulraum I und im Faulraum II. Sofort nach Betriebsbeginn wurden für Enterobakterien regelmässig Werte von 10 g- bis 10 g+ nach der Pasteurisierung bzw. nach dem Wärmetauscher gemessen. Die Werte in den Faulbehältern I und II sanken allmählich selbständig und ohne irgendwelchen Eingriff oder besondere Massnahmen auf 10 g+ bis 1 g+, was einer Verringerung der Enterobakterienzahl gegenüber dem Frischschlamm um acht bis neun Zehnerpotenzen entspricht (Bild 3). Sporadisch im Frischschlamm festgestellte Salmonellen waren nach dem Pasteurisierungsvorgang nicht mehr nachweisbar. Die Hygiene-Anforderungen an die Pasteurisierungsanlage und an den

Schlamm/Schlamm-Wärmetauscher sowie an den Schlamm in den beiden Faulräumen, wurden somit erfüllt.

Energiebedarf

Aufgrund der Erfahrungen mit der Nachpasteurisierung bezüglich Energieaufwand wird verschiedentlich die Vorpasteurisierung mit Skepsis betrachtet. In der ARA Steckborn wurde deshalb der Energiefrage besondere Achtung geschenkt.

Dank dem Wärmerekuperations-System wird aber nahezu die gesamte aufgewendete Wärmeenergie zurückgewonnen bzw. für die Faulung verwertet. In dem Wärmetauscher wird der bei rund 65 °C pasteurisierte Frischschlamm auf etwa 41 °C-44 °C zurückgekühlt, wobei der noch zu behandelnde Frischschlamm auf etwa 35 °C-38 °C vorgewärmt wird. Der zurückgekühlte Schlamm wird bei 41 °C-44 °C dem Faulraum zugeleitet. Die Beheizung des Faulraumes erfolgt somit primär durch die Einleitung des aus der Pasteurisierungsstufe kommenden, noch warmen Schlammes. Der effektive Mehrverbrauch an Wärmeenergie für die Vorpasteurisierung begrenzt sich folglich lediglich auf die Deckung der Wärmeverluste der Pasteurisierungsanlage, des Wärmetauschers und der Leitungen.

Messungen in Steckborn ergaben, dass der Faulgasmehraufwand zur Deckung dieser Verluste knapp 10 m³/Tag beträgt, unabhängig vom Schlammdurchsatz.

Es wurde festgestellt, dass der Gesamtenergieaufwand praktisch linear in Abhängigkeit des Schlammdurchsatzes ansteigt, wogegen der Energie-Mehraufwand im wesentlichen konstant bleibt. Bei zunehmender Auslastung der Anlage, gehen die spezifischen Werte für den Energie-Mehraufwand entsprechend zurück. Die Ergebnisse der in der ARA

Tabelle 1. Amtlich durchgeführte Messungen an der Vorpasteurisierungsanlage

Schlammdurchsatz [m³/Tag] Frischschlammtemp. [°C] Pasteurisierungstemp. [°C]	4 19 66	8 19 66	22 19 66
Abgabetemp. am Faulraum (nach Rückkühlung) [°C] Spezifischer Mehrverbrauch an Faulgas [m³/m³ Schlamm]	41 2,5	42 1,4	45 0,5
Schlamm] Spezifischer Stromverbrauch [kWh/m³ Schlamm]	5	4	2,7

Tabelle 2. Grundlage zur Ermittlung der Betriebskosten der Vorpasteurisierung

Schlammdurchsatz [m³/Tag]	4	8	22
Spez. Faulgasverbrauch			
(Mehraufwand) [m ³ /m ³ Schlamm]	2,5	1,4	0.5
entspricht etwa [kg Öl]	1,4	0.8	0.3
Stromverbrauch [kWh/m³ Schlamm]	5	4	2,7
Unterhalt (Voranschlag [Fr./Jahr])	800	1000	1200

Steckborn amtlich durchgeführten Messungen an der Vorpasteurisierungsanlage sind in Tabelle 1 enthalten.

Betriebskosten

Für die Vorpasteurisierung verschiedener Mengen Frischschlamm sind die entsprechenden Betriebskosten in Tabelle 2 enthalten. Bei einem derzeit durchschnittlichen Frischschlammanfall in Steckborn von gegen 3000 m³/Jahr betragen die Betriebskosten somit etwa Fr. 1.30 je m³ Schlamm (Energieanteil < Fr. 0.90). Bei einem theoretischen max. möglichen Schlammdurchsatz mit der gleichen Anlage (bei späterer Vollauslastung) von etwa 7300 m3/Jahr senken sich die spezifischen Kosten je m3 Schlamm auf etwa Fr. 0.70 (Energieanteil < Fr. 0.50).

Zusammenfassung und Schlussfolgerungen

Zurzeit ist die ARA Steckborn noch unterbelastet. Vom geplanten Ausbau,

8500 Einwohner + Einwohnergleichwert (EW + E), sind vorläufig etwa 4500 EW + E angeschlossen. Der Faulraum I ist mit 550 m3 Inhalt für den heutigen Schlammanfall (eingedickt und pasteurisiert) von rund 7 m³/Tag unterbelastet. Die somit erzielbare Faulgasproduktion von durchschnittlich etwa 15 m³/m³ Schlammanfall/Tag ist zu wenig, um den Gesamtwärmebedarf zur Deckung der Faulraumverluste zu liefern. Dennoch vermochte im Winterhalbjahr bei einer Betriebstemperatur des Faulraumes I von etwas unter 30 °C der Wärmeinhalt des zugeleiteten, pasteurisierten, auf rund 43 °C abgekühlten Schlammes gut 25 Prozent der Abstrahlungsverluste des Faulraumes zu decken. Etwa weitere 20 Prozent der Wärmeverluste konnten mit der Gasüberschussmenge (Restmenge nach Durchführung der Pasteurisierung) aufgefangen werden. Im Sommerbetrieb sind die Wärmeverluste des Faulraumes mit Ausnahme von einigen wenigen Tagen voll gedeckt. Die Betriebstempera-

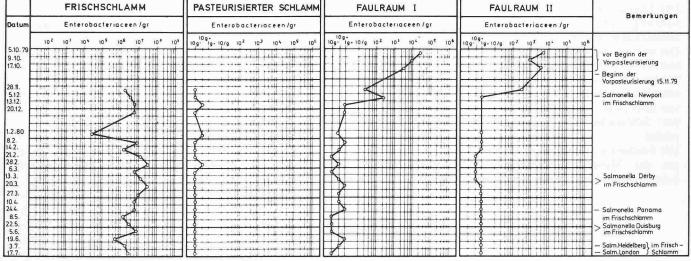


Bild 3. Enterobakterienzahl im Klärschlamm vor und nach der (Vor-)Pasteurisierung und während des anschliessenden Faulprozesses

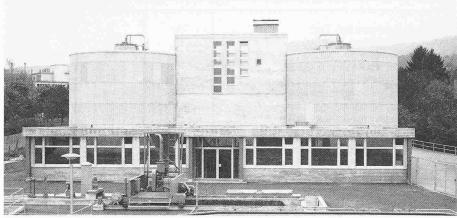


Bild 4. Abwasserreinigungsanlage Steckborn

tur des Faulraumes konnte ohne Zusatzheizung auf etwa 28-30 °C gehalten werden.

Es kann somit gerechnet werden, dass nach der vorgesehenen Verdoppelung der heute angeschlossenen Einwohnerzahl bzw. der heutigen Schlammenge in nächster Zukunft genügend Faulgas erzeugt wird, um den Gesamtwärmebedarf der Vorpasteurisierung und Faulung sowohl im Sommer als auch im Winter zu decken. Dabei kann die Faulraumtemperatur im Sommer auf 36-38 °C steigen. Dort wo - wie im Fall der ARA Steckborn - der Faulraum vorläufig nicht voll ausgelastet ist, kann während der kälteren Jahreszeit eine Senkung der Betriebstemperatur der Faulung der üblichen rund 33 °C auf etwa 26-28 °C zur Verringerung der Abstrahlungsverluste in Kauf genommen werden. Ein eventueller Rückgang der Gasproduktion soll durch den verminderten Wärmebedarf energetisch mehr als kompensiert werden.

Die Voreindickung bzw. eine Volumenverminderung des Frischschlammes bei gleichzeitiger Erhöhung des Feststoffgehaltes und des organischen Anteils bringt für die Pasteurisierung und für die Faulung eindeutige Vorteile:

- Der Energieaufwand für die Pasteurisierung wird verringert, da weniger Ballastwasser erhitzt werden muss.
- Die organische Belastung des Faulraumes wird erhöht, was zu einer erhöhten Gasproduktion je m³ Faulrauminhalt führen soll (Spitzenwerte von über 20 m³ Faulgas/m³ zugeführten Schlammes/Tag wurden erreicht).
- Die Faulzeit wird verlängert und somit der Mineralisierungsgrad des Schlammes erhöht (der Glühverlust

- im Faulraum II sank während des ersten Betriebsjahres tatsächlich von 45 Prozent auf heute etwa 32 Prozent). Möglicherweise findet eine Intensivierung der Faulung statt, was in einer weiteren Messreihe näher untersucht werden soll.
- Die «Stapelkapazität» des Nachfaulraumes erweitert sich.

Die energiebedingten Mehrkosten für die Vorpasteurisierung sind gering ausgefallen. Je Kubikmeter behandelten Schlammes ist ein Mehraufwand an Faulgas von durchschnittlich 1,4 m³ und ein Strombedarf von durchschnittlich 4,0 kWh zu verzeichnen.

Seit der Inbetriebnahme im November 1979 läuft die Anlage störungsfrei, was auf die hohe Betriebssicherheit des Verfahrens hinweist. Die Unterhaltskosten wurden auf rund 1000 Fr./Jahr voranschlagt, vor allem in Hinsicht auf eine mögliche alljährliche Pumpenrevision. Die Gesamtbetriebskosten für die Vorpasteurisierung betragen somit heute wenig mehr als Fr. 1.-/m³ Schlamm. (Für später kann eine Verminderung auf etwa die Hälfte dieses Betrages vorausgesagt werden.)

Die bisher mit der hier beschriebenen Anlage erzielten Ergebnisse zeigen, dass eine technisch problemlose und wirtschaftlich befriedigende Durchführung der Hygienisierung durch die thermische Vorpasteurisierung entsprechend den neuesten Anforderungen möglich ist.

Eine allgemeine und erfolgreiche Verwirklichung der Vorpasteurisierung bedingt die Berücksichtigung folgender wichtiger Kriterien:

- Optimale Voreindickung des zu behandelnden Schlammes;

- Optimale Wärmerückgewinnung (ohne zusätzliches Wärmeträgermedium);
- Sorgfältige Auslegung der Leitungssysteme für frischen und hygienisierten Schlamm:
- Weitgehende Isolierung aller Anlageteile und Leitungen;
- Der Jahreszeit angepasste Faulraumtemperatur.

Die Verhältnisse und Ergebnisse in Steckborn lassen sich weitgehend auf viele andere Kläranlagen übertragen. Das nun erprobte Vorpasteurisierungskonzept wurde von Sulzer für die Sanierung bestehender sowie für neue Kläranlagen mit einem Frischschlammanfall im Bereich 3 bis 60 m³/Tag entwikkelt und ist als volkswirtschaftlich vertretbare, kostengünstige Lösung für die ganzjährige Klärschlamm-Hygienisierung gedacht.

Literatur

- [1] Schweizerisches Milchlieferungsregulativ vom 18. Oktober 1971
- Mihalvfv. E .: Überblick über die Anwendung oder in Entwicklung begriffenen Verfahren zur Hygienisierung von Klärschlamm. Informationstagung für die Vorsteher der kantonalen Fachstellen für Gewässerschutz, Mürren, 5./6. September (1979)
- [3] Breer, C.: Möglichkeiten zur Hygienisierung von Klärschlamm. Informationstagung: Klärschlamm-Verwertung in der Landwirtschaft. Schweiz. landw. Technikum Zollikofen. 24. März 1977
- Breer, C., Hess, E. und Keller, U.; Soll Klärschlamm vor oder nach dem Ausfaulen pasteurisiert werden? Gas-Wasser-Abwasser, Nr. 7, 323 (1979)
- [5] Kenner, B. A., Dotson, G. K. und Smith, J. E.: Simultaneous Quantitation of Salmonella species and Pseudomonas aerugionosa. Internal Report, U. S. Environmental Protection Agency, National Environmental Research Center, Cincinnati, Ohio
- [6] Liebmann, H., und Offhans, K.: Möglichkeiten zur Intensivierung der Schlammfaulung. Berichte ATV, Heft 12, ZfGW-Verlag, Frankfurt a. M. (1961)
- [7] Hinweise zum Bau oder Umbau von Klärschlammhygienisierungsanlagen. Bundesamt für Umweltschutz, Nov. 1979
- Clements, R.: Klärschlamm-Vorpasteurisierung mit Wärmerückgewinnung. Gas-Wasser-Abwasser, Nr. 5, 185 (1980)

Adresse des Verfassers: R. Clements, Abt. Forschung und Entwicklung, Gebr. Sulzer AG, 8401 Winterthur