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AN ELEMENTARY PROOF OF THE STRUCTURE THEOREM
FOR CONNECTED SOLVABLE AFFINE ALGEBRAIC GROUPS

by Dragomir Z. Dokovi¢ ')

ABSTRACT

We give an elementary proof of the basic structure theorem for connected
solvable affine algebraic groups G over an algebraically closed field k.
The main feature of our proof is that we first establish the important fact
that the centralizer in G of a semisimple element s is connected. Then the
main structure theorem follows easily. We also prove that such s is contained
in a maximal torus and that all maximal tori of G are conjugate. The
structure theorem for connected nilpotent affine groups is not needed in
the proof; it is obtained at the end as a simple consequence of the main
results. In our proof we avoid the use of quotients and Lie algebras of
affine groups. On the other hand we use the Lie-Kolchin theorem,
Chevalley’s theorem, the existence and uniqueness of the Jordan decom-
position, and some other elementary facts.

Let k be an algebraically closed field. All algebraic groups will be defined
over k and are assumed to be affine. By N X H we denote the semidirect
product of affine algebraic groups where N is a normal and H a com-
plementary subgroup. If G 1s any affine algebraic group we shall denote by
G, (resp. G,) the set of all unipotent (resp. semisimple) elements of G.
By G° we denote the identity component of G and by G’ the derived
subgroup of G. A torus S in G will be called maximal if § = T implies
that T = S for any torus T of G. The center of G is denoted by Z(G).
The centralizer of se€ G resp. S < G in a subgroup H < G will be denoted
by Zy(s) resp. Zy(S). The existence and uniqueness of the Jordan decom-
position for elements of G will be used without explicit reference. All group
homomorphisms will be homomorphisms of affine algebraic groups. For
other proofs of the structure theorem for connected solvable affine algebraic
groups we refer the reader to the references [1-5].
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The group of all invertible n x n upper triangular matrices will be denoted
by B,. Its subgroup consisting of all diagonal matrices is denoted by D,.
We have B, = U, X D, where U, is the closed connected subgroup of B,
consisting of all unipotent elements of B,,.

We start with some preliminary facts.

TuroreM 1 (Lie-Kolchin). Every connected solvable affine algebraic group
can be embedded in some B, as a closed subgroup. ]

COROLLARY. If G is a connected solvable affine group then
G < G,. ]

THEOREM 2 (Chevalley). If N is a closed normal subgroup of an affine
group G then there exists a homomorphism f:G — GL,(k) such that
Ker f = N. []

For the proofs of Theorems 1 and 2 see, for instance, [5, Theorems 6.7
and 5.1.3].

LemMma 1. If f:G — H is a surjective homomorphism of affine algebraic
groups and N := Ker f then:

@ f(G°) = H®;

() f(G) = H, and [f(G,) = Hy;

(iii) dim G = dim N + dim H;

(iv) If N and H are connected then G is connected.

Proof. For the proofs of (i) and (ii1) see for instance [4, Section 7.4].
(ii) follows from the fact that f preserves the Jordan decomposition
[4, Theorem 2.4.8]. We shall sketch the proof of (iv). Since N is connected,
we have N < G° By (i) we have f(G° = H° = H, and consequently
G = NG° = G° O

We need a lemma to prove the centralizer theorem. For a more general
version of this lemma see [2, Proposition (9.3)].

LEMMA 2. Let N be a closed normal connected abelian unipotent subgroup
of an affine group G and let s€ G,. Then M:= {sus"'u"':ueN} isa
closed connected subgroup of N, the multiplication map p: M X Zuy(s) > N
is bijective, and Zx(s) is connected.
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Proof. Since N is abelian, the map f:N — N, defined by f(u)
— sus"'u~! is a morphism of algebraic groups whose kernel is Zy(s)
and image M, so M is a closed connected subgroup of N. If x € M n Zy(s)
then x = sus” 'u~! for some ue N. Since usu™* = x~ s = sx~ ' is semi-
simple and x is unipotent, the uniqueness of the Jordan decomposition
implies that x = 1. Hence M N Zy(s) = 1 and so p is injective. By
Lemma 1 (iii) we have dim N = dim M + dim Zy(s), which implies that the
homomorphism p is also surjective, i.e, MZy(s) = N. The same argument
shows that MZy(s)® = N, and so Zy(s) must be connected. W

THEOREM 3. If G is a connected solvable affine group and se G
then Zg(s) is connected and G = G,Zs).

Proof. We use induction on dim G. If G is abelian.the assertions are
trivial. Otherwise let N be the last non-trivial term of the derived series
of G. By the Corollary of Theorem 1, N is unipotent. We now apply
Theorem 2 to this G and N. Let f be as in that theorem. We shall write
x for f(x) and G for f(G).

Let ze G be such that ze Zg(s). Then szs 'z~ ' e N. By Lemma 2 there
exists ue N and ve Zy(s) such that szs™'z7! = sus 'u~'-v. Since v
commutes with u and s, and zsz~! .ousu™?1, it follows that v = 1.

Thus u™ 'z € Z4(s) and consequently we have a short exact sequence

:‘U_

1> Zys) & Zgls) = Zgls) = 1.

By Lemma 2, Zy(s) is connected. By Lemma 1 (iii) we have dim G < dim G.
By ind_uction hypothesis, we conclude that Zg(s) is connected and that
G = (G),- Zg(s). Now Lemma 1 (iv) implies that Zg(s) is connected. By

part (i) of the same lemma we have f(G,) = (G), and so f(G,Z(s))
= (G),Zg(s) = G. Since N < G,, it follows that G = G,Z4(s). O]

We now proceed to prove the main results about the structure of
connected solvable affine groups. But first we need two lemmas.

LEMMA 3. Let S < B, be a commuting set of semisimple elements.
Then there exists be B, suchthat b~'Sh < D,.

Proof. It is an elementary fact of linear algebra that there exists
a€ GL,(k) such that a™'Sa = D,. Hence if M,(k) is the algebra of n by n
matrices over k and A its subalgebra generated by S, we know that A
is semisimple (and commutative). Let V:= k" be the space of column
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vectors and let ey, .., e, be its standard basis. We shall view V as a left
M, (k)-module via matrix multiplication. The subspace V; spanned by the
vectors eq, .., e; 1S an A-submodule of V for each i. Since A4 is semisimple,
there exist v;€ V\V,;_,,1 <i < n, such that Av; = kv;. Thus if b is the
matrix whose i-th columnisv;, 1 <i < n,thenbeB,and b~'Sh =« D,. [

LemMma 4. If G is a connected solvable affine group, T < G, a closed
subgroup, and G = G,T then T isatorusand G = G, X T.

Proof. By the Lie-Kolchin theorem we may assume that G is a closed
subgroup of some B,. By using the projection map B, — D, we obtain a
short exact sequence 1 - G, & G 5D 1, where D < D, is a torus. Since
D = p(G) = p(G,T) = p(T), Lemma 1 (i) implies that p(T° = D. Thus
G = G,T° and using T n G, = 1 we conclude that T = T°. In particular T
1s abelian and by Lemma 3 we may assume that T < D,, ie, T = D.
Since B, = U, xD,,G,<U,, T =D < D,, and G = G,T, it follows that
G=G,xT. ]

THEOREM 4. Let G be a connected solvable affine group. Then
G = G, X T where T isa maximal torus. In particular, G, is connected.

Proof. We use induction on dim G. Assume first that G, = Z(G). Then
G, = Z(G), 1s a closed subgroup of G and G = G,G,. The assertion then
follows from Lemma 4. Now assume that there exists se G,\Z(G). Then
Zs(s) 1s a proper closed subgroup of G, see e.g. [4, Section 8.2]. By
Theorem 3 it is connected and G = G,Z4(s). By induction hypothesis there
exists a torus T such that Z4s) = Z4(s),T. Then G = G, Z4s) = G, T and
G = G, X T by Lemma 4. ]

THEOREM 5. Let G = G, X T be a connected solvable affine group.
Then every se G, is conjugate to an element of T.

Proof. We use induction on dim G. We have s = ut where u € G, and
teT. If G is abelian then u = 1 and s = t. Otherwise let N be the last
non-trivial term of the derived series of G. By the corollary of Theorem 1
we have N = G,. Hence N is a closed connected normal abelian unipotent
subgroup of G. By Theorem 2 and the induction hypothesis there exists
x e G such that xsx™! = tv where ve N. By Lemma 2, v = t lutu™ !z
where u € N and z € Z,(t). Hence xsx ™! Lutu= ! e Gy,
z € G,, and z commutes with u and ¢, it follows that z = 1 and consequently

xsx 1 = utu~ L. ]

= utu~ 'z Since xsx~
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THEOREM 6. If G = G, X T is a connected solvable affine group and
S < G, is a commuting set then ZgS) is connected and aSa ' = T
for some aeG. In particular, all maximal tori of G are conjugate.

Proof. We use induction on dim G. The assertions are obvious if
S < Z(G). Otherwise choose s € S\Z(G). By Theorem 5 we may assume that
se T. Then Z4(s) is a proper closed subgroup of G containing T and S.
By Theorem 3, Z4(s) is connected. Since dim Zg(s) < dim G, we can apply
the induction hypothesis to conclude the proof. ]

It is now easy to describe connected nilpotent affine groups.

THEOREM 7. A connected solvable affine group G = G, X T is nilpotent
ifand only if G, = T < Z(G). Inthat case G = G, x T.

Proof. Assume that G is nilpotent. We prove that G, = T < Z(G) by
induction on dim G. We may assume that G is not abelian. Let N be the
last non-trivial term of the lower central series of G. Let f be as in
Theorem 2 and G = f(G). Then G = f(G,T) = (G),f(T). By induction
hypothesis we have f(T) = (G), = Z(G). Consequently if te T and xe G
then u:= txt 'x"*eN. Since N < Z(G)n G,, and xtx ' = ™'t = tu~!
we must have u = 1. Thus T < Z(G) and, by Theorem 5, G, = T. The
converse is obvious. O]
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