Zeitschrift:	Schweizerische Bauzeitung
Herausgeber:	Verlags-AG der akademischen technischen Vereine
Band:	70 (1952)
Heft:	44
Artikel:	Berechnung von Verzahnungen mit Profilverschiebung
Autor:	Baumgartner, Arthur
DOI:	https://doi.org/10.5169/seals-59699

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 09.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Nachdruck von Bild oder Text nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet Der S.I.A. ist für den Inhalt des redaktionellen Teils seiner Vereinsorgane nicht verantwortlich

Berechnung von Verzahnungen mit Profilverschiebung

Von ARTHUR BAUMGARTNER, Masch.-Techniker, Zürich

Einleitung

70. Jahrgang

Wer Einblick in die Zahnradherstellung hat, muss feststellen, dass immer noch viele Konstrukteure die Möglichkeiten nicht ausschöpfen, welche die normalen Abwälz-Werkzeuge für die Erzeugung von Evolventen-Verzahnungen bieten. Die Nachteile der Normal-Verzahnung bestehen zur Hauptsache darin, dass für gegebene Zähnezahlen und Moduli die Achsdistanzen festgelegt sind, und dass bei kleinen Zähnezahlen die Zahnformen und Eingriffsverhältnisse ungünstig, oft sogar ungenügend werden. Zum Teil werden diese Nachteile unnötigerweise in Kauf genommen, oder es werden Spezial-Werkzeuge angeschafft, welche das Lager kostspieliger Verzahnungswerkzeuge unnütz vergrössern.

In nachfolgendem Aufsatz, der sich auf verschiedene Veröffentlichungen und eigene Studien stützt, werden zunächst die grundlegenden Zusammenhänge für Stirnräder in einfacher Weise aufgezeigt und anschliessend eine einwandfreie Methode zur Berechnung von Rädern mit schrägen Zähnen mit parallelen und gekreuzten Achsen gezeigt sowie Angaben für negative Profilverschiebung gemacht. Gerade das letztgenannte Problem ist in der bestehenden Literatur ungenügend behandelt, enthält

Tabelle 1. Kollekiulwelle iul Lyolyellellyelzalliulideli (Lilidilliswilkel des Olulidwelkzeudes z	Tabe	lle 1	1.	Korrekturwerte	für	Evolventenverzahnungen	(Eingriffswinkel	des	Grundwerkzeuges 20	0)
---	------	-------	----	----------------	-----	------------------------	------------------	-----	--------------------	----

d	$\frac{x_1 + x_2}{z_m}$	α'	$\frac{y}{z_m}$	d	d	$\frac{x_1 + x_2}{z_m}$	α'	$\frac{y}{z_m}$	d
66	— 0,02036	160 00'	- 0,02244	82	145	0,02238	23 ° 00′	0,02084	127
00	- 0,01970	10'	0,02162	0.2	147	0,02383	10'	0,02211	190
68	-0.01902	20'	-0.02079	83	14(0.02530	20'	0.02339	128
69	-0.01833	30'	- 0.01995	84	150	0.02680	30'	0.02468	129
71	0,01762	40'	0,01010	85	153	0.02000	40'	0.02508	130
73	- 0,01702	50/	- 0,01910	86	154	0,020007	10	0,02550	132
74	0,01089	50	- 0,01824	87	158	0,02987	50	0,02730	132
75	— 0,01615	17º00'	— 0,01737	88	159	0,03145	24 ° 00'	0,02862	134
77	- 0,01540	10'	- 0,01649	0	162	0,03304	10'	0,02996	125
11	-0.01463	20'	-0.01560	89	102	0.03466	20'	0.03131	100
79	-0.01384	30'	-0.01471	89	165	0.03631	30'	0.03267	136
80	0.01304	40'	- 0.01380	91	167	0.03798	40'	0.03405	138
82	0,01004	50/	0,01380	92	170	0,00100	50'	0.02544	139
84	- 0,01222	50	- 0,01288	93	173	0,03908	50	0,03544	140
85	0,01138	180 00'	— 0,01195	94	175	0,04141	250 00'	0,03684	141
07	- 0.01053	10'	- 0.01101	05	170	0.04316	10'	0.03825	140
87	- 0.00966	20'	- 0.01006	95	178	0.04494	20'	0.03967	142
88	0.00878	30'	0,00910	96	180	0.04674	30'	0.04111	144
91	0,00010	40'	0,00010	97	183	0.04857	40'	0.04256	145
92	- 0,00787	40	- 0,00815	98	186	0,04007	40	0,04402	147
94	— 0,00695	50'	- 0,00715	99	189	0,05043	50.	0,04403	147
95	— 0,00601	190 00'	— 0,00616	100	191	0,05232	260 00'	0,04550	150
0.0	-0,00506	10'	-0,00516	101	105	0,05423	10'	0,04700	150
98	- 0.00408	20'	-0.00415	101	195	0.05618	20'	0.04850	150
99	- 0.00309	30'	- 0.00313	102	197	0.05815	30'	0.05001	151
101	0,00000	40/	0,00010	103	200	0,00015	40'	0.05154	153
103	- 0,00208	40	- 0,00210	105	203	0,00015	50/	0,05104	155
105	— 0,00105	50'	- 0,00105	105	206	0,06218	50	0,05509	155
107	0,00000	20 ° 00'	0,00000	106	209	0,06424	27 ° 00′	0,05464	157
100	0.00107	10'	0.00106	100	010	0.06633	10'	0,05621	150
109	0.00216	20'	0.00214	108	212	0.06845	20'	0.05780	109
110	0,00226	30'	0.00323	109	215	0,07060	30'	0.05939	199
113	0,00320	40'	0,00020	109	218	0,07978	40'	0.06100	161
115	0,00459	40	0,00432	111	221	0,07218	50/	0,00100	163
116	0,00554	50'	0,00543	112	225	0,07499	50	0,00205	164
119	0,00670	210 00'	0,00655	113	227	0,07724	28 ° 00'	0,06427	165
101	0.00789	10'	0.00768	114	0.01	0,07951	10'	0,06592	167
121	0,00910	20'	0.00882	114	231	0.08182	20'	0.06759	101
123	0,00010	20/	0,00002	115	234	0.08/16	30'	0.06927	108
125	0,01055	30	0,00991	116	238	0,00410	40'	0.07097	170
127	0,01158	40	0,01113	117	240	0,08034	50/	0,01031	171
130	0,01285	50'	0,01230	119	244	0,08894	50	0,07268	172
131	0,01415	22 ° 00'	0,01349	120	247	0,09138	290 00'	0,07440	174
104	0.01546	10'	0.01469	120	251	0,09385	10'	0,07614	176
134	0.01680	20'	0.01580	120	201	0.09636	20'	0.07790	170
136	0,01030	20	0,01000	122	253	0,00000	30'	0.07966	1/6
138	0,01054	50	0,01/11	124	258	0 10147	40'	0.08145	179
140	0,01954	40	0,01835	124	261	0,10147	50/	0.08225	180
144	0,02094	50'	0,01959	125	265	0,10408	50	0,00320	181
	0,02238	23 ° 00'	0,02084			0,10673	30 ° 00'	0,08506	

Nummer 44

DK 621.833

doch beispielsweise DIN Blatt 870 Richtlinien, welche zu unbrauchbaren Getrieben führen können und in allen Publikationen wiederzufinden sind.

Das Verfahren, günstige Zahnformen mit normalen Werkzeugen herzustellen, ist nicht neu. Maag hat wohl als erster die Möglichkeiten systematisch erfasst, hielt aber seine Berechnungs-Unterlagen bis heute geheim. Erstmals dürften die Berechnungsgrundlagen von Fölmer veröffentlicht worden sein. Leider fehlt aber immer noch ein einfaches Berechnungsverfahren, das erlaubt, relativ rasch und vor allem mit der für den heutigen Präzisionsgetriebebau nötigen Genauigkeit die erforderlichen Korrektur- und Messwerte zu bestimmen.

Die Bedingungen, die an eine gute Verzahnung gestellt werden, enthalten oft widersprechende Forderungen: Kräftige, unterschnittfreie Zähne, kleine Zahndrücke, lange Eingriffsdauer, kleine spezifische Gleitung. Um eine gute Verzahnung zu erreichen, ist es also nötig, Kompromisse zu machen. Folgende Bedingungen sollten aber unbedingt eingehalten werden: Vermeidung des Unterschnittes, genügender Ueberdeckungsgrad, richtige Lage der Eingriffs-Strecke auf der Eingriffs-Linie.

Bei der Evolventen-Verzahnung besteht für richtigen Zahneingriff nur die Bedingung, dass ein Räderpaar die gleiche Grundkreis- bzw. Eingriffsteilung aufweist; ferner sollen die Aussendurchmesser und die Zahndicken so bemessen sein, dass nach Einbau in eine gegebene Achsdistanz ein zweckmässiges Kopf- und Flankenspiel vorhanden ist. Es ist somit möglich, die Räder mit Werkzeugen herzustellen, welche verschiedene Eingriffswinkel, aber gleiche Eingriffsteilungen besitzen oder, wenn beide Räder mit dem gleichen Werkzeug nach dem Abwälzverfahren hergestellt werden, das Bezugszahnstangenprofil von der normalen Lage abzurücken. In der Praxis ist der zweite Fall von grösster Bedeutung. — Die nachstehenden Ausführungen beziehen sich auf das Modul-System. Die Gleichungen und Tabellen können aber auch auf das Diametral-Pitch-System angewendet werden, wenn in den Gleichungen m durch den Ausdruck 1/DP ersetzt wird.

1. Grundlagen

Bild 1 zeigt, wie das Zahnprofil eines Ritzels durch die Lage des Bezugsprofils beeinflusst werden kann. Der Betrag der Abrückung wird zweckmässig auf den Modul 1 bezogen und mit x m bezeichnet. Bringt man ein derart hergestelltes Radpaar mit dem Bezugsprofil in Eingriff (Bild 2, Werte wieder auf Modul 1 bezogen), so wird man zwischen den Radflanken ein beträchtliches Spiel feststellen, welches für den praktischen Gebrauch unzulässig ist. Für spielfreien Eingriff darf die Achsdistanz also nicht um den Betrag der Profilverschiebungen $(x_1 + x_2)$ m verändert werden, sondern nur

Bild 1.

um den Wert y m. Will man das ursprüngliche Kopfspiel wahren, darf der Kopfkreisradius nur um den Betrag $(y - x_2) m$ bzw. $(y - x_1) m$ vergrössert werden.

Der Zusammenhang zwischen Profilverschiebung, Laufeingriffswinkel und spielfreier Achsdistanz ist aus Bild 3 ersichtlich, in der der Einfachheit halber die Werte wieder für den Modul 1 eingetragen wurden. Die Räder müssen für spielfreien Eingriff um den Betrag $\overline{D_1 D_2}$ zusammengerückt werden und kämmen dann mit dem neuen Eingriffswinkel α' . Die neue Eingriffslinie wird nun gebildet durch die dann in einer Flucht liegenden Strecken $\overline{E_2 D_2} \ \overline{D_1 E_1}$. Die Strecke $\overline{0_l C}$ ist gleich der Summe der Strecken $\overline{A_1 B_1'} + \overline{A_2 B_2'}$, oder, nach der Definition der Evolvente, gleich $\widehat{A_1 B_1} + \widehat{A_2 B_2}$. Es ist also:

$$\begin{pmatrix} \frac{z_1}{2} + x_1 + \frac{z_2}{2} + x_2 \end{pmatrix} \sin \alpha = \\ \frac{z_1}{2} \cos \alpha \left(\alpha + \operatorname{tg} \alpha' - \alpha' \right) + \\ + \frac{z_2}{2} \cos \alpha \left(\alpha + \operatorname{tg} \alpha' - \alpha' \right) \\ \frac{z_1 + z_2}{2} + x_1 + x_2 = \left(\frac{z_1 + z_2}{2} \right) \frac{\cos \alpha}{\sin \alpha} \left(\alpha + \operatorname{tg} \alpha' - \alpha' \right)$$

Wird tg $\alpha' - \alpha' = inv \alpha'$ gesetzt, so lässt sich nach Umformung die Gleichung schreiben:

(1)
$$\frac{x_1 + x_2}{\frac{z_1 + z_2}{2}} = \operatorname{ctg} \alpha \left(\alpha + \operatorname{inv} \alpha' \right) - 1 = \frac{\operatorname{inv} \alpha' - \operatorname{inv} \alpha}{\operatorname{tg} \alpha}$$

Die neue Achsdistanz a wird (für Modul 1 betrachtet) nach Bild 2:

SCHWEIZERISCHE BAUZEITUNG

Tabelle 2. K-Werte zur Berechnung der ideellen Zähnezahl z_v bei einem Erzeugungseingriffswinkel $\alpha = 20^{0}$. $z_v = z \frac{\text{inv } \alpha_a}{\text{inv } \alpha} = z K$.

d	α _a ⁰	cos 3	K	d	d	α_a^{0}	$\cos\beta$	K	d	d	α _α ο	cos β	K	d
925	20,0000	1,000	1,0000	144	1276	23,6783 23,8059	0,830 0,825	1,6944 1,7233	289 295	1825	28,6929 28,8754	0,665 0,660	3,1224 3,1869	645
933	20,0925	0,995	1,0144 1.0201	147	1209	23,9348	0,820	1,7528	200	1040	29,0600	0,655	3,2532	005
941	20,2799	0,985	1,0441	150	1216	24,0650	0,815	1,7831	200	1868	29 2468	0.650	3 3212	680
950	20 3749	0.980	1 0594	153	1329	24,1966	0,810	1,8140	316	1890		0,000	0,0212	699
958	20,3143	0,980	1,0334 1.0749	155	1020	24,3295	0,805	1,8456	010	1912	29,4358	0,645	3,3911	719
967	20,5674	0,970	1,0908	159	1343	24 4638	0.800	1 8779	323	1935	29,6270	0,640	3,4630	739
976	20 6650	0.965	1 1069	161	1357		0,000	1,0110	331	1958	29,8205	0,635	3,5369	759
985	20,0000 20,7635	0,960	1,1000	165	1371	24,5995	0,795	1,9110	339	1982	30,0163	0,630	3,6128	781
994	20,8629	0,955	1,1403	169	1385	24,7366	0,790	1,9449	347	2005	30,2145	0,625	3,6909	802
1003				171	1400	24,8791	0,785	1,9796	354	2030	30,4150	0,620	3,7711	826
1019	20,9632	0,950	1,1574	175	1415	25,0151	0,780	2,0150	364	2054	30,6180	0,615	3,8537	850
1012	21.0644	0.945	1.1749	110	1430	25,1566	0,775	2,0514	371	2079	30,8234	0,610	3,9387	874
1021	21,1665	0,940	1,1927	178	1445	20,2996	0,770	2,0880	381	2104	31,0313	0,605	4,0201	800
1031	21,2696	0,935	1,2109	182	1460	25,4441	0,765	2,1266	389	2101	31,2417	0,600	4,1160	000
1041	21.3737	0.930	1.2295	186	1477	25,5901	0,760	2,1655	400	2130	01 15 15	0 505	1.0000	926
1050	21,4787	0,925	1,2484	189	1/02	20,1518	0,755	2,2000	408	2157	31,4547	0,595	4,2086	952
1060	21,5847	0,920	1,2678	194	1104	25,8870	0,750	2,2463	100	2183	31,8704	0,590	4,3038	982
1071	21.6918	0.915	1.2875	197	1508		0.545	0.0000	419	2210	01,0007	0,000	4 5000	1010
1081	21,7999	0,910	1,3076	201	1525	26,0378	0,745	2,2882	429	2238	32,1097	0,580	4,5030	1041
1090	21,9089	0,905	1,3282	206	1542	26,1903	0,740 0.735	2,3311 2,3751	440	2265	32,5555 32,5600	0,570	4,7143	1072
1101				209	1558	20,0110	0,700	0,4001	450	2294	20.7004	0,505	4,0040	1106
1111	22,0190	0,900	1,3491	214	1576	26,5003	0,730	2,4201 2,4663	462	2323	32,7894	0,560	4,8249	1138
1100	22,1301	0,895	1,3705	210	1594	26,8173	0,720	2,1005 2.5137	474	2353	33.2570	0,555	5.0562	1175
1123	22,2424	0,890	1,3924	219	1611	20,0210	0.715	0,5000	485	2382		-,		1210
1144	22,3557	0,885	1,4147	228	1628	26,9784	0,710 0.710	2,2622	498		33,4952	0,550	5,1772	1010
1155	22,4701	0,880	1,4375	220	1647	27,1112 27.3059	0,715	2,6120 2.6631	511	2412	33 7364	0.545	5.3021	1249
1167	22,5856	0,875	1,4608	237	1666		-,	_,	523	2443	33,9807	0,540	5,4308	1287
1170	22,7023	0,870	1,4845	243	1005	27,4725	0,700	2,7154	505	2475	34,2282	0,535	5,5637	1329
1100	22,8201	0,865	1,5088	210	1685	27 6410	0.695	2 7691	537	2506	34 4788	0.530	5 7009	1372
1201	22,9391	0,860	1,5336	240	1703	27,8113	0,690	2,8242	551	2539	34.7327	0,525	5.8424	1415
1201	23,0592	0,855	1,5590	201	1723	27,9836	0,685	2,8808	566	2571	34,9898	0,520	5,9885	1461
1214	2001 20	0.050	1 5040	259	1743	98 1570	0.680	2 0388	580	2605	35 2503	0.515	6 1 3 9 4	1509
1226	23,1806	0,890	1,0849	265	1763	28,1313	0,080	2,9984	596	2639	35,5142	0,510	6.2953	1559
1938	23,3032	0,845	1,6114	270	1783	28,5125	0,670	3,0596	612	2673	35,7815	0,505	6,4563	1610
1250	23,4270	0,840	1,6384	277	1804	20 6020	0.665	2 1 9 9 4	628	2709				1664
1263	23,5520	0,835	1,6661	283		20,0929	0,000	0,1224			36,0524	0,500	6,6227	
1200	23,6783	0,830	1,6944	200										

$$a = \frac{z_1 + z_2}{2} + y$$

nach Bild 3:

$$a = \frac{z_1}{2} \frac{\cos \alpha}{\cos \alpha'} + \frac{z_2}{2} \frac{\cos \alpha}{\cos \alpha'} = \frac{z_1 + z_2}{2} \frac{\cos \alpha}{\cos \alpha'}$$

somit

$$\frac{z_1 + z_2}{2} + y = \left(\frac{z_1 + z_2}{2}\right) \frac{\cos \alpha}{\cos \alpha'}$$

oder

(2)
$$\frac{y}{z_1+z_2} = \frac{\cos \alpha}{\cos \alpha'} - 1$$

Aus den Gleichungen (1), (2) und den Tafeln für trigonometrische und Evolventenfunktionen lassen sich somit für gegebene Profilverschiebungen der spielfreie Achsabstand, oder umgekehrt, wenn Zähnezahlen und Achsabstand gegeben sind, die Summe der Profilverschiebungen für Modul 1 berechnen. Für andere Moduli müssen die Werte sinngemäss mit dem Modul multipliziert werden. Die Gleichungen gelten auch für negative Profilverschiebungen; die Grössen x_1 , x_2 und y sind bei den folgenden Anwendungen immer mit den entsprechenden Vorzeichen einzusetzen. Wird die algebraische Summe von $x_1 + x_2$ negativ, so wird y ebenfalls negativ; der Faktor für die Kopfkürzung $x_1 + x_2 - y$ aber positiv, d. h. die gemeinsame Zahnhöhe wird in jedem Fall kleiner als bei Normalverzahnung. Sind die beiden Profilverschiebungsfaktoren dem Absolutwerte nach gleich gross, tragen aber entgegengesetzte Vorzeichen, so wird $x_1 + x_2 = 0$, und der Achsverschiebungsfaktor y wird nach den Gleichungen (1) und (2) ebenfalls 0; mit andern Worten, Achsdistanz und Eingriffswinkel werden nicht geändert (V-Nullgetriebe oder AEG Verzahnung; Räder, deren Profilverschiebungen eine Achsdistanzänderung bedingt, werden V-Getriebe genannt).

Werden in analoger Weise die Gleichungen für Innenverzahnungen abgeleitet, so erhält man:

(1a)
$$\frac{x_2 - x_1}{\frac{1}{2}(z_2 - z_1)} = \frac{\operatorname{inv} \alpha' - \operatorname{inv} \alpha}{\operatorname{tg} \alpha}$$

(2a)
$$\frac{y}{\frac{1}{2}(z_2 - z_1)} = \frac{\cos \alpha}{\cos \alpha'} - 1$$

Um die Rechnung noch weiter zu vereinfachen, wurden die Funktionswerte

$$f(\alpha') = \frac{\operatorname{inv} \alpha' - \operatorname{inv} \alpha}{\operatorname{tg} \alpha}$$
$$f(\alpha') = \frac{\cos \alpha}{\cos \alpha'} - 1$$

für den Erzeugungseingriffswinkel $\alpha=20^{\,0}$ in Tabelle 1 zusammengestellt; es lässt sich somit für einen gegebenen Wert

$$\frac{x_1 + x_2}{\frac{1}{2}(z_1 + z_2)} \text{ bzw. } \frac{x_2 - x_1}{\frac{1}{2}(z_2 - z_1)}$$

sofort der zugehörige Laufeingriffswinkel α' und der Wert

$$\frac{y}{\frac{1}{2}(z_1+z_2)} \text{ bzw. } \frac{y}{\frac{1}{2}(z_2-z_1)}$$

aufschlagen, und umgekehrt.

2. Berechnung der Getriebeabmessungen

A. Stirnräder

a) Grundkreisdurchmesser d_b

Die Grundkreisdurchmesser werden durch die Profilverschiebung nicht geändert; sie betragen

$$(3a) \quad d_{b_1} \equiv z_1 \, m \, \cos \alpha$$

(3b) $d_{b_2} = z_2 m \cos \alpha$

Die Werte $m\cos\alpha$ können für den Werkzeugeingriffswinkel $\alpha=20^{\,0}$ und die gebräuchlichen Moduli der Tabelle 3 entnommen werden.

- b) Kopfkreisdurchmesser d_k
 - Der Radius des Kopfkreises wird für normales Kopfspiel

$$r_{k_1} = \frac{x_1}{2} m + x_1 m + 1 m - (x_1 + x_2 - y) m$$

somit der Aussendurchmesser des Rades 1

(4a)
$$d_{k_1} = m [z_1 + 2(1 - x_2 + y)]$$

und des Rades 2

(4b) $d_{k_2} = m [z_2 + 2(1 - x_1 + y)]$

Für Getriebe mit negativem y sind r_{k_1} und r_{k_2} nach Abschnitt 3 zu kontrollieren!

c) Fusskreisdurchmesser d_f

(5a)
$$d_{f_1} = m [z_1 - 2 (1 + c_0 - x_1)]$$

(5b)
$$d_{f_2} = m [z_2 - 2 (1 + c_0 - x_2)]$$

Hierin bedeutet c_0 das Kopfspiel am Werkzeug.

d) Lauf-Wälzkreisdurchmesser d'

(6a)
$$d_{1'} = \frac{2 a z_1}{z_1 + z_2}$$

(6b) $d_{2'} = \frac{2 a z_1}{z_1 + z_2}$

Die Berechnung der Lauf-Wälzkreise ist für Stirnräder in den meisten Fällen nicht nötig.

e) Achsdistanz a

(7)
$$a = m\left(\frac{z_1 + z_2}{2} + y\right)$$

f) Zahnhöhe h

(8a)
$$h_1 = \frac{d_{k_1} - d_{j_1}}{2}$$

 $d_{k_1} - d_{k_1}$

(8b)
$$h_2 = \frac{a_{k_2} - a_{f_2}}{2}$$

Die gemeinsame Zahnhöhe h' ist

$$(9) h' = r_{k_1} + r_{k_2} - a$$

g) Kontrollmass Wz' (Bild 4, 5)

Leider hat sich das Messen nach dieser, von Wildhaber [10] vorgeschlagenen Methode immer noch nicht gebührend eingeführt. Das Mass Wz' setzt sich zusammen aus einer Anzahl Eingriffsteilungen t_b und einer auf den Grundkreis bezogenen Zahnstärke $\widehat{s_b}$.

Misst man über z' Zähne, so wird für Räder mit Profilverschiebung:

für Rad 1

(10a)
$$Wz' = m \cos \alpha [(z' - 0.5) \pi + z_1 \operatorname{inv} \alpha] + 2 m x_1 \sin \alpha$$

für Bad 2

(10 b)
$$Wz' = m \cos \alpha [(z' - 0.5) \pi + z_0 \operatorname{inv} \alpha] + 2mx_0 \sin \alpha$$

Die Anzahl Zähne, über die gemessen werden soll, bestimmt sich aus

(11)
$$z' = z \frac{a^0}{180^0} + 0,5$$

IdDelle	für $\alpha = 20^{\circ}$	$moduli m_b u$ $m_b - m_b$	nd Grur cos «	treisteilung tremπcc	gen t_b
m	m_b	$\frac{t_h}{t_h}$	m	m_{i}	
0,3	0,281 908	0,885 639	1,75	1,644 46	5,166 23
0,325	$0,305\ 400$	0,959 442	2	1,879 39	5,904 26
0,35	0,328 892	1,033 25	2,25	2,114 31	6,642 29
0,375	0,352 385	1,107 05	2,5	2,349 23	7,380 33
0,4	0,375 877	1,180 85	2,75	2,584 15	8,118 36
0,45	0,422 862	1,328 46	3	2,819 08	8,856 39
0,5	0,469 846	1,476 07	3,25	3,054 00	9,594 43
0,55	0,516 831	1,632 67	3,5	3,288 92	10,332 46
0,6	0,563 816	1,771 28	3,75	3,523 85	11,070 49
0,7	0,657 785	2,066 49	4	3,758 77	11.808 52
0,75	0,704 769	2,214 10	4,5	4,228 62	13,284 59
0,8	0,751 754	2,361 70	5	4,698 46	14,760 65
0,9	0,845 723	2,656 92	5,5	5.638 16	17.712 79
1	0,939 693	2,952 13	6	6.108 00	19.188 85
1,125	1,057 15	3,321 15	6,5	6,577 85	20,664 92
1,25	1,175 62	3.690 16	7	7.517 54	23.617 05
1,375	1,292 08	4.059 18	8	8,457 23	26,569 18
1,5	1,409 54	4,428 20	9	9,396 93	29.521 31
			10	5.168 31	16.236 72
	0			,	

wobei z' auf die nächste ganze Zahl auf- oder abzurunden ist. Bei sehr grossen Profilverschiebungen ist das Mass Wz' gegebenenfalls um eine Eingriffsteilung $t_b = \pi m \cos \alpha$ zu vergrössern oder zu verkleinern. Für die Wz'-Masse von Normalverzahnungen bestehen Tabellen; alsdann reduziert sich die Rechnung auf das Addieren bzw. Subtrahieren des Betrages $2 mx \sin \alpha$. Der auf das Rad entfallende Anteil des Zahnspieles j wird vom Mass Wz' subtrahiert. Normalerweise beträgt dieser Anteil j/2. Hat das Rad 1 sehr wenig Zähne, so wird das Mass Wz' für das Rad 2 um den vollen Betrag j verkleinert.

Zum Messen sollen Tellermikrometer, bei sehr grossen Rädern Schiebelehren verwendet werden. Für das Messen grosser Serien sind Grenz-Rachenlehren zu empfehlen. Das Messen der Zahndicke mit der sogenannten Zahnradschiebelehre ist möglichst zu vermeiden, da die Abnützung der Messkanten und die Ungenauigkeiten des Radaussendurchmessers die Messgenauigkeit beeinträchtigen.

h) Eingriffsdauer ε (Bild 6)

Die Eingriffsdauer ist gleich dem Verhältnis

$$\varepsilon = rac{\mathrm{Eingriffsstrecke}\ \overline{H_1 H_2}}{\mathrm{Eingriffsteilung}\ t_b} = rac{\overline{H_1 H_2}}{m \pi \cos a}$$

 ε soll immer grösser sein als 1,15. Zweckmässig wird ε graphisch bestimmt, indem nach Bild 6 die Achsdistanz *a*, die Grund- und Kopfkreisradien r_{b_1} , r_{b_2} , r_{k_1} , r_{k_2} und die Eingriffslinie $\overline{E_1}$, $\overline{E_2}$ aufgetragen wird. Die Strecke $\overline{H_1}$, H_2 wird abgemessen, auf die natürliche Grösse reduziert und durch $t_b = m\pi \cos \alpha$ dividiert (t_b aus Tabelle 3).

Soll ε rechnerisch ermittelt werden, so ist nach ten Bosch [1] aus Bild 6

$$\overline{H_1 H_2} = \overline{E_1 H_1} + \overline{E_2 H_2} - \overline{E_1 E_2}$$

somit

(

12)
$$\varepsilon = \frac{\sqrt{r_{k_1}^2 - r_{b_1}^2} + \sqrt{r_{k_2}^2 - r_{b_2}^2} - a \sin \alpha'}{m \pi \cos \alpha}$$

Tabelle 3. Grundkreismoduli m_b und Grundkreisteilun

Bild 6.

Für Getriebe mit negativem y ist ε aus den Gleichungen 49 a, 49 b zu berechnen.

B. Räder mit schrägen Zähnen und parallelen Achsen

Legt man einen Normalschnitt durch die Eingriffszone eines solchen Radpaares, so bildet sich darin ein Verzahnungsbild ab, welches mit demjenigen eines gedachten, «ideellen» Radpaares mit geraden Zähnen zur Uebereinstimmung gebracht werden kann. Setzt man an Stelle der Zähnezahlen z_1, z_2 des Radpaares mit schrägen Zähnen die entsprechenden ideellen Zähnezahlen z_{v_1} , z_{v_2} sinngemäss in die Rechnung, so können weitgehend die selben Gleichungen und Tabellen Anwendung finden.

Nach Bagh [9] wird, abgeleitet aus den Gleichungen von Wildhaber [10] für die Zahnweiten:

Ideelle Zähnezahl des Rades 1

$$z_{v_1} \equiv z_1 \frac{\operatorname{inv} \alpha_a}{\operatorname{inv} \alpha}$$

oder

 $(13a) \quad z_{v_1} \equiv z_1 K$

2

und entsprechend

(13b)
$$z_{v_2} \equiv z_2 K$$

worin $K = \operatorname{inv} \alpha_a/\operatorname{inv} \alpha$, als Funktion von $\cos \beta$ für den Werkzeugeingriffswinkel $\alpha = 20^{\,0}$ der Tabelle 2 entnommen werden kann. Zur Bestimmung der Profil- und Achsverschiebungsfaktoren setzt man als mittlere Zähnezahl statt 1/2 $(z_1 + z_2)$

den Wert $\frac{1}{2}(z_{v_1}+z_{v_2})$ ein und berechnet die gesuchten Grössen $x_1 + x_2$ bzw. y aus Tabelle 1.

a) Erzeugungs-Teilkreis

(14 a) $d_1 = z_1 m_a$ (Rad 1)

(14 b)
$$d_2 = z_2 m_a$$
 (Rad 2)

b) Erzeugungsmodul im Stirnschnitt

(15)
$$m_a = \frac{m}{\cos\beta}$$

c) Erzeugungseingriffswinkel im Stirnschnitt

(16)
$$\operatorname{tg} \alpha_a = \frac{\operatorname{tg} \alpha}{\cos \beta}$$

 α_a kann aus Tabelle 2 entnommen werden.

d) Grundkreis-Durchmesser

(17 a)
$$d_{b_1} \equiv d_1 \cos \alpha_a$$

(17b)
$$d_{b_2} \equiv d_2 \cos \alpha_a$$

Die oben angeführten Grössen werden durch die Profilverschiebung nicht beeinflusst.

e) Kopfkreisdurchmesser, für ursprüngliches Kopfspiel

(18 a) $d_{k_1} = d_1 + 2 m (1 - x_2 + y)$

(18 b) $d_{k_0} = d_2 + 2 m (1 - x_1 + y)$

f) Fusskreisdurchmesser

(19 a)
$$d_{f_1} = d_1 - 2 m (1 - x_1)$$

(19 b)
$$d_{f_1} = d_2 - 2 m (1 - x_2)$$

g) Gemeinsame Zahnhöhe s. Räder mit geraden Zähnen

(20)
$$a = \frac{d_1 + d_2}{2} + my$$

i) Kontrollmass Wz

(21 a)
$$Wz'_1 \equiv m \cos \alpha [(z' = 0.5) \pi + z_{v_1} \operatorname{inv} \alpha] + 2 m x_1 \sin \alpha$$

(21b) $Wz'_2 = m \cos \alpha [(z' - 0.5) \pi + z_{v_2} \operatorname{inv} \alpha] + 2 m x_2 \sin \alpha$

$$(22) \qquad z' = z_v \, \frac{a^0}{180^0} + 0.5$$

z' ist wieder auf die nächste ganze Zahl auf- oder abzurunden. Das Messverfahren kann nur angewendet werden, wenn die Radbreite b grösser als $Wz' \sin \beta$ ist; andernfalls wird das Messen mit Kimmen empfohlen.

k) Kontrollmass M_K

Nach Bild 7 wird der Durchmesser d_K der Kontrollrolle zur Bestimmung von H_1 und H_2 .

(23)
$$d_K = \frac{1}{2} \pi m \cos \alpha = \frac{1}{2} t_b$$

Kontrollmass für gerade Zähnezahl

(24 a)
$$M_{K_1} = d_1 + 2 m x_1 + 2 H_2$$

(24 b)
$$M_{K_0} = d_2 + 2 m x_2 + 2 H_2$$

Kontrollmass für ungerade Zähnezahl

(25 a)
$$M_{K_1} = d_1 + 2 m x_1 + H_1 + H_2$$

(25 b)
$$M_{K} = d_{2} + 2 m x_{2} + H_{1} + H_{2}$$

1) Flankenspiel im Normalschnitt

Das Kontrollmass Wz' ist um den Normal-Flankenspielanteil j/2 zu verkleinern, das Mass M_K um den Betrag $j/2 \sin \alpha$ (vgl. Abschnitt 2. A).

(26 a)
$$L_1 = \pi d_1 \operatorname{ctg} \beta = \frac{z_1 m \pi}{\sin \beta}$$

 $z_2 m \pi$

(26 b)
$$L_2 = \pi d_2 \operatorname{ctg} \beta = \frac{-\pi n}{\sin \beta}$$

 $\begin{array}{c}
 \pi d_2 \\
 \pi d$

n) Laufzahnschrägewinkel β'

(27)
$$\operatorname{tg} \beta' = \frac{\pi \, d_1'}{L_1} = \frac{\pi \, d_2'}{L_2} = \frac{\operatorname{tg} \beta \cos \alpha}{\cos \alpha'}$$

o) Lauf-Stirneingriffswinkel $\alpha'a$

(28)
$$\cos \alpha_{a'} = \frac{r_{b_1} + r_{b_2}}{a}$$

p) Eingriffsdauer ε

 $\varepsilon\,$ setzt sich zusammen aus dem Stirn-Ueberdeckungsgrad ε_a und dem Ueberdeckungsgrad ε_q , herrührend von der Zahnschräge.

(29) $\varepsilon = \varepsilon_a + \varepsilon_q$

 ε_a wird in gleicher Weise berechnet wie für Räder mit geraden Zähnen, indem nach Bild 6 die Eingriffsverhältnisse im Stirnschnitt aufgezeichnet werden, und die Strecke $\overline{H_1 H_2}$ durch die Stirn-Eingriffsteilung t_{ba} dividiert wird. ε_a kann auch aus Gleichung (30) berechnet werden.

(30)
$$\varepsilon_a = \frac{\sqrt{r_{k_1}^2 - r_{b_1}^2} + \sqrt{r_{k_2}^2 - r_{b_2}^2} - a \sin \alpha'}{m_a \cos \alpha_a}$$

(31)
$$\varepsilon_q = \frac{\text{Teilungssprung } q}{\text{Stirnteilung } t_a} = \frac{b \text{ tg } \beta}{\pi m_a}$$

Anmerkung

Bei den Stossrädern sind die besondern Verhältnisse bezüglich Zahnschrägewinkel und Stirnmodul zu beachten. Das Fellows-System bezieht den Erzeugungsmodul auf den Stirnschnitt, für die Berechnung der Profil- und Achsverschiebungsfaktoren sind somit die effektiven Zähnezahlen massgebend.

C. Stirn-Schraubgetriebe

Bei diesen Getrieben lässt sich eine Profilverschiebung meist vermeiden, wenn in eine gegebene Achsdistanz eine gegebene Uebersetzung eingebaut werden soll. Es ist empfehlenswert, für den Berechnungsvorgang die von Metral-le Ray [6] vorgeschlagene Methode anzuwenden.

Ist für ein Getriebe die Achsdistanz gegeben und m, z_1 und z_2 gewählt, lässt sich aus Bild 8 der Zahnschrägewinkel β folgendermassen bestimmen: Auf den Koordinaten werden die Werte $z_1 m$ und $z_2 m$ aufgetragen. Durch den Schnittpunkt Alegt man die Strecke $\overline{BC} = 2a$ derart, dass die Endpunkte auf die Koordinaten zu liegen kommen. Lässt sich die Strecke einbringen, so bestehen meist zwei Lösungen, und der günstigere Zahnschrägewinkel ist auf Grund der Gleitverhältnisse zu wählen. Ergibt sich keine Lösung, so ist der Vorgang mit einem andern Modul oder mit andern Zähnezahlen zu wiederholen. Mit dem so ermittelten Zahnschrägewinkel kontrolliert man die Achsdistanz nach der Gleichung 32.

(32)
$$\frac{z_1}{\cos\beta_1} + \frac{z_2}{\cos\beta_2} = 2a$$

Die Differenz d a aus der so ermittelten und der gegebenen Achsdistanz wird eingesetzt in die Gleichung (33).

$$(33) \qquad d\beta_1 = \frac{2 \ d \ a}{\overline{E \ D}}$$

worin $d\beta_1$ die Korrektur für den Zahnschrägewinkel β_1 bezeichnet. \overline{ED} folgt aus Bild 8, wobei D'K senkrecht zu BC steht und durch A geht. Das Verfahren gilt auch für Stirnschraubgetriebe, deren Achsen sich nicht unter $\Sigma = 90^{\circ}$ kreuzen; die Koordinaten werden dann unter dem gegebenen Winkel Σ gezogen.

Ergibt die oben angegebene Methode keine Lösung, so ist nach Bild 8 die günstigste Annäherung abzuschätzen und es sind z_1 , z_2 , m und β_1' festzulegen. Bei der nun folgenden Rechnung muss beachtet werden, dass die Räder nach dem Einbau unter diesem Lauf-Eingriffswinkel kämmen müssen, und dass, von β_1' ausgehend, die Erzeugungs-Eingriffswinkel β_1 und β_2 berechnet werden müssen.

Bild 9 stellt die Abwicklungen der Lauf- und Erzeugungswälzzylinder dar. Für das Schraubgetriebe mit Profilverschiebung gilt, wenn m' den Laufmodul bezeichnet

(34)
$$\frac{z_1 m'}{\cos \beta_1'} + \frac{z_2 m'}{\cos \beta_2'} = 2a$$

oder

(35)
$$m' = \frac{2a}{\frac{z_1}{\cos \beta_1'} + \frac{z_2}{\cos \beta_1'}}$$

(36 a)
$$\sin \beta_1 = \frac{m}{m'} \sin \beta$$

(36 b)
$$\sin \beta_2 = \frac{m}{m'} \sin \beta_2'$$

Damit lassen sich die Radabmessungen, wie unter 2, B angegeben, berechnen. Für die ideelle Zähnezahl ist natürlich der β_1 bzw. β_2 entsprechende Faktor massgebend, also

$$z_{v_1} \equiv z_1^{} \, K_1^{}$$
 , $\, z_{v_2} \equiv z_2^{} \, K_2^{}$.

D. Innengetriebe mit geraden Zähnen

Diese Getriebe werden fast ausschliesslich mit dem Stossrad hergestellt. Neben dem genormten Bezugsprofil findet öfters Stumpfverzahnung Anwendung. Beim Entwurf von Innengetrieben muss den Einschränkungen Rechnung getragen werden, die durch die verschiedenen Interferenzmöglichkeiten gegeben sind [3]. Hat ein Getriebe ohne Profilverschiebung die Abmessungen

Werkzeug:	Modul m	Eingriffswinkel α
Ritzel:	Erzeugungsteilkreis d_1	Kopfkreisdurchm. d_{k_1}
	Fusskreisdurchmesser d_f	
Innenrad:	Erzeugungsteilkreis d_2	Kopfkreisdurchm. d_{k_2}
	Fusskreisdurchmesser d_f	
so werden	die Abmessungen mit Pr	rofilverschiebung:

a) Kopfkreisdurchmesser d_k ; wenn das ursprüngliche Kopfspiel eingehalten werden soll:

(37 a)
$$d_{k_1}' \equiv d_{k_1} + 2m(x_2 - y)$$
 (Ritzel)

(37b) $d_{k_2'} = d_{k_2} + 2 m (x_1 + y)$ (Innenrad)

b) Fusskreisdurchmesser $d_{f'}$

(38 a)
$$d_{f_1'} = d_{f_1} + 2 m x_1$$
 (Ritzel)

(38b) $d_{f_2}' = d_{f_2} + 2 m x_2$ (Innenrad)

Für den Eingriff Innenrad-Stossrad ist die Rechnung in analoger Weise durchzuführen; ferner sind die verschiedenen Interferenzmöglichkeiten nachzuprüfen und das Eingriffsschema aufzuzeichnen. Massgebend für die Ausführung ist der grösste resultierende Kopfkreisdurchmesser $d_{k'_2}$

c) Grundkreisdurchmesser s. Gl. (3a), (3b)

d) Kontrollmass Wz' s. Gl. (10 a), (10 b). Für das Innenrad wird an Stelle des Tellermikrometers ein Mikrometer oder eine Schiebelehre mit genügend ausgerundeten Messschnäbeln verwendet. Bei sehr kleinen Zahnteilungen ist es zweckmässiger, die Kontrolle mit Messrollen vorzunehmen. Nach Buckingham [3] wird, wenn d_R den Durchmesser der Messrolle und α_R den Hilfswinkel bezeichnen, das Kontrollmass für gerade Zähnezahl M_R

(39)
$$M_R = m z_2 \frac{\cos \alpha}{\cos \alpha_R} - d_R = \frac{d_{b_2}}{\cos \alpha_R} - d_I$$

1. November 1952

Kontrollmass für ungerade Zähnezahl MR'

(40)
$$M_{R'} = m z_2 \frac{\cos \alpha}{\cos \alpha_R} \cos \frac{90^{\circ}}{z_2} - d_R = \frac{d_{b_2}}{\cos \alpha_R} \cos \frac{90^{\circ}}{z_2} - d_R$$

(41) $\operatorname{inv} \alpha_R = \operatorname{inv} \alpha + \frac{0.5 \pi + 2 x_2 \operatorname{tg} \alpha}{z_2} - \frac{d_R - 0.5 j}{m z_2 \cos \alpha}$

Der Messrollendurchmesser soll so gewählt werden, dass

Berechnung der Druckspannungs-Kurve im Stahlbeton-Biegequerschnitt

Von Dipl. Ing. H. HAMANN, Mülheim-Ruhr

Haberstock bezeichnet die Klärung der Druckspannungsverteilung im Biegequerschnitt als das Hauptproblem der n-freien Rechnung und sagt schliesslich, dass eine exakte Aussage über die Form der Spannungsverteilung und über die Höchstspannung im Druckgurt derzeit nicht möglich sei [2]¹). Die Durchführung direkter Spannungsmessungen, die dieses Problem einer abschliessenden Lösung entgegenführen könnte, ist bislang nicht bekannt geworden.

Bei dem Versuch, die Spannungsverteilung zutreffend zu beurteilen, tauchen immer wieder zwei Grundgedanken schon in den ersten Arbeiten der dreissiger Jahre auf:

1. Annahme einer Affinität der an mittig gedrückten Prismen gefundenen Spannungs-Stauchungslinie mit der Spannungsverteilung im Biegequerschnitt.

2. Bestimmung des Völligkeitsgrades und des Randabstandes des Druckschwerpunktes durch Auswertung von Bruchversuchen mittels Tastrechnung, wobei man sich zur besseren Veranschaulichung meist auch ein Bild der Spannungsverteilung entwirft.

Es soll hier ein Weg gezeigt werden, der genauere Aussagen zu machen gestattet. Er fusst auf Pucherschen Grundgedanken [5], weswegen auch die von Pucher gewählte Bezeichnungsweise im Wesentlichen beibehalten wurde.

Die Ableitung, die für den Rechteckquerschnitt durchgeführt wird, beruht auf folgenden Voraussetzungen:

a) Gültigkeit der Bernoullischen Hypothese. Es sei ausdrücklich betont, dass mit einem ganz geringen Mehraufwand auf die Verwendung dieser Hypothese in folgender Entwicklung verzichtet werden könnte. Es kann bewiesen werden, dass ein Abgehen von dieser Hypothese das Charakteristikum des Endergebnisses nicht wesentlich verändert [3].

b) Die Spannungs-Stauchungslinien aller Fasern der Balkendruckzone sind annähernd gleich. Diese Annahme erscheint berechtigt, da die Stauchungsdifferenz einer Faser gegenüber der darunterliegenden Faser, somit auch die gegenseitige Beeinflussung, immer gleich ist.

c) Keine Mitwirkung der Betonzugzone. Diese Annahme wurde getroffen, weil bei den Versuchsunterlagen gewisse Angaben fehlten. Der Einfluss dieser Vernachlässigung auf das Endergebnis ist nicht wesentlich.

Die verwendeten Bezeichnungen gehen aus Bild 1 hervor. Beim Bruch geht die Randstauchung ε_{br} in die Bruchstauchung ε_{bB} und die Betonrandspannung σ_{br} in die Betonbruchrandspannung σ_{bB} über. Es wird weiter verwendet:

$$u = \frac{\alpha}{\varphi} x; du = \frac{\xi}{\varphi} h d\alpha$$
 Bild 1. Bezeichnungen

Die Betondruckkraft ist dann

$$D_b = \int_{\sigma_b}^{u=x} \sigma_{bb} b \, du = \xi \, \sigma_{bB} \, b \, h \frac{1}{\varphi} \int_{\sigma'}^{\alpha=\varphi} \sigma'(\alpha) \, d\alpha = k \, \xi \, \sigma_{bB} \, b \, h$$
$$u = 0$$

1) Die Zahlen in eckigen Klammern verweisen auf das Literaturverzeichnis, die Rolle wenig über den Zahnkopf vorsteht. Für Räder mit geringer Profilverschiebung wird $d_R = 1,440$ m-empfohlen.

Die Profilverschiebungen an Innengetrieben mit schrägen Zähnen lassen sich auf die gleiche Weise berechnen, sofern Stossmesser verwendet werden, bei denen das Nennmodul auf den Stirnschnitt bezogen ist; andernfalls ist die Rechnung mit Hilfe der ideellen Zähnezahl vorzunehmen.

Schluss folgt

DK 624.072.2.012.4

Das Moment von D_b um die Nullinie wird

Bezeichnen wir mit $\lambda=1$ — $rac{1}{|arphi|^2k}\int arphi'\left(lpha
ight)$ a $d\,lpha$, so ergibt sich

 σ_e 1

OBB E

$$z = h - x + \frac{M_o}{D_h} = h \left(1 - \lambda \xi\right)$$

Es gilt die Gleichgewichtsbedingung

$$\xi \, \sigma_{bB} \, b \, h = F_e \, \sigma_e \qquad \qquad k = \mu$$

(2) und

(3

(5

k

$$M \equiv k\,\xi\,\sigma_{bB}\,b\,h\,z \equiv k\,\xi\,\sigma_{bB}\,b\,h^2\,(1-\lambda\,\xi)$$

Bild 2. Versuchsbalken

Wir führen unsere Ueberlegungen an einem stark bewehrten Versuchsbalken nach Bild 2 weiter. Misst man bei stufenweiser Aufbringung der Belastung jeweils die einander zugeordneten Verlängerungen der Stahleinlagen und die Zusammendrückungen der Betons an der oberen Balkenfläche bis zum Bruch, so erhält man eine Funktion $\varepsilon_e(\varphi) = \Phi$. (1) etwas umgewandelt in (2) eingesetzt ergibt nämlich mit $\sigma_e = E_e \varepsilon_e$:

$$k = \mu \frac{E_e \varepsilon_e}{\sigma_{bB}} \left(1 + \frac{\varepsilon_e}{\varphi \varepsilon_{bB}} \right)$$
$$\frac{1}{\varphi_0} \int_0^{\varphi} \varphi'(a) \, da = \frac{\mu E_e}{\sigma_{bB}} \, \Phi \left(1 + \frac{\Phi}{\varphi \varepsilon_{bB}} \right)$$
$$\rho'(\varphi) = \frac{\mu E_e}{\sigma_{bB}} \left[\frac{d}{d \varphi} (\varphi \Phi) + \frac{1}{\varepsilon_{bB}} \frac{d}{d \varphi} \Phi^2 \right] + c$$

Diese Funktion gilt allgemein, also nicht nur für eine bestimmte Faser des gedrückten Querschnittes. Die Konstante c wollen wir hier nicht weiter beachten, da wir annehmen wollen, dass unsere Balken bei Versuchsbeginn spannungsfrei sind, das heisst z. B. keiner Schwindvorspannung unterliegen.

In den meisten Fällen wird es ausreichen, $\varepsilon_e(\varphi)$ durch eine Parabel 2. Grades anzunähern:

$$\Phi \equiv a_1 \ \varphi \ + \ a_2 \ \varphi^2$$

Wir erhalten dann nach Gleichung (3)

$$\begin{aligned} \varphi'\left(\varphi\right) &= \frac{\mu \, E_e}{\sigma_{bB}} \times \\ &\times \left[\frac{4 \, a_2^2}{\varepsilon_{bB}} \, \varphi^3 + \left(\frac{6 \, a_1 \, a_2}{\varepsilon_{bB}} + 3 \, a_2\right) \varphi^2 + \left(\frac{2 \, a_1^2}{\varepsilon_{bB}} + 2 \, a_1\right) \, \varphi \,\right] \end{aligned}$$

Die Betonbruchrandspannung erhält man, wenn man $\varphi = \varphi' = 1$ setzt:

$$\sigma_{bB} = \frac{2 \,\mu \, E_e}{\varepsilon_{bB}} \left[2 \,a_2^2 + 3 \,a_1 \,a_2 + 1.5 \,a_2 \,\varepsilon_{bB} + a_1^2 + a_1 \,\varepsilon_{bB} \right]$$